ChunkCast: An Anycast Service for Large Content
Distribution

Byung-Gon Chun, Peter Wu, Hakim Weatherspoon, and John Kubiatowicz
Computer Science Division
University of California, Berkeley
{bgchun,peterwu,hweather,kubitron}@cs.berkeley.edu

ABSTRACT

Fast and efficient large content distribution is a challenge in the
Internet due to its high traffic volume. In this paper, we propose
ChunkCast, an anycast service that optimizes large content dis-
tribution. We present a distributed locality-aware directory that
supports an efficient query for large content. Our system improves
the median downloading time by at least 32% compared to previ-
ous approaches and emulates multicast trees without any explicit
coordination of peers.

1. INTRODUCTION

Over the last few years there has been increasing usage of
content distribution networks (CDNs) that deliver large vol-
ume data objects such as video and software. For example,
approximately 70% of Tier 1 ISP traffic measured in Europe
was peer-to-peer traffic [2]; yet, the considerable bandwidth
consumption is not necessary to satisfy the download de-
mand [15]. The challenge for CDNs like BitTorrent [1] that
transfer large objects is to minimize the download time while
reducing network bandwidth consumption.

The download time and bandwidth costs due to download-
ing large objects are affected by the structure of CDNs. We
assume that typical CDNs partition large objects into multi-
ple chunks' and chunks are striped among peers. A peer in the
CDN acts as both a client peer and a server peer. The CDN
works as follows. First, a client peer that wants to download
an object performs a lookup for each object chunk. A direc-
tory that stores mappings between object chunk and server
peer locations returns all of the chunk server peers. Second,
for each chunk, the client peer selects a chunk server peer
from which to download the chunk. Finally, the client peer
publishes the chunk information into the directory so that it
can later service object chunk requests as a chunk server.

There are two problems associated with the CDN structure
as presented that affect download time and bandwidth con-
sumption. First, the number of lookups to the directory can
be excessive. Suppose an object is partitioned into 10,000
chunks. The client peer requires 10,000 lookups. If each
chunk was replicated 10 times, a client would need to select
10,000 server peers out of 100,000 peers (in the worst case)
to download chunks. Second, the structure does not give
any guidance on selecting peers to download chunks (peer
selection). Moreover, it does not give guidance on the order
in which chunks to download (chunk selection).

In summary, the state-of-the-art CDNs for large objects

IMulti-chunk downloading improves downloading time in prac-
tice [10] and by a factor of the number of partitions in theory [21].

Se___w o vwo _ -
—> Publish/Lookup
S v Chunk downloading

Figure 1: ChunkCast architecture

have weaknesses. First, systems often do not utilize locality
information for peer selection. Second, many systems do not
consider the order of downloaded chunks, which can result
in downloading duplicate chunks into the same local area.
Finally, some systems use a central directory, which limits
scalability. Our goal is to address these weaknesses.

In this paper, we propose ChunkCast, a novel anycast ser-
vice that optimizes large content distribution. Figure 1
shows the architecture of ChunkCast. Client peers pub-
lish and lookup chunks using ChunkCast and they download
chunks directly from other peers. ChunkCast is a distributed
locality-aware indexing structure for large content distribu-
tion networks that improves downloading time and network
bandwidth consumption. The system employs an expressive
anycast interface that efficiently guides client peers on peer
and chunk selection choices. Since the large content dis-
tribution problem has significant impact, we claim that it is
worthwhile to build a specialized indexing structure for large
content. Our contributions consist of the following:

e An anycast interface exports peer locality and chunk
information reducing download time and bandwidth
consumption significantly.

o An efficient implementation of the anycast interface re-
turns, in a single request, the set of server peers storing
a set of chunks for a particular object.

ChunkCast builds an indexing structure on a structured
overlay. ChunkCast constructs only one indexing tree per
object; previous systems that create distributed indexes con-
struct one indexing tree per chunk. For efficient publish and
lookup, ChunkCast encodes a chunk as a bit in a bit vector

60 X ;(C)
591 X X X X
58 XX XX
D57 X | X X X
Chunks 56 XX X X
.55 X | X X
54| X X X X
I ES X X :
] 2x] | X :
\\77571 X 7 |

Figure 2: Peer and chunk selection. The figure shows a snap-
shot of the chunks downloaded by peers. The peers are ordered
by the distance from peer 11. The symbol ‘“x” represents that
the peer has the chunk. There are three approaches of a di-
rectory shown in the figure. Approach (a) and (b) are previous
approaches and approach (c) is a new approach we propose.

where the vector represents the entire object. To exploit lo-
cality, we rely on the local convergence [7, 14,22] property
of the structured overlay and location information encoded
with network coordinates [11]. Our preliminary evaluation
shows that ChunkCast improves median downloading time
by at least 32% when peers simultaneously download an ob-
ject and emulates multicast trees without any coordination of
peers.

