
Antiquity: Exploiting a Secure Log for Wide-Area
Distributed Storage

Hakim Weatherspoon
∗

Cornell University
hweather@cs.cornell.edu

Patrick Eaton⋆

EMC Corporation
eaton_patrick@emc.com

Byung-Gon Chun and John Kubiatowicz
University of California, Berkeley

{bgchun,kubitron}@cs.berkeley.edu

ABSTRACT

Antiquity is a wide-area distributed storage system designed to
provide a simple storage service for applications like file systems
and back-up. The design assumes that all servers eventually fail
and attempts to maintain data despite those failures. Antiquity
uses a secure log to maintain data integrity, replicates each log on
multiple servers for durability, and uses dynamic Byzantine fault-
tolerant quorum protocols to ensure consistency among replicas.
We present Antiquity’s design and an experimental evaluation with
global and local testbeds. Antiquity has been running for over
two months on 400+ PlanetLab servers storing nearly 20,000 logs
totaling more than 84 GB of data. Despite constant server churn,
all logs remain durable.

Categories and Subject Descriptors

C.2.4 [COMPUTER-COMMUNICATION NETWORKS]:
Distributed Systems—Peer-to-peer applications; D.4.3
[OPERATING SYSTEMS]: File Systems Management—
Distributed File Systems; D.4.5 [OPERATING SYSTEMS]:
Reliability—Fault-tolerance; D.0 [SOFTWARE]: General—
Distributed wide-area storage systems

General Terms

Reliability, Performance, Design, Experimentation, Security

Keywords

Distributed Storage System, wide-area, archival storage systems,
data integrity, data durability

∗Work done while authors were graduate students at University of
California, Berkeley.

This research was supported by the National Science Founda-
tion under Cooperative Agreement No. ANI-0225660, http://
project-iris.net/. Hakim Weatherspoon was supported in
part by an Intel Foundation PhD Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroSys’07, March 21–23, 2007, Lisboa, Portugal.
Copyright 2007 ACM 978-1-59593-636-3/07/0003 ...$5.00.

1. INTRODUCTION
Many new distributed systems—like PlanetLab [5], the Global

Information Grid (GIG) [3], and GRID—are composed of ma-
chines from multiple autonomous organizations that are geograph-
ically dispersed. In these systems, servers cooperate to provide
services such as persistent storage. Systems designed in this man-
ner exhibit good scalability and resilience to localized failures such
as power failures or local disasters. Unfortunately, distributed
systems involving multiple, independently-managed servers suffer
from new challenges such as security (including malicious compo-
nents), automatic management (reliable adaptation to failure in the
presence of many individual components), and instability. In Plan-
etLab, for example, typically less than half of the active servers are
stable (available for 30 days or more) [35].

Providing secure, consistent, and available storage in these sys-
tems that exhibit extremely high levels of churn, failure, and even
deliberate disruption is a challenging problem. Existing wide-area
distributed storage systems, however, are not well-suited for such
environments. They often support only immutable (read-only) data,
do not provide consistent access to mutable (modifiable) data, do
not protect and secure access to data, or are not designed for the
target environment (e.g. assume fail-stop failures).

Antiquity is a distributed storage system designed to maintain
data securely, consistently, and with high availability in a dynamic
wide-area environment. It uses a secure log structure to maintain
the integrity of stored data. It replicates data on multiple servers
so that data can be retrieved later even when some replicas fail. It
integrates fault-tolerance protocols to handle faults ranging from
server outages to Byzantine attacks.

To test our solutions, we deployed a prototype on PlanetLab,
a surprisingly volatile environment [35]. Antiquity has been run-
ning in the wide-area for over two months on 400+ PlanetLab [5]
servers maintaining nearly 20,000 logs containing more than 84 GB
of data. Despite the volatility of the underlying system, all logs are
durable; that is, no data is lost and all logs can be read. However,
tests using periodic random reads reveal that, at any given time,
6% of the logs are not modifiable since they do not have a quorum
(threshold) of replicas available temporarily due to server failure on
PlanetLab. All eventually become modifiable again due to Antiq-
uity’s quorum repair protocol. Antiquity’s quorum repair protocol
replaces lost replicas while maintaining data consistency.

Antiquity was developed in the context of OceanStore [38]. In
particular, a component of OceanStore was a primary replica im-
plemented as a Byzantine agreement process. This primary replica
serialized and cryptographically signed all updates. Given this to-
tal order of all updates, the question was how to durably store and
maintain the order. Antiquity’s implementation of the interface and
structure of a secure log assisted in durably maintaining the order



over time. When data is later read from Antiquity, the secure log
and repair protocols ensure that data will be returned and that re-
turned data is the same as stored.

The contributions of this paper are as follows.

• The design and analysis of a secure log interface that can be
easily implemented in a distributed, fault-tolerant fashion.

• Design and implementation of a dynamic Byzantine fault-
tolerant quorum repair protocol that maintains consistency
and durability in the face of recurring server failure.

• Evaluation of an operational system that combines these fea-
tures and is currently running in the wide-area.

This paper presents Antiquity’s design and evaluates how effec-
tively it can maintain data. In Section 2, we present an overview
of Antiquity’s goals, design, and assumptions. We describe the de-
sign in detail in Sections 3 and 4. In Sections 5 and 6, we evaluate
Antiquity’s ability to maintain data and discuss our experiences.
Section 7 describes related work; Section 8 concludes.

2. OVERVIEW
Antiquity is a generic wide-area storage system that provides se-

cure, durable storage. It is designed to serve as the storage layer
for a variety of applications such as file systems [11, 34] and back-
up [36, 38]. Antiquity stores application data in a secure log to
protect data integrity. It simultaneously supports many applica-
tions where application state is stored as separate logs. It provides
to applications a limited interface by which they can create new
logs, append data to the head of an existing log, and read data at
any position in the log. It guarantees fault-tolerance through repli-
cation, consistency via dynamic Byzantine fault-tolerant quorum
protocols, and efficiency by aggregation.

We describe how Antiquity integrates the above design points
into one cohesive system in Sections 3 and 4, but first we discuss
the goals, system model, and assumptions used to design Antiquity.

2.1 Storage System Goals
The design of Antiquity was guided by the following goals.

• Integrity: Only the owner can modify the log. Any unau-
thorized modifications to the log, as in substitution attacks,
should be prevented.

• Incremental Secure Write and Random Read Access: A
client can add data to a log securely as it is created, without
local buffering. Further, the client can read arbitrary blocks
without scanning the entire log.

• Durability and Consistency: The log should remain acces-
sible despite temporary and permanent server failure. The
system should ensure that logs are updated in a consistent
manner.

• Efficiency/Low overhead: Protocols should limit the number
of cryptographic operations and the amount of communica-
tion needed across the wide area. The infrastructure should
amortize the cost of maintaining data and verifying certifi-
cates when possible.

2.2 System Model
The storage system stores logs on behalf of clients. The types

of clients storing data in the system can vary widely as shown in
Figure 1. The client may be the end-user machine, the server in a

����������
����������
����������

����������
����������
����������

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��������
��������
��������

��������
��������
��������

App
Storage System

App

Server

App

Replicated
Service

Figure 1: A log-structured storage infrastructure can provide

storage for end-user clients, client-server systems, or replicated

services.

client-server architecture, or a replicated service. In any case, the
storage system identifies a client and its secure log by a crypto-
graphic key pair; only principals that possess the private key can
modify the log. Requests that modify the state of the log must in-
clude a certificate signed by the principal’s private key. Although a
log is non-repudiably bound to a single key pair, multiple instances
of the principal may exist simultaneously. If multiple devices pos-
sess the same private key, then they can directly modify the same
log.

Storage resources for maintaining the log are pre-allocated in
chunks. When a new chunk, or extent, needs to be allocated, the
system consults the administrator. The administrator authenticates
the client needing to extend its log and selects a set of storage
servers to host the extent. The newly-allocated portion of the log
is replicated on the set of selected storage servers. To access or
modify the extent, clients interact directly with the storage servers.

Applications interact with the log through a client library that
exports a thin interface—create(), append(), and read().
To create a new log, a client obtains a new key pair and invokes the
create() operation. The administrator authenticates the request
and selects a set of servers to host the log.

After a log has been created, a client uses the append() oper-
ation to add data to the head of the log. The client library commu-
nicates directly with the log’s storage servers to append data. The
interface ensures that data is added to the log sequentially by pred-
icating each write on the previous state of the log. If conflicting
append() operations are submitted simultaneously, the predicate
ensures at most one is applied to the log1.

Data written to a log cannot be explicitly deleted. Instead, Antiq-
uity supports implicit deletion based on an expiration time. The ex-
piration time is set by the administrator when the extent is created.
After the expiration time passes, the system can reclaim resources
belonging to the extent. A client can prevent the expiration of an
extent by extending the expiration time, though we do not discuss
that feature further in this paper.

