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Abstract

Network covert timing channels embed secret messages

in legitimate packets by modulating interpacket delays.

Unfortunately, such channels are normally implemented

in higher network layers (layer 3 or above) and easily

detected or prevented. However, access to the physi-

cal layer of a network stack allows for timing channels

that are virtually invisible: Sub-microsecond modula-

tions that are undetectable by software endhosts. There-

fore, covert timing channels implemented in the physi-

cal layer can be a serious threat to the security of a sys-

tem or a network. In fact, we empirically demonstrate

an effective covert timing channel over nine routing hops

and thousands of miles over the Internet (the National

Lambda Rail). Our covert timing channel works with

cross traffic, less than 10% bit error rate, which can be

masked by forward error correction, and a covert rate of

81 kilobits per second. Key to our approach is access

and control over every bit in the physical layer of a 10

Gigabit network stack (a bit is 100 picoseconds wide at

10 gigabit per seconds), which allows us to modulate and

interpret interpacket spacings at sub-microsecond scale.

We discuss when and how a timing channel in the phys-

ical layer works, how hard it is to detect such a channel,

and what is required to do so.

1 Introduction
Covert channels are defined as channels that are not in-

tended for information transfer, but can leak sensitive

information [21]. In essence, covert channels provide

the ability to hide the transmission of data within es-

tablished network protocols [37], thus hiding their exis-

tence. Covert channels are typically classified into two

categories: Storage and timing channels. In storage

channels, a sender modulates the value of a storage loca-

tion to send a message. In timing channels, on the other

hand, a sender modulates system resources over time to

send a message [10].

Network covert channels send hidden messages over

legitimate packets by modifying packet headers (stor-

age channels) or by modulating interpacket delays (tim-

ing channels). Because network covert channels can

deliver sensitive messages across a network to a re-

ceiver multiple-hops away, they impose serious threats

to the security of systems. Network storage chan-

nels normally exploit unused fields of protocol head-

ers [20, 28, 34, 35], and, thus, are relatively easy to de-

tect and prevent [14, 19, 26]. Network timing channels

deliver messages by modulating interpacket delays (or

arrival time of packets). As a result, arrivals of pack-

ets in network timing channels normally create patterns,

which can be analyzed with statistical tests to detect tim-

ing channels [11, 12, 16, 32], or eliminated by network

jammers [17]. To make timing channels robust against

such detection and prevention, more sophisticated timing

channels mimic legitimate traffic with spreading codes

and a shared key [24], or use independent and identically

distributed (i.i.d) random interpacket delays [25].

In this paper, we present a new method of creating

a covert timing channel that is high-bandwidth, robust

against cross traffic, and undetectable by software end-

hosts. The channel can effectively deliver 81 kilobits per

second with less than 10% errors over nine routing hops,

and thousands of miles over the National Lambda Rail

(NLR). We empirically demonstrate that we can create

such a timing channel by modulating interpacket gaps

at sub-microsecond scale: A scale at which sent infor-

mation is preserved through multiple routing hops, but

statistical tests cannot differentiate the channel from le-

gitimate traffic. Unlike approaches mentioned above,

our covert timing channel, Chupja1, is implemented in

the physical layer of a network protocol stack. In or-

der to hide the existence of the channel, we mainly ex-

ploit the fact that statistical tests for covert channel de-

tection rely on collected interpacket delays, which can

be highly inaccurate in a 10 Gigabit Ethernet (GbE) net-

work, whereas access to the physical layer provides fine-

grained control over interpacket delays at nanosecond

scale [15, 22]. As a result, a network monitoring appli-

cation needs to have the capability of fine-grained times-

tamping to detect our covert channel. We argue that

nanosecond level of resolution is key to do so.

The contributions of this paper are as follows:

• We discuss how to design and implement a covert

timing channel via access to the physical layer.

• We demonstrate that a covert timing channel imple-

mented in the physical layer can effectively deliver

secret messages over the Internet.

• We empirically illustrate that we can quantify per-

turbations added by a network, and the quantified

1Chupja is equivalent to spy in Korean
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perturbation is related to bit error rate of the covert

timing channel.

• We show that in order to detect Chupja, fine-grained

timestamping at nanosecond scale is required.

2 Network Covert Channels
Network covert channels are not new. However, imple-

menting such a channel in the physical layer has never

been tried before. In this section, we briefly discuss

previous approaches to create and detect network covert

channels, and why access to the physical layer can cre-

ate a covert channel that is hard to detect. Although our

focus of this paper is covert timing channels, we discuss

both covert storage channels and covert timing channels

in this section.

In a network covert channel, the sender has secret in-

formation that she tries to send to a receiver over the

Internet. The sender has control of some part of a net-

work stack including a network interface (L1∼2), kernel

network stack (L3∼4) and/or user application (L5 and

above). Thus, the sender can modify protocol headers,

checksum values, or control the timing of transmission

of packets. The sender can either use packets from other

applications of the system or generate its own packets.