2. SUPPORTING EFFICIENT QUERY

The goal for a large content distribution network query is
to minimize both downloading time and total network band-
width consumption. Ideally, a client peer would download
each chunk from a server peer that is nearby (i.e. low network
latency distance), has high available bandwidth, and is un-
loaded; thus, reducing the download time. Furthermore, only
one client peer within a local area/region would download a
chunk from a remote peer; thereby reducing the total network
bandwidth consumption. We discuss what are the problems
of previous approaches and propose a new appraoch below.

2.1 Previous Approaches

There are two previous approaches. In the first approach,
a client peer makes a request to a directory to return a small
number of server peers [1]. This approach downloads many
chunks from a small number of server peers. With this
approach bandwidth is wasted when nearby server peers exist
that store chunks, but the server peers are not included in
the set returned by the directory. As a result, chunks are
downloaded from remote peers even though closer peers that
store chunks exist.

In the second approach, a client peer makes a request to a
directory to return a set of server peers that store a particular
chunk [3,17]. The client peer then downloads the chunk
from an optimal peer. The client peer repeats the process
for subsequent chunks until all chunks are downloaded. The
problem with this approach is that it ignores the order with
which chunks are downloaded. As a result, bandwidth is
wasted when multiple nearby client peers download the same
chunk from remote server peers.

Figure 2 is a snapshot of the downloading process and
illustrates three different approaches: two described above
and a third approach that combines the peer and chunk se-
lection. In the network, client peer 11 looks up server peers
to download chunks 51 to 60 of an object. Note that peers
are ordered by the distance from client peer 11; server peer 1
is the farthest away and 10 is the closest. With approach (a),
client peer 11 requests peers that download the object and
the directory returns random peers (in this example, server
peer 3 and 4) due to its lack of information. The query spec-
ifies only the object information. Peer 3 and 4 are far-away
server peers. With approach (b), client peer 11 requests a
set of server peers hosting specific chunks 51 and 52. The
directory returns 1, 3, and 4, or a subset filtered by some
ranking function. The server peers are also located far away
from client peer 11. This result comes from the restriction of
chunks client peer 11 lookups. Ideally, we want a directory
that can return nearby server peers that store any chunk peer
11 needs. With approach (c), the directory can decide which
peers to return from the entire (peer, chunk) points. In this
case, the directory can return server peer 9 and 10, which are
close to client peer 11. We call this approach an object-level
chunk anycast.

2.2 Object-level Chunk Anycast Query

Ideally the client peer wants to choose the best (peer,
chunk) point shown in Figure 2(c), where the chunk is one
of the chunks the client peer needs to download. If the
client peer performs parallel downloading, it wants to choose
the best p (peer, chunk) points. The client peer wants to
know a peer among the peers having chunks that has high
bandwidth, spends small overall network bandwidth, and has
many chunks it needs to download.

To achieve the goal, we first extend our query to cover a
set of chunks and to return server peers that satisfy certain
conditions. Our query is as follows:

Find a set of server peers, ranked by some ranking
function R, that store any one of the chunks (Cy, ...,
Cy) of an object O.

There can be many server peers that store any one of the
chunks (Cy, ..., Gy), so the directory uses a ranking function R
to return the most relevant results back to the client peer. In
particular, we support an object-level chunk “anycast” that
returns, in a single request, the nearby peers having the largest
set of chunks a client peer needs. Traditional approaches
separate the chunk selection (which chunk to download) and
the peer selection (which server peer to download from),
but with the anycast we combine the peer selection and the
chunk selection to exploit peer locality and difference in
downloaded chunks.

To implement the anycast query efficiently is challenging.
Naive designs are not scalable because they can incur high
traffic to maintain state about which server peers store chunks
and to locate nearby server peers that store chunks that the
client peer requests. We present the design of an efficient
and scalable system that supports the anycast query next.