2.3 Assumptions
We assume that clients follow specified protocols, except for

crashing and recovering. A malfeasant client, whether due to soft-

1We assume a storage server atomically handles each request. That
is, a server processes requests one at a time, even though multiple
requests may have been received at the same time.



H(PK)

H(Dn)

V0

H(D0)

V1

H(D1)

Vn

Figure 2: To compute the verifier for an extent, the system uses

the recurrence relation Vi = H(Vi−1 + H(Di)). V−1 = H(PK)
where PK is a public key.

ware fault or compromised key, can prevent the system from ap-
pending data to a log. It cannot, however, affect data already stored
in its log or logs belonging to other principals. If a principal’s pri-
vate key should be compromised, an attacker could append data to
the log, but it cannot destroy data previously stored in the log. A
principal can retrieve data from a log until the log’s expiration time.

We assume that the administrator, tasked to select sets of stor-
age servers to host logs [29], is trusted and non-faulty. The design,
however, includes several mechanisms to mitigate the cost and con-
sequences of this assumption. While each log uses a single admin-
istrator, different logs can use different administrators. By allowing
multiple instances, the role of the administrator scales well. Sec-
ond, the administrator’s state can be stored as a secure log in the
system. Thus, the durability of the state can be assured like any
other log. Third, the state of the administrator can be cached to re-
duce the query load on an administrator. Finally, the administrator
can be implemented as a replicated service to improve availability
further.

Storage servers may exhibit Byzantine faults. We assume that,
in the set of storage servers selected by the administrator to host a
particular extent, a maximum threshold number of servers is faulty.

3. ANTIQUITY’S SECURE LOG
Antiquity supports a secure, append-only, log abstraction where

a single log is owned by a single principal and identified by a cryp-
tographic key pair. Only the owner of the log can append() to it.
This narrow interface helps reduce the complexity of implementing
Antiquity where consistency and durability need to be maintained
efficiently. Though a single log is bound to a single cryptographic
key pair, Antiquity maintains many logs associated with many sep-
arate key pairs.

Antiquity stores a log as an ordered sequence of container ob-
jects called extents. Similar to log segments in a log-structured file
system [30], extents have a finite maximum size; however, each
extent contains an ordered collection of variable-sized application-
level blocks of data. Further, all data in an extent belongs to the
same log owned by a single principal. To guard data integrity, indi-
vidual log elements (blocks), whole extents, and the entire log itself
are all self-verifying, which means the name of an object verifies
its content.

In the following two subsections we describe the secure log
structure and usage semantics. We conclude the section with a
description an example file system application built on top of the
secure log interface.

3.1 Secure Log Structure
A secure log is composed of two types of extents. The log head

is a mutable, key-verified extent; all other extents are immutable
hash-verified extents. The key-verified log head is named by a se-
cure hash of the public key associated with the log. To verify the

c     =0−>E0prev

c     =1currEF c     =−1−>
c     =0curr

prevABCH G prevc     =0−>E1
currc     =2

Log Head
(Key−Verified Extent H(PK))

Hash−Verified ExtentE1 Hash−Verified ExtentE0

Figure 3: In two-level naming, each block is addressed by a

tuple (extent_name, block_name). A block_name is simply the

secure hash of the block. The extent_name for the log head is

the secure hash of the public key H(PK). The extent_name for

a hash-verified extent is the verifier.

contents of the log head, a server compares the data to the verifier

included in the certificate (after confirming the signature on the cer-
tificate). A verifier is a cryptographically-secure hash that asserts
the integrity of both the content and append-order of an extent.

We assume the mutable key-verified extent at the log head has
a finite maximum size. When it becomes full, the system copies
the content of the log head into an immutable hash-verified extent.
A hash-verified extent is named by a function of the content of
the extent. Specifically, the extent is named by the verifier in the
extent’s most recent certificate. A server can verify the integrity
of a hash-verified extent by comparing an extent’s contents to its
name. These self-verifying techniques were made popular by the
Self-certifying Read-only File System [16].

Making Extents Self-Verifying.
An extent verifier is computed from the names of the blocks in

the extent using the chaining method [24] shown in Figure 2. As-
sume an extent contains a sequence of data blocks, Di. Each data
block is named with a secure, one-way hash function, H(Di). The
verifier is computed using the recurrence relation Vi = H(Vi−1 +
H(Di)), where + is the concatenation operator. We bootstrap the
process by defining V−1 to be a hash of the public key that signs
the extent’s certificate. This convention ensures that the names of
extents owned by different principals do not conflict.

Creating verifiers in this manner has several advantages. When
a block is appended to the log, the client can compute the verifier
incrementally. This means it must hash only the new data, not all
data in the log, to compute the running verifier. Additionally, a
given verifier can be produced by only one particular sequence of
append() operations. Thus, chaining creates a verifiable, time-
ordered log recording data modifications. Furthermore, requiring
the latest verifier as a predicate in subsequent append() opera-
tions assures servers maintain a consistent state of the log. Finally,
when the log head is copied from a key-verified extent to a hash-
verified extent, the verifier can be used as the new hash-verified
name without modification.

Two-Level Naming.
To provide random access to any element in the log, Antiquity

implements two-level naming. In two-level naming, each block is
addressed not by a single name, but by a tuple. The first element of
the tuple identifies the enclosing extent; the second element names
the block within the extent. Retrieving data from the system is
a two-step process. The system first locates the enclosing extent;
then, it extracts individual application-level blocks from the extent.
Both blocks and extents are self-verifying. Figure 3 illustrates two-
level naming.

Two-level naming introduces added complexity in computing the
address of a block of data. When an application writes a block to
the log, the block is stored in the mutable extent at the head of the
log. Because the log head is a mutable extent, the system cannot
know the name of the hash-verified extent where the block will
eventually and permanently reside.



Interface for Aggregation:

status = create(H(PK), cert);
status = append(H(PK), cert, predicate, data[ ]);
status = snapshot(H(PK), cert, predicate);
status = truncate(H(PK), cert, predicate);
status = put(cert, data[ ]);
status = renew(extent_name, cert);

cert = get_cert(extent_name);
data[] = get_blocks(extent_name, block_name[ ]);
extent = get_extent(extent_name);

data = get_head(extent_name);
mapping = get_map(extent_name);

Table 1: To support aggregation of log data, we use an ex-

tended API. A log is identified by the hash of a public key

(H(PK)). Each mutating operation must include a certificate.

The snapshot() and truncate() operations manage the

extent chain; the renew() operation extends an extent’s expi-

ration time. The get_blocks() operation requires two ar-

guments because the system implements two-level naming. The

get_*(extent_name) operations return either the entire extent

or items stored within an extent such as the certificate, map-

ping, or various blocks (e.g. head). The extent_name is ei-

ther H(PK) for the log head or verifier for hash-verified extents.

To resolve this problem, each extent is assigned an integer corre-
sponding to its position in the chain. When data is appended to the
log, the address returned to the application identifies the enclosing
extent by this counter. Each extent records the mapping between
counter and permanent, hash-verified extent name for the previous
extent. Both the mapping to the previous extent and position in the
extent chain are stored in a metadata block (first block) within each
extent; a call to get_map()returns the mapping (extent_counter,
extent_name) of the previous extent (e.g. get_map(E1) in Fig-
ure 3 returns mapping (0, E0)).

Aggregating blocks into extents and extents into a log improves
the system’s efficiency in several ways. First, breaking a log into
extents enables servers to intelligently allocate space for extents.
Extents have a maximum size while the log itself can grow to be
arbitrarily large. Second, extents decouple the infrastructure’s unit
of management from the client’s unit of access. As a result, the
storage infrastructure can amortize management costs over larger
collections of data. Third, two-level naming reduces the query load
on the system because clients need to query the infrastructure only
once per extent, not once per block. Assuming data locality—that
clients tend to access multiple blocks from an extent—systems can
exploit the use of connections to manage congestion in the network
better. Finally, clients writing multiple blocks to the log at the same
time need only to create and sign a single certificate.

3.2 Using a Secure Log
To interact with the log, a client relies on a library that com-

municates with Antiquity using the interface shown in Table 1.
The interface extends the create()/append() interface used
by applications to support extents. All mutating operations require
a certificate signed by the client for authorization. The certificate
includes the verifier of the new version of the extent. The inter-
face ensures that updates are applied sequentially by predicating
each operation on the previous state of the extent. Upon com-
pletion of the operation, the certificate is stored with the extent.
The snapshot() and truncate() operations help manage the
chain of extents. The renew() operation extends the expiration

Certificate contents:

verifier token that verifies contents of log
num_blocks the number of blocks in the container
size the size of data stored in the container
seq_num certificate sequence number
timestamp creation time of certificate
ttl time the certificate remains valid

Table 2: A certificate is contained within each operation and

stored with each log. It includes fields to bind the log to its

owner and other metadata fields.

state
new

state
predicate

state
new

state
predicate

Request FailsRequest Succeeds

append(  )

Log After:

Log Before:

append(  )

B A

C

C A

A

B

B A

A

A

Figure 4: The interface ensures that data is added to the log

in a sequential fashion by predicating each write on the pre-

vious state of the log. If conflicting append() operations are

submitted simultaneously, the predicate ensures at most one is

applied to the log, leaving the log in a consistent state.

time of an extent; we will not discuss renew() further.
Two of the operations enumerated in Table 1—create() and

snapshot()—create new replicas. Each of these operations re-
quires that the system contact the administrator for a configuration,
set of servers, to host the new replicas. The most common opera-
tion, append(), does not require any interaction with the admin-
istrator.