Although it is also possible that the sender can use packet

payloads to directly embed or encrypt messages, we do

not consider this case because it is against the purpose

of a covert channel: hiding the existence of the chan-

nel. The adversary (or warden), on the other hand, wants

to detect and prevent covert channels. A passive adver-

sary monitors packet information to detect covert chan-

nels while an active adversary employs network appli-

ances such as network jammers to reduce the possibility

of covert channels.

In network storage channels, the sender changes the

values of packets to secretly encode messages, which is

examined by the receiver to decode the message. This

can be easily achieved by using unused bits or fields

of protocol headers. The IP Identification field, the

IP Fragment Offset, the TCP Sequence Number field,

and TCP timestamps are good places to embed mes-

sages [20, 28, 34, 35]. As with the easiness of embedding

messages in packet headers, it is just as easy to detect and

prevent such storage channels. The adversary can easily

monitor specific fields of packet headers for detection, or

sanitize those fields for prevention [14, 19, 26].

In network timing channels, the sender controls the

timing of transmission of packets to deliver hidden mes-

sages. The simplest form of this channel is to send or

not send packets in a pre-arranged interval [12, 31]. Be-

cause interpacket delays are perturbed with noise from a

network, synchronizing the sender and receiver is a ma-

jor challenge in these on/off timing channels. However,

synchronization can be avoided when each interpacket

delay conveys information, i.e. a long delay is zero, and

a short delay is one [11]. JitterBugs encodes bits in a sim-

ilar fashion, and uses the remainder of modulo operation

of interpacket delays for encoding and decoding [36].

These timing channels naturally create patterns of in-

terpacket delays which can be analyzed with statistical

tests for detection. For example, regularity tests [11, 12],

shape tests [32], or entropy tests [16] are widely used for

covert timing channel detection. On the other hand, to

avoid detection from such statistical tests, timing chan-

nels can mimic patterns of legitimate traffic, or use ran-

dom interpacket delays. Liu et al., demonstrated that

with spreading codes and a shared key, a timing chan-

nel can be robust against known statistical tests [24].

They further developed a method to use independent and

identically distributed (i.i.d) random interpacket delays

to make the channel less detectable [25].

Access to the physical layer (PHY) allows the sender

to create new types of both storage and timing channels.

The sender of a covert storage channel can embed se-

cret messages into special characters that only reside in

the physical layer, which are discarded before the deliv-

ery of packets to higher layers of a network stack. As a

result, by embedding messages into those special char-

acters, higher layers of a network stack will have no way

to detect the existence of the storage channel. In fact,

idle characters (/I/s), which are used to fill gaps be-

tween any two packets in the physical layer, would make

for great covert channels if they could be manipulated.

The IEEE 802.3 standard requires that at least twelve

/I/ characters must be inserted after every packet [3].

Therefore, it is possible to create a high-bandwidth stor-

age channel that cannot be detected without access to the

PHY. Unfortunately, this covert storage channel can only

work for one hop, i.e. between two directly connected

devices, because network devices discard the contents of

idle characters when processing packets. However, if a

supply chain attack is taken into account where switches

and routers between the sender and the receiver are com-

promised and capable of forwarding hidden messages,

the PHY storage channel can be very effective. We have

implemented a PHY covert storage channel and verified

that it is effective, but only for one hop. To prevent the

PHY storage channel, all special characters must be san-

itized (or zeroed) at every hop.

Our focus, however, is not a PHY covert storage chan-

nel. Instead, we demonstrate that sophisticated covert

timing channels can be created via access to the PHY.

The idea is to control (count) the number of /I/s to en-

code (decode) messages. i.e. to modulate interpacket

gaps in nanosecond resolution.

Any network component that has access to the PHY,

and thus /I/s, can potentially detect PHY covert chan-

nels. Indeed, routers and switches have the capability to
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access the physical layer (i.e. /I/s). Unfortunately, they

are not normally programmable and do not provide an in-

terface for access to /I/s. Instead, anyone that wants to

detect PHY covert timing channels would need to apply

statistical tests on interpacket delays (discussed earlier in

this section). Of course, interpacket delays needs to be

captured precisely before doing so.

In other words, PHY covert timing channels could be

potentially detected if the time of packet reception could

be accurately timestamped with fine-grained resolution

(i.e. nanosecond precision; enough precision to measure

interpacket gaps of 10 GbE networks). However, com-

modity network devices often lack precise timestamping

capabilities. Further, although high-end network mon-

itoring appliances [2, 9] or network monitoring inter-

face cards [1, 6] are available with precise timestamp-

ing capabilities, deploying such high-end appliances in a

large network is not common due to the volume of traf-

fic they would need to process (they have limited mem-

ory/storage) and cost.

Given that programmatic access to the PHY and ac-

curate timestamping capabilities in high-speed networks

are not readily available, we assume a passive adversary

who uses commodity servers with commodity network

interface cards (NIC) for network monitoring. An ex-

ample adversary is a network administrator monitoring a

network using pcap applications. This implies that the

adversary does not have access to the PHY of a network

stack.