3. DESIGN OF ChunkCast

In this section, we present ChunkCast, a locality-aware
directory structure that supports an object-level chunk any-
cast query efficiently. ChunkCast is a distributed directory
built on top of a structured overlay such as Bamboo [18].

0ID, 00111, NC3, IP3| 101 of OID
0ID, 10001, NC2, IP2
E4

OID, 00111, NC3, IP3 OID, 10001, NC2, IP2

@),
\ \
@ & E ©

publish message format ‘object id‘ bit vector ‘NC ‘ 1P ‘

Figure 3: Chunk publication. Two nodes send publish messages
whose fields are the object identifier, the bit vector representing
chunk indexes to publish, the original node’s network coordi-
nate (NC), and the IP address. This information is cached by
the nodes in the path from the publishing node to the root.

The structured overlay consistently hashes an identifier space
over a set of nodes in which each node (called a roor) is re-
sponsible for a portion of the identifier space. A specific
message whose destination is id is routed to the root of id. A
node participating in the structured overlay usually maintains
O(logN) state (i.e. routing table) and the path from a node
to the root takes O(logN) hops. In addition, each node in the
overlay maintains a network coordinate.

An object is referenced with an object identifier, which
is a SHA-1 hash of the object name. Different objects are
likely to have different roots. Each chunk is referenced
with a chunk index together with the object identifier. To
represent multiple chunks of an object compactly, we use
a bit vector in our messages.? An ith bit represents an ith
chunk. For example, when an object (of 5 chunks) identifier
is 0xFE32...27, and we want to represent the 1st, 3rd, and
5th chunks, we use the name (OxFE32...27, 10101).

To support the anycast efficiently, ChunkCast maintains an
implicit indexing tree per object, which saves resources. For
example, if a particular object had 10,000 chunks, previous
systems like Coral [12] would create 10,000 indexing trees,
but ChunkCast creates one. Furthermore, if there were 100
objects, these previous systems would create one million
indexing trees whereas ChunkCast creates 100.

3.1 Chunk Publication

Publishing the location of object chunks ensure that future
queries are able to find server peers. The publication process
needs to contain enough information such that nearby server
peers storing a set of chunks can be identified. Moreover,
the process needs to be scalable. We describe this process
below.

A server peer storing a chunk advertises its location through
a publish message to a nearby index node. The peer can use
Meridian [20], OASIS [13], or pings to find a nearby in-
dex node. The publish message contains the IP address,
the network coordinate (e.g., Vivaldi [11]) of the index node
that the server peer initiated the publish through?, the object
identifier, and the bit vector representing chunks stored at

2We use a simple representation in this paper, but more compact
representations are possible.

3We assume that peers do not have network coordinates in gen-

the server peer. The index node that receives the publish
message stores the state contained in the message locally in
its location pointer cache.

The state stored in the location pointer cache is periodically
propagated towards the root instead of being immediately
forwarded, reducing the cost of the entire publish process
and improving scalability. A process that runs at each index
node periodically sends one message to the next hop towards
the root, which is the parent node in the index tree. The
message can contain the state from multiple server peers,
so we amortize the cost of publishing. Furthermore, not
all state is forwarded, instead the state to forward is chosen
either randomly or in a round robin fashion. Once state is
chosen to be forwarded, each node in the path that receives
the state caches it locally. The cached information is soft-
state. If the state is not refreshed within a timeout, the node
removes the state from the cache. In addition, for scalability
we limit the number of entries per object. If the list is
full, the index node may evict an entry in order to accept a
new entry. The victim entry is selected randomly or by an
eviction function weighted by network coordinate distance.
Even with this lossy aggregation, we can locate nearby nodes
hosting chunks well due to local convergence [7, 14,22].

Figure 3 shows an example of two server peers publishing
chunks for one object with identifier OID. All nodes repre-
sented are index nodes; the server peers are not shown. To
begin, node E receives a publish message from a server peer.
The publish message shows that the server peer stores chunk
3,4, and 5. Node E stores the information in its local cache.
Later, node E forwards the state to node B. When B receives
the state, it similarly stores the information in its local cache
and forwards the state to node A. Finally, when A receives
the state, it locally stores the information and does not for-
ward state since it is the root of the object identifier OID.
As another example, a different server peer initiates a pub-
lish message via index node G. The message shows that the
server peer stores chunk 1 and 5. The information is stored at
G, C, and A. In the end, node A maintains two index entries
published from E and G.