Adding Data via append().
To append() data to the log, a client creates a request and

submits it to the storage servers. A request has three arguments: the
predicate is a verifier that securely summarizes the current state of
the log, the new data to append to the log, and a new certificate that
includes a new verifier and new sequence number. The verifier in
the certificate summarizes the next state of the log after appending
data. The sequence number is a monotonically increasing number.
Table 2 shows the contents of a certificate.

When a server receives an append() request, it determines if
a request succeeds or not. It performs several checks using local
knowledge. The certificate contained in the request must include
a valid signature. Also, the predicate verifier contained in the re-
quest must match the current state of the log recorded by the stor-
age server. Additionally, the verifier in the certificate must match
the new verifier after appending new data to the log. Further, the
sequence number in the certificate must be greater than the one cur-
rently stored. If these conditions are met, the server writes the new
data to the log on its local store and returns success to the client.
Otherwise, the request is rejected and failure is returned. A client
receiving a failure response would need to update its local state (via
get_cert(), get_head(), and get_blocks()) and submit
a new append() request based on updated state.



If conflicting append() operations are submitted simultane-
ously, the predicate ensures at most one is applied to the log leav-
ing the log in a consistent state. For example, in Figure 4, a storage
server applies a workstation’s request even though a laptop simul-
taneously submitted a (conflicting) request. As a result of the order
the server handles the requests, the workstation’s predicate matches
the state of the log and the request succeeds. Success is returned to
the workstation. However, the laptop’s predicate does not match,
the request fails, and failure is returned. Since the laptop’s request
failed, it would need to update its local state and submit a new
append() request based on updated state.

Reading Data via get_blocks().
To read data, the client library first accesses the mappings stored

in the log to determine the name of the extent holding the data. It
then uses the get_blocks() operation to retrieve the requested
blocks from that extent. To accelerate the translation between
counter and extent name, the client library caches the immutable
mappings. Also, as an optimization, each extent contains not just
the mapping for the previous extent, but a set of mappings that al-
low resolution in a logarithmic number of lookups.

Managing the Extent Chain.
The chain of extents is managed via the snapshot() and

truncate() operations. To prevent the extent at the log head
from growing too large, the client library converts the log head
to hash-verified form using the snapshot() operation. If the
system must copy the extent to a new storage server, the trans-
fer occurs directly between storage servers without client interac-
tion. After data has been copied to a hash-verified extent, the li-
brary uses the truncate() to reset the log head and point to the
previous extent created via snapshot(). While snapshot()
and truncate() are typically used together, we have elected to
make them separate operations for ease of implementation. Indi-
vidually, each operation is idempotent, allowing the library to retry
the operation until successful execution is assured. Further, each
operation requires a predicate that prevents conflicting concurrent
changes. The library uses the append(), snapshot(), and
truncate() sequence to add more data to the log.

3.3 Example Application: A Versioning File
System

To demonstrate the use of the secure log interface, consider the
implementation of a versioning file system application. Figure 5(a)
shows a sample file system to be stored. We ignore inodes for this
example and assume that files and directories are stored as a sin-
gle block. The application translates the file system into a Merkle
tree [31] where the secure pointer to a child file or directory is the
(extent_counter, block_name) tuple. This file system structure is
similar to others [11, 38, 36] and was implemented on top of a se-
cure log interface in less than a week by one graduate student [15].
We illustrate the state of the log after initially archiving the file
system (Figure 5) and after modifying two files (Figure 6).

To archive the file system, the application first creates a secure
log using the create() operation. create() initializes the
map block (first block of the log head) with the values ccurr = 0
and cprev = −1 → φ (current extent_counter and mapping to pre-
vious extent, respectively). Next, the application traverses the file
system in a depth first manner calling append(), snapshot(),
and truncate(). In particular, the application calls append(
budget, sched) and records the verifiable pointers—(c = 0,
H(budget)) and (c = 0, H(sched)), respectively—in the proj1
directory. Then, it calls append(proj1) and records the ver-

/

proj1

budget

proj2

report reqs

docs

sched

(a) file system

docs:

/: (c=1, H(docs))

(c=1, H(proj2))(c=0, H(proj1))

schedbudget

(c=0, H(sched))(c=0, H(budget))proj1:

report reqs

proj2: (c=0, H(report)) (c=0, H(reqs))

(b) Merkle Tree

Hash−Verrified Extent

budgetschedreqs

c     =0−>E0prev

c     =−1−>
c     =0curr

c     =1curr

prev

Log Head − (Key−Verified Extent H(PK))

/ docs proj2

report proj1

E0
(c) Secure Log

Figure 5: (a) An example file system. (b) The application trans-

lates the file system into a Merkle tree. The verifiable pointers

are of the form (extent_counter, block_name). (c) The Merkle

tree is stored in two extents. The first extent, E0, is filled and

has been converted to a hash-verified extent. The second ex-

tent, the log head identified by H(PK), is a partially-filled key-

verified extent.

ifiable pointer in the docs directory (c = 0, H(proj1)). Simi-
larly, the application calls append(report,reqs) and records
the verifiable pointers in the proj2 directory. However, before
calling append(proj2), the client library calls snapshot()
which creates a hash-verified extent with the extent_name E0. The
hash-verified extent mirrors the log head. The client library then
calls truncate() which removes all the blocks from the log
head and updates the mapping block by incrementing the current
extent_counter to ccurr = 1 and setting the mapping of the previ-
ous extent to cprev = 0 → E0. The application, then, continues
by calling append(proj2) and records the verifiable pointer
(c = 1, H(proj2)) in the docs directory. Notice that the ex-
tent_counter is c = 1 instead of c = 0. Finally, the application calls
append(docs), records the verifiable pointer in the / directory,
and calls append(/). Figures 5(b) and 5(c) show the resulting
Merkle tree and secure log, respectively. In a similar fashion, Fig-
ures 6(a) and 6(b) show the modified Merkle tree and secure log,
respectively, after writing new versions of the report and reqs
documents (report’ and reqs’).

To read a particular file, the application reads the root of the
file system stored at the head of the log and follows the pointers
to the desired file. For example, assume the client wants to read
the sched file. The application first calls get_head(H(PK))
which returns the root of the file system /’. The root contains a
verifiable pointer to the docs’ directory (c = 2, H(docs’)). The
application resolves the extent_counter c = 2 to the log head by
calling get_map(H(PK)). The call returns the log head’s current
extent_counter value and map to the previous extent c = 1 → E1
which can be cached for later use. Next, the application calls
get_blocks(H(PK), H(docs’)) which returns the docs’



(c=1, H(report’))

report’ reqs’

proj2’:

(c=0, H(proj1)) (c=1, H(proj2’))

(c=1, H(reqs’))

/’:

docs’:

(c=2, H(docs’))

(a) Merkle Tree

Hash−Verified Extent

Hash−Verified Extent

Log Head − (Key−Verified Extent H(PK))

docs’/’

budgetreqs

/ docs proj2c     =0−>E0prev

c     =−1−>
c     =0curr

c     =1curr

prev

prev

c     =2curr

report proj1sched

proj2’ reqs’ report’

c     =0−>E1

E1

E0
(b) Secure Log

Figure 6: (a) The Merkle tree resulting from translating the

updated file system. The dashed pointer indicates a reference

to a block from the previous version. (b) The contents of the

secure log after storing blocks of the updated file system.

directory. The docs’ directory contains a verifiable pointer to
the proj1 directory (c = 0, H(proj1)). The application re-
solves the extent_counter c = 0 to extent_name E0 by calling
get_map(E1). The call returns the map to the previous extent
c = 0 → E0. Notice that the mapping from c = 1 → E1 was cached
from the first get_map() call on the log head. Finally, the ap-
plication calls get_blocks(E0,proj1) to retrieve the proj1
directory and get_blocks(E0,sched) to retrieve sched.

4. ANTIQUITY’S REPLICATION, CON-

SISTENCY, AND DURABILITY

STRATEGIES
Antiquity replicates a secure log on multiple servers to provide

durability. A log is durable if it persists over time. To maintain
durability and ensure that progress can be made (that is, new data
can be written to the log), the system must maintain consistency
across replicas. The system must maintain consistency despite a
variety of server and network failures and conflicting update re-
quests. Server failures include transient failure such as reboot, per-
manent failure such as disk failure, and erroneous failure such as
database corruption or machine compromise. Network failures in-
clude dropped connections, temporary partitions, and transmission
failure such as message drop, reorder, delay, or corruption.