3.2 Chunk Lookup

To find the location of chunks, a client peer sends a lookup
message to a nearby index node. The client peer can use
Meridian [20], OASIS [13], or pings to find a nearby index
node. The message specifies an object identifier, a start
chunk index to query, a bit vector to represent the requested
chunks, the number of server peers (p) to return in the result,
the network coordinate of the index node that the client peer
initiated the lookup through, and the client peer IP address.
As an option, the message carries server peers to ignore. For
example, when there are 5 chunks, the start index is 3, and
the bit vector is 101, the client peer is interested in the 3rd
and 5th chunks. The client peer sets p; an example value is
the number parallel connections the client peer maintains to
reduce downloading time. Additionally, the system enforces
an upper bound on p to prevent client peers from overloading
the system.

The lookup response contains at most p server peers that
optimize a certain ranking function, which is explained in
Section 3.3. Once an index node receives a query, it searches

eral. If the peers participate in the same network coordinate system,
ChunkCast can use the network coordinates of the peers. Creating
network coordinates over the peers is a subject of future work.

OID, 00111, NC3, IP3| root of OID
OID, 10001, NC2, IP2

OID, 00111, NC3, IP3
(B

//OIDIOOOII Nzl /OID\1\00111\NC8\1P§ 2
1

OID, 10001, NC2, IP2

1P3 |NC3| 3] 182 NC2| 1)
: ‘

OID, 00111, NC3, IP3 OID, 10001, NC2, IP2

lookup message format ‘object id | start index bit vector [NC [IP |P ‘

lookup response

message format ‘ IP‘ NC ‘ overlap]

(p[NCJoverlap] -

Figure 4: Chunk lookup. Two nodes send lookup messages,
which consist of the object identifier, a bit vector representing
chunk indexes to lookup, the original node’s network coordi-
nate (NC) and IP address, and the number of matches. The
lookup on the left can be satisfied by the first local node. The
lookup on the right is forwarded to the root, which returns the
result, since the first local node does not contain two matches.

its own local index for server peers whose rank is among the
top p. If one index node in the query path has p such server
peers, the request can be satisfied by the index node. Oth-
erwise, the index node forwards the request further toward
the root. The index node excludes nodes on the list to ignore
in querying its local index. When p server peer information
is collected or the message arrives at the root, a response is
returned to the client peer via the index node that it initiated
the request through. The collection of p server peers contains
peers that store at least one of the requested chunks. Subse-
quent lookup requests would need to be issued to find missing
chunks. The result, a set of up to p records containing the
IP addresses of server peers, network coordinates of index
nodes the server peer published through, and the number of
chunks matched, is returned back to the client peer through
the index node that the client peer initially contacted.
Figure 4 shows an example of locating chunks from object
OID. The information stored at index nodes A, B, C, E,
and G is the same as that shown in Figure 3; no server or
client peers are shown. A client peer issues a lookup via
index node D. It requests to find one server peer that stores
any chunk between chunks 4 and 5. Node D forwards the
request to B since it does not store any index information.
Node B knows a server peer that stores at least one of the
requested chunks. Since B can satisfy the lookup, it returns
the server peer location information to the client peer via
node D and the lookup message is not forwarded further. As
another example, a different client peer issues a lookup via
index node F. It requests to find two server peers that store
any chunk among chunks 3, 4, and 5. Node F forwards the
lookup request to C. Node C knows only one server peer that
satisfies the lookup request. So, it piggybacks its result to the
lookup message and forwards it to A. A searches the top two
nodes based on a ranking function among the nodes in its
local index and the server peers piggybacked in the lookup
message. Node A returns a lookup response containing two
server peers back to the requesting client peer via node F. If
the root node A could not find enough server peers to meet

the lookup request requirements, it would have returned all
the server peer information it did find.

3.3 Ranking Function

ChunkCast has two ranking functions. The first function
optimizes the overlap between the bit vector of a server peer
that publishes chunks and the requested bit vector of a client
peers lookup query. In this case, we rely on the local con-
vergence property to achieve locality. The second function
optimizes closeness, which is defined by distance in the net-
work coordinate space between the client peer and the server
peer hosting the chunk. Exploring different ranking func-
tions (e.g., a hybrid of the above two ranking functions) is
object of future work.