Antiquity employs a dynamic Byzantine fault-tolerant quorum
protocol to satisfy the durability and consistency requirements. A
quorum is a threshold, taking into account that some members may
be faulty or malicious. For instance, Malkhi and Reiter [26] demon-
strated that with self-verifying data, a configuration with n > 3 f

servers and a quorum q = n− f servers can make progress when
up to f servers are faulty. In that work, configurations were static
for the lifetime of the system. Martin and Alvisi [29] extended the
protocol to maintain consistency in a dynamic environment. They
utilize quorums to maintain two properties, soundness and time-

liness, that guarantee consistency in a dynamic environment. In-
formally, soundness ensures data read by a client was previously
written to a quorum of servers; timeliness ensures the data read is

the most recent value written.
We have adapted the dynamic Byzantine quorum protocols to

tolerate the failures and arbitrary behavior experienced on an envi-
ronment such as PlanetLab. In particular, Antiquity creates a new
configuration when a quorum in the old configuration is no longer
available. We discuss the consistency via sound writes and durabil-
ity via repair.

4.1 Consistency Semantics
The client interacts with many replicas to complete a single oper-

ation. Operations that modify replicated state result in one of three
states: sound, unsound, or undefined.

• The result of an operation is sound if the client receives a pos-
itive acknowledgment from a threshold of servers. A sound
response means that the request succeeded and the data is
durable.

• On the other hand, the result of an operation is unsound if
the client receives a negative acknowledgment from enough
servers such that positive acknowledgment from a thresh-
old is no longer possible (e.g. sizeof(negative acks) ≥

sizeof(server set) − threshold+1). A request fails if the result
is unsound. The storage system does not maintain unsound
results; thus, unsound writes are not durable.

• Finally, the result is undefined if it is neither sound or un-
sound. An undefined result means the client did not receive
sufficient acknowledgment from servers perhaps due to net-
work or server failure. In the case of an undefined result,
a timeout occurs and the client does not know whether the
request is sound or unsound.

After a timeout, the client performs a get_cert() on all the
servers and waits to receive acknowledgment from a threshold. If
the state stored in the system has changed (another client updated
the log), then the request is unsound. If the get_cert() fails to
receive acknowledgment from a threshold of servers, then the client
may trigger a repair audit that will determine the latest consistent
state of the log (described in the next section). The client continu-
ally sends the request, reads the state of the system, then triggers a
repair audit until the request is either sound or unsound.

4.2 Consistency Example
Figure 7 illustrates the notions of sound, unsound, and undefined

writes. Assume a log is replicated on seven servers. A threshold
required for consistency and a sound response is five positive ac-
knowledgments. The number required for an unsound response is
three negative acknowledgments (total minus a threshold plus one,
7− 5 + 1 = 3). The initial value stored on all the log replicas is
A. Further, assume two clients, a workstation and laptop, simulta-
neously submit conflicting operations. The workstation attempts to
append the value B and receives five positive acknowledgments and
two negative, thus the response is sound since a threshold acknowl-
edged positively. The laptop, on the other hand, attempts to append
the value C and receives five negative acknowledgments and two
positive, thus the response is unsound. With this scenario, the stor-
age system should maintain the workstation’s appended value B

over time. Furthermore, in the above example, if the workstation
receives one less positive acknowledgment (four instead of five),
possibly due to network transmission error, then the result would
be undefined and timeout. The workstation could read the latest
replicated state of the secure log, trigger a repair audit that will re-
pair the distributed secure log if necessary, and resubmit the request
until it receives sufficient server acknowledgment.



Server 5

���
���
���

���
���
���

Server 7

���
���
���

���
���
���

Server 2
���
���
���

���
���
���

Server 1

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Server 6 Server 4

Server 3

A B

A C

A B

A C

A B

A B

A B

(a) Storage System

predicate
verifier

new
verifier

predicate
verifier

new

(c) Request Fails(b) Request Succeeds

A

VCA

append(  ) append(  )

verifierVBA

VA V

B C

Figure 7: Semantics of a Distributed Secure Log. (a) A secure

log with the value A is initially replicated on to seven servers.

In (b), a workstation attempts to append() the value B, pred-

icated on A already being stored. The result of the request is

sound since it reaches a threshold of servers (servers 3-7). In

(c), a laptop, which possess the same private key as the work-

station, simultaneously attempts to append() value C, pred-

icated on A already being stored. The result of the request is

unsound since the predicate fails on a threshold servers. Note

that the two servers (server 1-2) apply C since the predicate

matches local state. However, the system should return value B

in any subsequent reads.

Alternatively, if both requests received unsound responses (e.g.
both received three negative acknowledgments), then the log repli-
cas would be in an inconsistent state since a threshold of the log
replicas state do not agree. When the log replicas are in an incon-
sistent state, new data cannot be added to a threshold of the log
replicas. When no progress can be made, the replicas need to be
repaired to a consistent state. The quorum repair protocol is dis-
cussed next.

4.3 Quorum Repair
The repair protocol restores log replicas to a consistent state such

that the latest sound write is the last write stored by a threshold of
log replicas. It may be used when a client cannot make progress
because replicas of the log are in an inconsistent state or a quorum
is not available due to server failures. Figure 8 shows the repair
process.

When a storage server receives a repair audit, it attempts to read
the latest replicated state (latest sound write) from the other servers
in the configuration. If a quorum responds and the data is in a
consistent state, the storage server takes no action. If, however,
a quorum does not respond or the replicas are in an inconsistent
state (wedged), then the storage server will create a repair request,
record it in local stable storage, and submit it to the administrator.
If the server observes that it already stores a signed repair request

T

Admin
Storage
Servers

Storage
Servers

Audit
Repair

Time

create_configT
Tquorum (new config)

Trepair_audit
Tf  +1 repair_req  +1 upto 2    failuresf                  f

Figure 8: When a storage server believes that repair is needed,

it sends a request to the administrator. After the administrator

receives at least f +1 requests from servers in the current con-

figuration, it creates a new configuration and sends message to

servers in the set. The message describes the current state of the

log; storage servers fetch the log from members of the previous

configuration.

(a) Soundness proof contents

cert certificate
config configuration
ss_sigs[] 2 f +1 or more signatures

<H(cert+config)>ss_priv

(b) Configuration contents

object_id cryptographically secure name of object
client_id hash of client’s public key: H(PK)
ss_set[] set of storage servers: set of H(ss_PK)
f fault servers tolerated
seq_num configuration sequence number
timestamp creation time of configuration
ttl time the configuration remains valid

Table 3: (a) A soundness proof can be presented by any ma-

chine to any other machine in the network to prove that a write

was sound. To provide this guarantee, the proof contains a set

of q storage server signatures over an append’s certificate (Ta-

ble 2) and the storage configuration (Table 3(b)). (b) A configu-

ration defines a set of storage servers that maintain a replicated

log.

on its local disk, it will forward the same request to the administra-
tor. Once a storage server is in the repair state, it does not accept
updates until a new configuration is created.

Martin and Alvisi demonstrated that when the administrator re-
ceives 2 f + 1 repair requests, it can create a new configuration to
host the log while maintaining consistency (the latest sound write)
between the old and new configurations [29]. Servers in the new
configuration fetch the state from servers in the previous configu-
ration. The administrator can reduce the amount of data that must
be transferred during repair by retaining servers across configura-
tions. After acquiring a copy of the log, a storage server in the new
configuration responds to the administrator with a signature over
the certificate (from the latest sound write) and the new configura-
tion. The repair protocol is done after the administrator receives a
quorum of responses from servers in the new configuration.

The Martin and Alvisi protocol can invoke a repair protocol
when a quorum of servers is available. This, however, means that
repair cannot be initiated when it is needed most—when less than
a quorum of servers are available. Essentially, a quorum in the old
configuration is required to agree to trigger a repair protocol that
will create a new configuration. We adapted the protocol to allow
repair to be triggered when less than a quorum is available while
still maintaining consistency.



To ensure that no successful (sound) writes are lost during repair
when less than a quorum is available, we base the repair protocol
on a data structure called a soundness proof . Table 3(a) shows
the contents of a soundness proof. A soundness proof includes a
certificate (Table 2), a configuration (Table 3(b)), and a quorum q

of server signatures over a hash of the certificate and configuration.
It can be stored by and presented to any server as proof that a write
was sound.

The new protocol is similar to the old, except the new protocol
requires each server to store a soundness proof for successful opera-
tions and include the latest soundness proof in a repair request. We
describe the base write protocol that creates the soundness proof
below. The administrator then uses the latest soundness proof from
the received repair requests to create a new configuration and ini-
tialize the configuration to the latest sound write.

To create soundness proofs required for repair, the base write
protocol works as follows. There are two rounds; however, the sec-
ond round is often sent with a subsequent operation. The client
library does not report success to the application until the second
round completes successfully. First, a client submits a request to
the storage servers. When a storage server receives the message,
it checks the request against its local state. If the request satisfies
all conditions, the server stores the data to non-volatile storage and
responds to the client with a signed positive acknowledgment. The
client combines signed positive acknowledgments from a quorum
of servers to create a soundness proof. Next, in the second round,
the client sends the soundness proof to the servers, often as part of
a subsequent operation. Each server stores the soundness proof to
a stable storage and responds to the client. The client can be cer-
tain the log has been written successfully after sending the sound-
ness proof to all servers and receiving responses from a quorum of
servers [45].

4.4 Utilizing Distributed Hash Table (DHT)
Technology for Data Maintenance

Antiquity uses distributed hashtable (DHT) technology to un-
derly and connect the storage servers. It uses the DHT as a dis-
tributed directory; that is, the DHT does not store data, but rather
it stores pointers that identify servers that store the data. A dis-
tributed directory provides a level of indirection that allows flexible
data placement which can increase the durability and decrease the
cost of repairing a given replica [8, 44]. The storage servers use the
distributed directory to publish and locate extents and other stor-
age servers. The storage servers also use the DHT in the traditional
manner to cache soundness proofs to ensure they are available for
all interested parties.

Antiquity also relies on the DHT to help monitor server liveness
to determine when repair is necessary. Using a DHT to monitor the
liveness of each extent separately is not efficient. Instead, Antiq-
uity uses the DHT to monitor server availability and uses that met-
ric as a proxy for extent availability. To monitor server availabil-
ity, Antiquity periodically broadcasts a heartbeat message through
a spanning tree defined by the DHT’s routing tables [8]. A mon-
itoring node receives liveness information from each node with a
frequency depending on its distance in the spanning tree. If it fails
to receive an expected heartbeat. it sends a repair audit.

Each server in Antiquity also serves as a gateway. A gateway
accepts requests from a client and works on behalf of that client,
determining the configuration to handle the request and multicas-
ting the request to the appropriate storage servers. The use of a
gateway lowers the bandwidth requirements of the client. Because
all requests are signed and all data is self-verifying, inserting the
gateway in the path between the client and the storage servers does

not affect security. If the client believes a failure is due to a faulty
gateway, it can resend the request through a different gateway. To
make the soundness proof available to storage servers earlier, the
gateway combines responses from the storage servers to create a
proof and publishes that proof in the DHT.

Gateways perform other tasks to reduce load on the administra-
tor. Gateways propose configurations; the administrator needs only
to verify the configuration before signing it. Currently, Antiquity
uses neighbor lists from the underlying DHT to determine configu-
rations. To limit the number of configuration queries that an admin-
istrator must handle, other machines in the system can cache valid
configurations. The administrator forwards its message to the gate-
way that handles the new configuration request, and the gateway
multicasts the message to servers in the new configuration.

4.5 Discussion
Maintaining the consistency of data replicated across the wide-

area is a challenging endeavor. Using a secure log structure and
interface, however, significantly reduces the complexity of the de-
sign.

1. Most of the log is immutable and stored in hash-verified ex-
tents. The order and data integrity of those extent replicas are
immediate—the extent name verifies both the order and con-
tent of a hash-verified extent. It is not possible for any server
to corrupt a hash-verified extent in an undetectable manner.

2. The log head is the only extent in each log that is mutable
and key-verified. The order and data integrity of the log head
can be verified using the verifier contained in the certificate.
This verifier ensures the order and data integrity of the entire
log. There is only one sequence of appends that results in a
particular verifier. The verifier provides a “natural” predicate
that can be used to ensure the consistency of a log. Each
storage server checks that the predicate verifier matches local
state before applying any operation.

3. The secure log structure reduces the complexity of maintain-
ing sound writes over time. Storage servers need to maintain
only the latest soundness proof because all previous writes
contribute to the verifier of the current state of the log. Dur-
ing a transient failure, a server needs only to retrieve sound-
ness proofs from other servers. Once the server determines
the latest sound write, it can then fetch any blocks that it is
missing from an up-to-date server.

In summary, the secure log structure and its interface simplify
the Antiquity design by reducing complexity of managing integrity
and consistency.

5. EVALUATION
In this section, we evaluate the Antiquity design using a proto-

type running on PlanetLab and a local cluster. We focus our evalua-
tion on the primitive operations provided by the storage system, but
we also describe our experiences with a versioning archival back-
up application.

5.1 Experimental Environment
The Antiquity prototype is written in Java using an event-driven

programming style. It uses the Bamboo distributed hashtable [39]
to locate storage servers and extents.

We are currently running two separate Antiquity deployments.
Both deployments are configured to replicate each extent on a con-
figuration of seven storage servers. Thus, each deployment can



 0

 100

 200

 300

 400

 500

 600

 700

 800

 4  8  16  32  64  128  256  512

T
hr

ou
gh

pu
t K

B
/s

Update Size (KB)

Throughput (Cluster Deployment)

Base Case - 4 KB put()
Using Append Interface

Figure 9: Aggregation increases system throughput by reduc-

ing computation at the client and in the infrastructure. The

base case shows the throughput of a client that stores 4 KB

blocks (and a certificate) using put() operation, as in a tra-

ditional DHT.

tolerate two faulty servers in each configuration. Both deployments
are hosted on machines shared with other researchers, and, conse-
quently, performance can vary widely over time.

The first deployment runs on 60 nodes of a local cluster. Each
machine in the storage cluster has two 3.0 GHz Pentium 4 Xeon
CPUs with 3.0 GB of memory and two 147 GB disks. Nodes are
connected via a gigabit Ethernet switch. Signature creation and
verification routines take an average of 3.2 and 0.6 ms, respectively.
This cluster is a shared site resource; a load average of 10 on each
machine is common.

The other deployment runs on the PlanetLab distributed research
test-bed [5]. We use 400+ heterogeneous machines spread across
most continents in the network. While the hardware configuration
of the PlanetLab nodes varies, the minimum hardware requirements
are 1.5 GHz Pentium III class CPUs with 1 GB of memory and a
total disk size of 160 GB; bandwidth is limited to 10 Mbps bursts
and 16 GB per day. Signature creation and verification take an
average of 8.7 and 1.0 ms, respectively. PlanetLab is a heavily-
contended resource; the average elapsed time of the cryptographic
computations can be more than 210 and 10 ms.

We apply load to these deployments using 32 nodes of a differ-
ent local cluster. Each machine in the test cluster has two 1.0 GHz
Pentium III CPUs with 1.0 GB of memory and two 36 GB disks.
Signature creation and verification takes an average of 6.0 and 0.6
ms, respectively. The cluster shares a 100 Mbps link to the external
network. This cluster is also a shared site resource, but its utiliza-
tion is lower than the storage cluster.

Parts of the evaluation have been presented in earlier work. In
particular, the cluster deployment improves upon the preliminary
performance presented by Eaton et al. [14]. Together, the perfor-
mance and deployment evaluations demonstrate the efficacy of a
system such as Antiquity.

5.2 Cluster Deployment
In addition to serving as a tool for testing and debugging, the

Antiquity deployment on the cluster also allows us to observe the
behavior of the system when bandwidth is plentiful and contention
for the processor is relatively low.

Figure 9 shows how aggregation improves write performance.
In this test, a single client submits synchronous updates of vari-
ous sizes to Antiquity. The client library translates the requests
into append(), snapshot(), and truncate() commands.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000

F
ra

ct
io

n 
of

 O
pe

ra
tio

ns

Latency (ms)

CDF of Operation Latency (Cluster Deployment)

Null
Truncate
Append
Create
Snapshot

Figure 10: Different operations have widely varying latency.

The latency is dependent on the amount of data that must be

transferred across the network and the amount of communi-

cation with the administrator required. The latency CDF of all

operations (even the null()RPC operation) exhibit a long tail

due to load from other, unrelated jobs running on the shared

cluster.

We record the write throughput observed by the client. The x-axis
shows how much data the client writes with each request. The ex-
tent capacity is set to 1 MB. For comparison, we show the through-
put of a client that stores data using synchronous put() operations
with payload of 4 KB of application data, as in typical in a DHT.

Aggregation increases system throughput. At the client, aggre-
gation reduces the cost of interacting with the system by amortizing
the cost of creating and signing certificates and transmitting net-
work messages over more data. In the storage system, aggregation
reduces the number of quorum operations that must be performed
to write a given amount of data to the system. The put() through-
put is lower than append() operations of equivalent size because
put() operations require the administrator to create a new config-
uration for each request.

Next, we measure the latency of individual operations. In this
test, a single data source issues a variety of operations, including in-
cremental writes of 32 KB using the append() interface. Extents
are configured to have a maximum capacity of 1 MB. Figure 10
presents a Cumulative Distribution Function (CDF) of the latency
of various operations. The latency of different operations varies
significantly. The append() and truncate() operations are
the fastest because they transfer little or no data and do not require
any interaction with the administrator. The create() operation is
slightly slower because, though it contains no application payload,
it must contact the administrator to obtain a new configuration. Fi-
nally, the snapshot() operation is the slowest; it transfers large
amounts of data and must contact the administrator to find a suit-
able configuration of storage servers. The latency distribution of
all operations exhibit a long tail due to load from other unrelated
processes running on the same machines; note, even the null()
RPC call can take longer than one second, due to delay caused by
load from unrelated jobs running on the cluster.