4. APPLICATION

We describe how a client peer uses ChunkCast to efficiently
and quickly download chunks. A client peer sends a lookup
message to ChunkCast. It sets p of the message to at least the
number of parallel connections it uses. ChunkCast responds
with a set of p server peers that satisfy the lookup query.
The lookup response, however, does not contain the chunks
stored by each server peer. Instead, the client peer contacts
each returned server peer to request the most up-to-date list of
chunks stored. Excluding chunk information in the lookup
response significantly reduces the load on ChunkCast by
reducing the size of lookup results. After the client peer
gathers information about the chunks that each server peer
stores, it downloads chunks from multiple server peers in
parallel. Finally, when downloading a chunk completes, the
client peer sends a publish message to ChunkCast advertising
the downloaded chunk.

A client peer reissues lookup requests. First, when a server
peer has no more chunks to serve, the client peer issues a new
lookup request to find a replacement. Second, since a query is
very cheap in ChunkCast, the client peer periodically issues
new lookup requests. When the client peer finds a new
server peer closer than the server peer it downloads from,
it switches from the existing server peer to the new server
peer. This form of downloading emulates effective multicast
distribution. If a chunk is downloaded in a local area, another
peer in the same area is not likely to download the chunk.

The information obtained from ChunkCast is a hint. When
the client peer contacts the server peer, it may find the server
peer unresponsive; the server peer may have left the system
or be slow to respond. When a server peer leaves the system,
the related index entries expire after a timeout. Meanwhile,
the client peer can specify to avoid such server peers in
the lookup message. Therefore, the staleness of the entries
does not affect the system’s effectiveness. A server peer
may be slow to respond if it is overloaded or the available
bandwidth between the client peer and the server peer is
low. Additionally, the server peer may reject the new chunk
request entirely. In these cases, the client should specify
these server peers as nodes to ignore in the lookup message.

S. PRELIMINARY EVALUATION

We discuss how ChunkCast performs compared to other
systems. We first describe the experiment setup and present
results.

5.1 Experiment Setup

ChunkCast
ConstrainedLocality -
Random -

0.8 -

0.6

0.4 r

Cumulative probability

0.2 -

0 10 2 30 40 s 60 70
Time (minutes)
Figure 5: CDF of download time. ChunkCast improves down-

load time of all peers. The median download time improves by
at least 32%.

We have implemented ChunkCast on Bamboo [18]. Chunk-
Cast uses Vivaldi [11] as its network coordinate system.
We have also implemented peers that upload and download
chunks by using ChunkCast.

We examine three systems. The first system, called Ran-
dom, 1s similar to a conventional architecture, such as Bit-
Torrent, that performs random peer selection. The root node
of each chunk tracks all the locations of replicas and the lo-
cation query returns a random peer hosting a replica. The
second system, called ConstrainedLocality, is a system that
uses a locality-aware structured overlay like Shark [3]. The
lookup interface of the system allows querying of only one
chunk at a time. The third system uses ChunkCast as an
indexing service for large content.

We run our experiments using a cluster of 40 IBM xSeries
PCs connected by Gigabit Ethernet. We use Modelnet [19]
to emulate a wide-area physical topology that imposes net-
work latency and bandwidth constraints. In addition, we use
a 4000-node AS-level network with 50 distinct stubs created
by the Inet topology generator [9]. The client-stub link ca-
pacity is 10Mbps, the stub-stub link capacity is 100Mbps,
and the stub-transit link capacity is 45Mbps. Note that the
client bandwidth is capped not to exceed 10Mbps. For all
experiments, we run 180 index nodes located next to 180
peers. Running 200 peers or more is not possible for other
systems compared due to overload in the cluster, although
our ChunkCast can support such scale well.

In an experiment, each peer retrieves 1000 chunks, each the
size of 256KB. Initially, all the chunks are placed in one node,
and all the other 179 peers begin downloading chunks at the
same time. The peer opens four connections to download
chunks in parallel. For Random and ConstrainedLocality, the
peer issues four lookup requests in parallel. For ChunkCast,
the peer issues a lookup query with p = 4.