Table 4 decomposes the median latency into its component
phases for different types of operations. Notice that interacting with
the DHT consumes a significant fraction of time (publish() and
lookup() are DHT operations). In particular, append() and
truncate() interact with the DHT one time to publish()

the soundness proof to support repair. However, operations that
create extents (create() and snapshot()) interact with the
DHT multiple times (locate/publish coordinating gateway, lookup



Time (ms)
No Admin Admin

Phase trunc append cr- snap-
Phase eate shot

Treq
Signs Req 6.0 6.0 6.0 6.0
Send Req 1.8 4.2 1.8 1.8
Verify Req 0.6 1.0 0.6 0.6
lookup() Locations (cached) (cached) 13.2 13.2
publish() Gateway (cached) (cached) 7.2 7.2
subtotal 8.4 11.2 28.8 28.8

Tcreate_config
lookup() Neighbors N/A N/A 6.6 6.6
Send Config Req N/A N/A 1.6 1.6
Verify Config Req N/A N/A 0.6 0.6
Create New Config N/A N/A 8.2 8.2
Sign New Config N/A N/A 3.2 3.2
Reply w/ New Config N/A N/A 1.6 1.6
subtotal 0.0 0.0 21.8 21.8

Tquorum

Send Req 1.8 6.6 1.8 1.8
Verify Req 0.6 1.0 1.2 1.2
Fetch Extent 98.4
Disk 4.1 5.9 4.1 61.9
publish() Location 7.2 62.3
Sign Result 3.2 3.2 3.2 3.2
Send Reply 1.6 1.6 1.6 1.6
Verify Replies 4.2 4.2 4.2 4.2
publish() Proof 7.2 7.2 63.3 63.3
subtotal 22.7 29.7 86.6 297.9

Tresp

Reply w/ Proof 1.7 1.7 1.7 1.7
Verify Proof 4.2 4.2 4.2 4.2
subtotal 5.9 5.9 5.9 5.9

Total – Median 37.0 46.8 143.1 354.4
(Min) (31.0) (38.0) (62.0) (137.0)

Table 4: Measured breakdown of the median latency times for

all operations. The average network latency and bandwidth

between applications on the test cluster and storage cluster is

1.7 ms and 12.5 MB/s (100 Mbs), respectively. The average

latency and bandwidth between applications within the stor-

age cluster is 1.6 ms and 45.0 MB/s (360 Mbs). All data is

stored to disk using BerkeleyDB which has an average latency

and bandwidth of 4.1 ms and 17.3 MB/s, respectively. Signa-

ture creation/verification takes an average of 6.0/0.6 ms on the

test cluster and 3.2/0.6 ms on the storage cluster. Bandwidth of

the SHA-1 routine on the storage cluster is 80.0 MB/s. Finally,

DHT lookup() /publish() take an average of 4.2/7.2 ms.

replica locations, publish replica location, and publish soundness
proof). Furthermore, multiple publish() operations to the same
identifier often take longer than expected since publish() some-
times competes with other BerkeleyDB operations for use of the
disk (e.g. BerkeleyDB log cleaning).

5.3 PlanetLab Deployment
In this section, we present results from the Antiquity deploy-

ment on PlanetLab. For reasons illustrated in Figure 11, the focus
of our evaluation of the PlanetLab deployment is not on its perfor-
mance. That graph plots the CDF of the latency of more than 800
operations that append 32 KB of data to logs in the systems. The
accompanying table reports several key points on the curve. Given
the best of circumstances, the latency of an append() operation

 0

 0.25

 0.5

 0.75

 1

 0  20  40  60  80  100  120

F
ra

ct
io

n 
of

 E
ve

nt
s

Latency (s)

CDF of Operation Latency (PlanetLab Deployment)

Latency of Append Operations

Min 25% 50% 90% 95% 99% Max

1.08 4.41 10.2 63.1 124.5 302.1 615.9

Figure 11: The latency of operations on PlanetLab varies

widely depending on the membership and load of a configu-

ration. As an example, this graphs illustrates the CDF of the

latency for appending 32 KB to logs stored in the system. The

table highlights key points in the curves.

is one second. However, when configurations include distant or
overloaded servers or bandwidth is restricted on some path, the la-
tency increases considerably. Because of the characteristics of the
PlanetLab testbed, many operations are very slow [37].

Instead, with the PlanetLab deployment, we focus on how the
design maintains data over time, especially as machines fail. We
built a simple test application that writes logs to the system and
periodically reads them to check that they are still available. Each
log consists of one key-verified extent (the log head) and an average
of four hash-verified extents (the number of hash-verified extents
vary uniformly with an average of four). Key-verified extents vary
in size uniformly up to 1 MB; all hash-verified extents are 1 MB.
The average size of a log is 4.5 MB (0.5 MB log head and 4 x
1MB hash-verified extents). The test application stores 18,779 logs
(18,779 log heads and 75,085 hash-verified extents) totaling 84 GB.
We stopped writing new data to Antiquity because we reached the
PlanetLab-enforced storage quota. After writing an extent to the
system, this test application records a summary of the extent in a
local database.

We perform various tests to measure the efficacy of the Antiq-
uity deployment. First, we measure the percent of extents with at
least a quorum of replicas available and in a consistent state in Sec-
tion 5.3.1. This test measures the number of logs that can accept
new writes from their owner. Next, in Section 5.3.2, we measure
the cost of maintaining secure logs in terms of replicas created. In
particular, we measure the average number of replicas created per
unit time and the total number of replicas created. This test mea-
sures the systems ability to maintain sufficient replication levels in
response to server failure.

5.3.1 Quorum Consistency and Availability

We compute quorum availability and consistency in two differ-
ent ways. The first approach uses a test application that periodi-
cally reads a random extent. Every 10 seconds, the tester selects a
random entry from the database and attempts to contact a quorum
of the servers hosting that extent. It reports whether it was able
to reach a quorum of servers. It also verifies that the replicas are
in a consistent state and that state matches what was written. The
second approach uses a server application availability trace, server
database log, and extent configuration to compute the metrics. The
first approach is an experimental method that includes intermittent
effects such as server load and network performance. The sec-



 0

 0.25

 0.5

 0.75

 1

 0  1  2  3  4  5  6  7  8  9

P
er

ce
nt

ag
e

Time (Weeks)

Quorum Availability and Consistency (PlanetLab Deployment)

Percent of Quorums Available and Consistent
Percent of Failures Due to Timeouts

(a) Periodic Application Read

 0

 0.25

 0.5

 0.75

 1

 0  1  2  3  4  5  6  7  8  9

P
er

ce
nt

ag
e

Time (Weeks)

Quorum Availability and Consistency (PlanetLab Deployment)

Percent of Quorums Available and Consistent

(b) Server Application Availability Trace

Figure 12: Quorum Consistency and Availability. (a) Periodic

reads show that 94% of quorums were reachable and in a con-

sistent state. Up to 90% of failed checks are due to network

errors and timeouts. (b) Server application availability trace

shows that 97% of quorums were reachable and in a consis-

tent state. This illustrates the increase in performance over (a)

where timeouts reduced the percent of measured available quo-

rums.

ond approach ignores such experimental effects and, instead, uses
server availability to compute the metrics.

Figure 12(a) shows the percentage of quorums that were avail-
able and consistent over time, as measured by the first approach
over a two-month period. The top curve shows the percentage
of successful quorum checks. A software bug between week 1
through the middle of week 2 caused over half the servers not to
respond to RPC requests. Periodic server application reboot tem-
porarily masked the bug. But the performance continued to de-
grade until the problem was solved during the middle of week 2. A
stale network file system handle prevented the test application from
probing the system properly between weeks 6 and 7. Over the life
of the test (including the period between week 1 through the middle
of week 2 interruption), an average of 94% of checks reported that
a quorum of servers was reachable and stored a consistent state.
Even though, at any given time, 6% of the of the checks may not
have a quorum of replicas available, later checks reveal that a quo-
rum eventually becomes available and is consistent due to the repair
protocol.

The observed availability matches computed estimates. Using a
monitor on the remote hosts, we measured the average availability
of machines in PlanetLab to be 90%. Note, this figure indicates that
the node is up, not necessarily that the node can be reached over the
network. Given that measurement, we would expect a quorum of
servers to be available 94% of the time.

The lower curve on the plot shows the percentage of checks that

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  1  2  3  4  5  6  7  8  9A
va

ila
bl

e 
S

er
ve

rs
 a

nd
 F

ai
lu

re
s 

pe
r 

H
ou

r

Time (Weeks)

Available Servers and Server Failure (PlanetLab Deployment)

Available Servers
Server Failures

Figure 13: Number of servers with their Antiquity application

available per hour. Additionally, number of servers with An-

tiquity application failures per hour. Most failures are due to

restarting the unresponsive Antiquity instances. As a result,

a single server may restart its Antiquity application multiple

times per hour if the instance is unresponsive.

failed due to RPC failures, network disruptions, and other timeouts.
We attempt to reach a quorum through five different gateways be-
fore marking a check failed. Our measurements show that up to
90% of the failed checks may be caused by components outside
of Antiquity. This percentage increases as the load on PlanetLab
increases. Furthermore, the high load causes a number of Antiq-
uity processes to be terminated due to resource exhaustion. Thus,
the actual percentage of consistent quorums (shown next) is higher
than the 94% measured from the application.

Figure 12(b) plots quorum availability and consistency computed
by the second approach. The server application availability trace
used in this approach ignores the software bug; as a result, until the
middle of week 2, 100% of the extents had at least a quorum avail-
able and consistent. After the middle of week 2, however, server
churn increased, tripling from 24 server failures per hour to 76.
The cause for the increase in server churn is a watchdog timer that
restarts a server’s Antiquity application when it is unresponsive for
over six minutes. Figure 13 shows the number of servers available
and server failures during each hour of the test.

5.3.2 Quorum Repair

Antiquity’s repair process maintains the availability of a quorum
of servers for each extent. Figure 14 plots the cumulative number
of replicas created in the PlanetLab deployment. During the period
of observation, Antiquity initially created a total of 657,048 extent
replicas (each of the 93,864 extents were initially created with 7
replicas). The replicas initially accounted for 577 GB of replicated
storage (84 GB of unique storage).

In order to maintain the availability of a quorum of servers, An-
tiquity triggers the repair() protocol when less than a quorum
of replicas are available. Each repair() replaces at least three
replicas since that is the least number of unavailable servers re-
quired to trigger repair() with f = 2. The deployment experi-
enced an average of 114 (Antiquity application) failures per hour.
In response to failures, Antiquity triggered repair() 92 times
per hour. As the number of unavailable servers accumulated, nearly
every failure triggered a repair(). Each repair() replaced
an average of four replicas. As a result, Antiquity created a total
of 653,028 replicas due to repair() during the two month pe-
riod of observation. Repair required less than 0.31 KB/s (320 Bps)
per server. Coupled with maintaining the availability and consis-
tency of up to 97% of the extents, this demonstrates that Antiquity
is capable of maintaining sufficient replication levels in response to



 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  1  2  3  4  5  6  7  8  9

C
um

ul
at

iv
e 

R
ep

lic
as

 C
re

at
ed

 (
10

00
s)

Time (Weeks)

Repair (PlanetLab Deployment)

total
create
repair

Figure 14: Number of replicas created over time due to storing

new data and in response to failure.

server failure.
Another metric of concern is the time to repair an extent with

less than a quorum of replicas available. On average, when a server
failed, it took the system 30 minutes to detect and classify the
server as failed (value of timeout) and three hours to replace repli-
cas stored on the failed server with less than a quorum of remaining
replicas available. Once repair completed for a particular extent, at
least a quorum of servers were again available.

5.4 A Versioning Back-up Application
Finally, we have built a versioning back-up application that

stores data in Antiquity. The application translates a local file sys-
tem into a Merkle tree as shown in Figure 5 and used in similar pre-
vious systems [32, 11]. The application records in a local database
when data was written to the infrastructure. It checks the local
database before archiving any new data. This acts as a form of
copy-on-write, reducing the amount of data transmitted. The file
system we implemented is described fully in [15].

We stored the file system containing the Antiquity prototype
(source code, object code, utility scripts, etc.) in PlanetLab. The
file system is recorded in 15 1-MB extents. The system has re-
paired two of the 15 extents while ensuring both consistency and
durability of the file system.

6. EXPERIENCE AND DISCUSSION
Putting it all together, Antiquity maintained 100% durability and

97% quorum availability of 18,779 logs broken into 93,864 extents.
Reflecting on our experience, the structure of the secure log made
this an easier task for three reasons.

First, maintaining the integrity of a secure log is easier than other
structures since the verifier for the log (and each extent) defines
the order of appends and cryptographically ensures the content. In
particular, there is only one sequence of appends that results in a
particular verifier. This verifier is used as a predicate to ensure that
new writes are appended to the log in a consistent fashion. Further-
more, this verifier is used by the storage system to ensure that each
replica stores the same state. In the deployment, this verifier was a
critical component used to ensure the consistency and integrity of
the log and all of its extents. Furthermore, it is cheap to compute,
update, and compare.

Second, a storage system that implements a secure log is a layer
or middleware in a larger system. The secure log abstraction
bridges the storage system and higher level applications together.
In fact, the secure log interface implemented by Antiquity is a re-

sult of breaking OceanStore into layers. In particular, a component
of OceanStore was a primary replica implemented as a Byzantine
Agreement process. This primary replica serialized and crypto-
graphically signed all updates. Given this total order of all updates,
the question was how to durably store and maintain the order? Fur-
thermore, what should be the interface to this storage system? An
append-only secure log answered both questions. The secure log
structure assists the storage system in durably maintaining the order
over time. The append-only interface allows a client to consistently
add more data to the storage system over time. Finally, when data
is read from the storage system at a later time, the interface and
protocols ensure that data will be returned and that returned data is
the same as stored.

Finally, self-verifying structures such as a secure log lend them-
selves well to distributed repair techniques. The integrity of a
replica can be checked locally or in a distributed fashion. In partic-
ular, we implemented a quorum repair protocol where the storage
server replicas used the self-verifying structure. The structure and
protocol provided proof of the contents of the latest replicated state
and ensured that the state was copied to a new configuration.

7. RELATED WORK
Antiquity builds on the experience of many prior systems.

7.1 Logs
The log-structured file system [30] used a log abstraction to im-

prove the performance of local file systems. Zebra [20] uses a sim-
ilar abstraction to improve the performance of a network file sys-
tem. Schneier and Kelsey [41] and SUNDR [24] demonstrated how
to use a secure log to store data on an untrusted remote machines.
They do not address how to replicate the log.

7.2 Byzantine Fault-Tolerant Services
Byzantine fault-tolerant services have been proposed to help

meet the challenges of unsecured, distributed environments. Far-
Site [2], OceanStore [38], and Rosebud [40] built distributed
storage systems using Byzantine fault-tolerant agreement proto-
cols [21, 7]. Abd-El-Malek et al. [1], Goodson et al. [18],
the COCA project [46], Fleet [27], and Martin and Alvisi [29]
built reliable services using Byzantine fault-tolerant quorum proto-
cols [26]. Martin and Alvisi define a protocol that allows the con-
figuration to be changed with the help of an administrator. HQ [10]
has a hybrid structure that is similar to Antiquity’s use of an ad-
ministrator. During normal operation, clients interact using an effi-
cient Byzantine quorum voting protocol. Under write contention or
failures, a separate Byzantine agreement (or administrator for An-
tiquity) is invoked to resolve conflicts and possibly reconfiguring
the set of servers. None of these systems trigger reconfiguration
reactively.

7.3 Wide-area Distributed Storage Systems
Many researchers have used distributed hash table (DHT) tech-

nology to build wide-area distributed storage systems. Notable
examples are Carbonite [8], CFS [11], Glacier [19], Ivy [34],
PAST [13], Total Recall [6], and Venti [36]. Carbonite and To-
tal Recall optimize for the wide-area by reducing the number of
replicas created due to transient failures. Glacier uses aggrega-
tion to reduce storage overheads. Ivy uses a log structure simi-
lar to Antiquity; however, the log is block-based instead of extent-
based. In particular, to grow the log, Ivy creates new blocks that
incur high overheads since each block is individually maintained;
whereas,extents reduce these overheads since Antiquity supports
aggregation via a secure-append operation. None of these systems



implement a Byzantine fault-tolerant consistency algorithm. Chain
Replication [44] and Etna [33] both implement consistency proto-
cols, but assume fail-stop failures.

7.4 Replicated Systems
Systems like GFS [17], Harp [25], Petal [22], Frangipani [43],

and XFS [4] replicate data to reduce the risk of data loss. GFS and
XFS also use aggregation. These systems target well-connected
environments.

Distributed databases [12], the Amoeba distributed operating
system [42], the Myriad online disaster recovery system [23], and
EMC storage systems [9] use the wide-area replication to increase
durability. Myriad and EMC replicate data between a primary and
backup site. Wide-area recovery is initiated after site failure; single
disk failure is repaired locally with RAID.

7.5 Digital Libraries
Digital libraries such as LOCKSS [28] preserve journals and

other electronic documents. The documents are read-only and can-
not be updated. They are replicated at many sites for durability.
Many documents in a digital library do not have an “owner”; thus,
the system uses voting to maintain the integrity. Antiquity, in con-
trast, assumes that all logs have an owner and only the owner can
make changes to the log.