After downloading a chunk, the peer immediately registers
the chunk information to publish to the colocated index peer
and serves it upon request. Using this setup, we measure the
time to download chunks, the bandwidth usage of the client,
and the bandwidth usage in the network.

5.2 Results

Figure 5 shows the effectiveness of ChunkCast in support-
ing faster downloading of chunks. The median download
time of ChunkCast decreases by 32% compared to Con-
strainedLocality and decreases by 38% compared to Ran-
dom. All peers download chunks faster with ChunkCast.
ChunkCast helps peers effectively locate chunks that are

2000 . . i
ChunkCast
1800 - ConstrainedLocality ----------
Random -
1600 -
1400 -
1200 -
1000 -
800
600 -
400 -
200 [e
0

Data transferred (MB)

0 20 40 60 80 100 120 140 160 180
Peers

Figure 6: Bytes transferred for each peer sorted by the amount
of data transferred.

140000

ChunkCast |
ConstrainedLocality -
5 Random - 1

120000

100000 |

80000

60000

Bandwidth (KB/s)

40000

20000

o]

0 20 40 60 80 100 120
Time (minute)

Figure 7: Bandwidth consumption over entire network links.

downloaded by nearby peers.

Figure 6 shows the data transferred by each peer, sorted
by the amount of data served. With ChunkCast, some of the
peers serve more data compared to ConstrainedLocality or
Random. This is because ChunkCast constructs distribution
paths similar to an effective multicast tree. Only one chunk
is downloaded to a local area and the chunk is distributed to
nodes in the local area. To lessen the skew, the peers can
employ the fair-sharing mechanism like Tit-for-Tat as used
in BitTorrent. However, this fairness mechanism is not a part
of the anycast service, which is our focus.

We show the bandwidth consumption over entire network
links in Figure 7. The bandwidth consumption of ChunkCast
quickly increases to the sustainable throughput. Therefore,
ChunkCast can quickly initiate downloading to a full speed.
In addition, by using ChunkCast, the bandwidth consump-
tion is sustained throughout the downloading period, allow-
ing peers to finish downloading sooner than with the other
schemes. With the other schemes, the bandwidth increases
slowly and gradually decreases after it reaches peak usage.
Another interesting observation is that ConstrainedLocality
and Random continue to use considerable bandwidth for pub-
lishing chunk information, since a tree is constructed per
chunk. On the contrary, ChunkCast uses very little band-
width after the downloading finishes, since the chunk infor-
mation is compactly represented and a tree is constructed for
entire chunks.

6. RELATED WORK

The major difference between ChunkCast and previous
approaches is that we support an object chunk anycast with
which a client peer can efficiently find nearby peers hosting
any chunk the client peer needs. In addition, we create an

indexing tree per object.

One popular large content distribution program is BitTor-
rent [1]. The BitTorrent clients receive random peers from
a central directory called a tracker, which maintains a list
of peers storing objects. The directory does not guide peers
in finding nearby peers that store needed chunks. Instead,
the peers should find good peers by actually downloading
chunks and opportunistically trying new peers.

CoBlitz is a HTTP-based CDN that splits a file into smaller
chunks and caches those chunks at distributed nodes [17].
The system is based on unstructured overlay that maps each
chunk to a node. In CoBlitz, the gateway node that handles
clients’ requests needs to query chunks in a certain order.
The design of CoBlitz is revised with experience from the
wide-area deployment [5]. Their new design consideration
can also be applicable to peers that use ChunkCast.

Shark [3] makes use of Coral [12], which uses a distributed
index over a DHT to find nearby copies of data and help
reduce origin server bandwidth. Although it is distributed,
Shark is limited in its ability to find nearby peers hosting
chunks because clients need to query the node holding a
specific chunk in a certain order.

The Julia content distribution network [4] is a system that
adds locality-awareness to unstructured content distribution
systems like BitTorrent. As the downloading progresses, a
peer gathers information about which peers are closer than
others. Then, it chooses to download more chunks from the
nearby peers it learned of as the downloading progresses.
This approach does not rely on an index service as ours, so
a newly joined peer is forced to go through this navigation
process even though there are already peers with chunks.
With ChunkCast, the newly joined peer can immediately
download chunks from nearby peers.

SplitStream [8] builds one multicast tree per stripe and an
additional spare capacity group tree. The orphaned nodes use
the spare capacity group tree to find peers that can forward
stripes they want. The system employs an anycast primitive
that performs depth first search in the tree. The primitive is
not designed to support a query of a large number of chunks,
and the search can potentially visit all nodes in the system if
queried chunks are rare.

The informed content delivery [6] addresses tools to rec-
oncile differences of downloaded coded symbols between
a pair of nodes to exploit perpendicular connections. The
focus of the study is to compactly approximate and to rec-
oncile downloaded symbols from a large symbol space (e.g.,
one million symbols). Bullet [16] uses an overlay mesh to
push data. The system distributes any data item to be equally
likely to occur at any node and recovers missing items using
approximate reconciliation techniques. Both systems oper-
ate to increase the discrepancy of downloaded chunks, which
maximizes the effectiveness of the perpendicular connection.

7. CONCLUSION

Fast and efficient large content distribution is a challenge
in the current Internet. In this paper, we argue that because
of its big impact on performance and network usage, it is
necessary to devise a specialized index service optimized
for large content. We propose ChunkCast, an anycast ser-
vice that exploits locality for large content distribution. Our
preliminary evaluation shows that ChunkCast improves me-
dian downloading time by at least 32% compared to previous
approaches and effectively creates a multicast type distribu-

tion when peers download chunks simultaneously. We plan
to evaluate the effectiveness of such an anycast service in
diverse environment settings.

REFERENCES

[1] Bittorrent. http://bittorrent.com.

[2] Cachelogic. http://www.cachelogic.com.

[3] S. Annapureddy, M. J. Freedman, and D. Mazires. Shark:
Scaling file servers via cooperative caching. In NSDI, 2005.

[4] D. Bickson and D. Malkhi. The julia content distribution
network. In USENIX WORLDS, 2005.

[5] B. Biskeborn, M. Golightly, K. Park, and V. S. Pai.
(Re)Design considerations for scalable large-file content
distribution. In USENIX WORLDS, 2005.

[6] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost.
Informed content delivery across adaptive overlay networks.
In SIGCOMM, 2002.

[7]1 M. Castro, P. Druschel, Y. Hu, and A. Rowstron. Exploiting
network proximity in peer-to-peer networks. In Technical
Report MSR-TR-2002-82. Microsoft Research, 2002.

[8] M. Castro, P. Druschel, A. Kermarrec, A. Nandi,

A. Rowstron, and A. Singh. Splitstream: High-bandwidth
multicast in cooperative environments. In SOSP, 2003.

[9] H. Chang, R. Govindan, S. Jamin, S. Shenker, and
W. Willinger. Towards capturing representative as-level
internet topologies. In Computer Networks Journal, 2004.

[10] L. Cherkasova and J. Lee. Fastreplica: Efficient large file
distribution within content delivery networks. In USENIX
Symposium on Internet Technologies and Systems, 2003.

[11] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A
decentralized network coordinate system. In SIGCOMM,
2004.

[12] M. J. Freedman, E. Freudenthal, and D. Mazieres.
Democratizing content publication with coral. In NSDI,
2004.

[13] M. J. Freedman, K. Lakshminarayanan, and D. Mazieres.
OASIS: Anycast for any service. In NSDI, 2006.

[14] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy,

S. Shenker, and I. Stoica. The impact of DHT routing
geometry on resilience and proximity. In SIGCOMM, Aug.
2003.

[15] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M.
Levy, and J. Zahorjan. Measurement, modeling, and analysis
of a peer-to-peer file-sharing workload. In SOSP, 2003.

[16] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet:
High bandwidth data dissemination using an overlay mesh.
In SOSP, 2003.

[17] K. Park and V. S. Pai. Deploying large file transfer on an http
content distribution network. In USENIX WORLDS, 2004.

[18] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling
churn in a DHT. In USENIX Annual Tech. Conf., 2004.

[19] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic,
J. Chase, and D. Becker. Scalability and accuracy in a
large-scale network emulator. In OSDI, 2002.

[20] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: A
lightweight network location service without virtual
coordinates. In SIGCOMM, 2005.

[21] X. Yang and G. de Veciana. Service capacity of peer to peer
networks. In INFOCOM, 2004.

[22] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph,
and J. D. Kubiatowicz. Tapestry: A resilient global-scale
overlay for service deployment. In /IEEE JSAC, 2004.