8. CONCLUSION
We described the design of the Antiquity wide-area distributed

storage system. The design is tailored for dynamic environments
where server failure is common. Antiquity combines a secure
append-only log interface with dynamic Byzantine fault-tolerant
quorums and quorum repair to maintain data integrity, consistency,
and durability. Evaluation of a prototype running on PlanetLab
demonstrates that the design is effective. The prototype stores 84
GB of data on 400+ servers under constant churn and all logs re-
main durable. At any given moment, however, 6% of the logs do
not have a quorum (threshold) of replicas available temporarily due
to server failure on PlanetLab. All eventually become available—
Antiquity successfully repaired all quorums to an available and
consistent state with its quorum repair protocol.

9. AVAILABILITY
The Antiquity source code is published under the BSD license

and is freely available http://antiquity.sourceforge.net.

10. ACKNOWLEDGMENTS
We would like to thank Ken Birman whose comments and advice

have greatly improved the presentation of this work. We are grate-
ful to Anthony Joseph who has provided valuable input on the de-
sign and implementation of Antiquity. Also, Robbert van Renesse
and Einar Vollset have provided valuable feedback on the presen-
tation of Antiquity. Finally, we would like thank Mike Howard
for maintaining the cluster at Berkeley and all of the groups that
have contributed to making PlanetLab available. Without these two
testbeds, this work would not have been possible.

11. REFERENCES

[1] M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter, and
J. Wylie. Fault-scalable byzantine fault-tolerant services. In
Proc. of ACM SOSP, Oct. 2005.

[2] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken,
J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P.

Wattenhofer. Farsite: Federated, available, and reliable
storage for an incompletely trusted environment. In Proc. of

USENIX OSDI, Dec. 2002.

[3] N. S. Agency. Global information grid (gig).
http://www.nsa.gov/ia/industry/gig.cfm.
Last accessed September 2006.

[4] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli,
and R. Wang. Serverless Network File Systems. In Proc. of

ACM SOSP, Dec. 1995.

[5] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin,
S. Muir, L. Peterson, T. Roscoe, T. Spalink, , and
M. Wawrzoniak. Operating system support for
planetary-scale network services. In Proc. of USENIX NSDI,
Mar. 2004.

[6] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. Voelker.
Totalrecall: Systems support for automated availability
management. In Proc. of USENIX NSDI, Mar. 2004.

[7] M. Castro and B. Liskov. Practical Byzantine fault tolerance.
In Proc. of USENIX OSDI, 1999.

[8] B. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon,
M. F. Kaashoek, J. Kubiatowicz, and R. Morris. Efficient
replica maintenance for distributed storage systems. In Proc.

of USENIX NSDI, San Jose, CA, May 2006.

[9] E. Corp. Symmetrix remote data facility. http://www.
emc.com/products/networking/srdf.jsp. Last
accessed February 2007.

[10] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and
L. Shrira. Hq replication: A hybrid quorum protocol for
byzantine fault tolerance. In Proc. of USENIX OSDI, Nov.
2006.

[11] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with CFS. In Proc.

of ACM SOSP, October 2001.

[12] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swindhart, and D. Terry. Epidemic
algorithms for replicated database maintenance. In Proc. of

ACM PODC, pages 1 – 12, Aug. 1987.

[13] P. Druschel and A. Rowstron. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer
storage utility. In Proc. of ACM SOSP, 2001.

[14] P. Eaton, H. Weatherspoon, and J. Kubiatowicz. Efficiently
binding data to owners in distributed content-addressable
storage systems. In 3rd International Security in Storage

Workshop, Dec. 2005.

[15] P. R. Eaton. Improving Access to Remote Storage for Weakly

Connected Users. PhD thesis, EECS Department, University
of California, Berkeley, January 11 2007.

[16] K. Fu, M. F. Kaashoek, and D. Mazières. Fast and secure
distributed read-only file system. In Proc. of USENIX OSDI,
Oct. 2000.

[17] S. Ghemawat, H. Gobioff, and S. Leung. The google file
system. In Proc. of ACM SOSP, pages 29–43, Oct. 2003.

[18] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter.
Byzantine-tolerant erasure-coded storage. Technical Report
CMU-CS-03-187, Carnegie Mellon University School for
Computer Science, Sept. 2003.

[19] A. Haeberlen, A. Mislove, and P. Druschel. Glacier: Highly
durable, decentralized storage despite massive correlated
failures. In Proc. of USENIX NSDI, May 2005.

[20] J. H. Hartman and J. K. Ousterhout. The zebra striped
network file system. In Proc. of ACM SOSP, 1993.



[21] L. Lamport, R. Shostak, and M. Pease. The Byzantine
Generals Problem. ACM TOPLAS, 4(3):382–401, 1982.

[22] E. K. Lee and C. A. Thekkath. Petal: Distributed virtual
disks. pages 84–92, 1996.

[23] S. A. Leung, J. MacCormick, S. E. Perl, and L. Zhang.
Myriad: Cost-effective disaster tolerance. In Proc. of

USENIX FAST, Jan. 2002.

[24] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure
untrusted data repository SUNDR. In Proc. of USENIX

OSDI, pages 121–136, Dec. 2004.

[25] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira,
and M. Williams. Replication in the harp file system. In
Proc. of ACM SIGOPS, 1991.

[26] D. Malkhi and M. Reiter. Byzantine quorum systems. In
Proc. of ACM STOC, pages 569 – 578, May 1997.

[27] D. Malkhi, M. K. Reiter, D. Tulone, and E. Ziskind.
Persistent objects in the fleet system. In DISCEX II, 2001.

[28] P. Maniatis, M. Roussopoulos, T. Giuli, D. S. H. Rosenthal,
and M. Baker. The lockss peer-to-peer digital preservation
system. ACM Trans. Comput. Syst., 23(1):2–50, 2005.

[29] J.-P. Martin and L. Alvisi. A framework for dynamic
byzantine storage. In Proc. of the Intl. Conf. on Dependable

Systems and Networks, June 2004.

[30] J. Matthews, D. Roselli, A. Costello, R. Wang, and
T. Anderson. Improving the performance of log-structured
file systems with adaptive methods. In Proc. of ACM SOSP,
Oct. 1997.

[31] R. Merkle. A digital signature based on a conventional
encryption function. pages 369–378. Springer-Verlag, 1988.

[32] S. J. Mullender and A. S. Tanenbaum. A distributed file
service based on optimistic concurrency control. In Proc. of

ACM SOSP, pages 51–62, Dec. 1985.

[33] A. Muthitacharoen, S. Gilbert, and R. Morris. Etna: A
fault-tolerant algorithm for atomic mutable dht data.
Technical Report MIT-LCS-TR-993, MIT Laboratory for
Computer Science, June 2004.

[34] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen. Ivy: A
read/write peer-to-peer file system. In Proc. of USENIX

OSDI, 2002.

[35] L. Peterson, A. B. E. Fiuczynski, , and S. Muir. Experiences
building planetlab. In Proc. of USENIX OSDI, Nov. 2006.

[36] S. Quinlan and S. Dorward. Venti: A new approach to
archival data storage. In Proc. of USENIX FAST, Jan. 2002.

[37] S. Rhea, B. Chun, J. Kubiatowicz, and S. Shenker. Fixing the
embarrassing slowness of opendht on planetlab. In Proc. of

USENIX Workshop on Real, Large Distributed Systems

(WORLDS), Dec. 2005.

[38] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and
J. Kubiatowicz. Pond: the OceanStore prototype. In Proc. of

USENIX FAST, 2003.

[39] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling
churn in a dht. In Proc. of USENIX, June 2004.

[40] R. Rodrigues and B. Liskov. Rosebud: A scalable
byzantine-fault-tolerant storage architecture. Technical
Report MIT-LCS-TR-932, MIT Laboratory for Computer
Science, Dec. 2003.

[41] B. Schneier and J. Kelsey. Cryptographic support for secure
logs on untrusted machines. Jan. 1998.

[42] A. S. Tanenbaum, R. van Renesse, H. van Staveren, G. J.
Sharp, S. J. Mullender, J. Jansen, and G. van Rossum.
Experiences with the Amoeba distributed operating system.

Communications of the ACM, 33(12):46–63, 1990.

[43] C. Thekkath, T. Mann, and E. Lee. Frangipani: A scalable
distributed file system. In Proc. of ACM SOSP, 1997.

[44] R. van Renesse and F. B. Schneider. Chain replication for
supporting high throughput and availability. In Proc. of

USENIX OSDI, May 2004.

[45] H. Weatherspoon. Design and Evaluation of Distributed

Wide-Area On-line Archival Storage Systems. PhD thesis,
EECS Department, University of California, Berkeley,
October 13 2006.

[46] L. Zhou, F. Schneider, and R. van Renesse. Coca: A secure
distributed on-line certification authority. ACM Trans.

Comput. Syst., pages 329–368, Nov. 2002.