Can a passive adversary built from a commodity server

and NIC detect a PHY timing channel? We will demon-

strate that it cannot (Section 4.4). In particular, we will

show how to exploit inaccurate timestamping of network

monitoring applications in order to hide the existence of

such a channel. It has been shown that access to the PHY

allows very precise timestamping at sub-nanosecond res-

olution, whereas endhost timestamping is too inaccurate

to capture the nature of 10 GbE [15, 22]. In particular,

an endhost relies on its own system clock to timestamp

packets which normally provides microsecond resolu-

tion, or hardware timestamping from network interface

cards which provides sub-microsecond resolution. Un-

fortunately, packets can arrive much faster than the end-

host can timestamp them. Therefore, inaccurate times-

tamping at an endhost can lead to an opportunity to create

a timing channel. In this paper, we will discuss how to

create a timing channel by modulating interpacket gaps

precisely in a way that network monitoring applications

cannot detect any regularities from them.

3 Chupja: PHY timing channel
In this section, we discuss the design and implementa-

tion of our physical layer (PHY) covert timing channel,

Chupja. Since Chupja is implemented via access to the

physical layer, we briefly discuss the IEEE 802.3 10 Gi-

gabit Ethernet standard first, and present the design goal

of Chupja, how to encode and decode secret messages,

how Chupja is implemented, and other considerations.

3.1 10 GbE Physical Layer

According to the IEEE 802.3 standard [3], when Eth-

ernet frames are passed to the PHY, they are reformat-

ted before being sent across the physical medium. On

the transmit path, the PHY encodes every 64 bits of an

Ethernet frame into a 66-bit block, which consists of a

two bit synchronization header (syncheader) and a 64-

bit payload. As a result, a 10 GbE link actually operates

at 10.3125 Gbaud (10G× 66
64

). The PHY also scrambles

each block before passing it down the network stack to

be transmitted. The entire 66-bit block is transmitted as

a continuous stream of symbols which a 10 GbE network

transmits over a physical medium. As 10 GbE always

sends 10.3125 gigabits per second (Gbps), each bit in the

PHY is about 97 picoseconds wide. On the receive path,

the PHY descrambles each 66-bit block before decoding

it.

Idle characters (/I/) are special characters that fill

any gaps between any two packets in the PHY. When

there is no Ethernet frame to transmit, the PHY con-

tinuously inserts /I/ characters until the next frame is

available. The standard requires at least twelve /I/s af-

ter every packet. An /I/ character consists of seven or

eight bits, and thus it takes about 700∼800 picoseconds

to transmit one /I/ character. /I/s are typically inac-

cessible from higher layers (L2 or above), because they

are discarded by hardware.

3.2 Design Goal

The design goal of our timing channel, Chupja, is to

achieve high-bandwidth, robustness and undetectability.

By high-bandwidth, we mean a covert rate of many tens

or hundreds of thousands of bits per second. Robust-

ness is how to deliver messages with minimum errors,

and undetectability is how to hide the existence of it. In

particular, we set as our goal for robustness to a bit error

rate (BER) of less than 10%, an error rate that is small

enough to be compensated with forward error correction

such as Hamming code, or spreading code [24]. We de-

fine BER as the ratio of the number of bits incorrectly

delivered from the number of bits transmitted.

In order to achieve these goals, we precisely modu-

late the number of /I/s between packets in the physical

layer. If the modulation of /I/s is large, the channel

can effectively send messages in spite of noise or per-

turbations from a network (robustness). At the same

time, if the modulation of /I/s is small, an adversary

will not be able to detect regularities (undetectability).

Further, Chupja embeds one timing channel bit per in-

terpacket gap to achieve high-bandwidth. Thus, higher
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overt packet rates will achieve higher covert timing chan-

nel rates. We focus on finding an optimal modulation of

interpacket gaps to achieve high-bandwidth, robustness,

and undetectability (Section 4).

3.3 Model

In our model, the sender of Chupja has control over a net-

work interface card or a compromised switch2 with ac-

cess to and control of the physical layer. In other words,

the sender can easily control the number of /I/ char-

acters of outgoing packets. The receiver is in a network

multiple hops away, and taps/sniffs on its network with

access to the physical layer. Then, the sender modulates

the number of /I/s between packets destined to the re-

ceiver’s network to embed secret messages.

Our model includes an adversary who runs a network

monitoring application and is in the same network with

the sender and receiver. As discussed in Section 2, we as-

sume that the adversary is built from a commodity server

and commodity NIC. As a result, the adversary does not

have direct access to the physical layer. Since a commod-

ity NIC discards /I/s before delivering packets to the

host, the adversary cannot monitor the number of /I/s

to detect the possibility of covert timing channels. In-

stead, it runs statistical tests with captured interpacket

delays.

3.4 Terminology

We define interpacket delay (IPD) as the time difference

between the first bits of two successive packets, and in-

terpacket gap (IPG) as the time difference between the

last bit of the first packet and the first bit of the next

packet. Thus, an interpacket delay between two packets

is equal to the sum of transmission time of the first packet

and the interpacket gap between the two (i.e. IPD = IPG

+ packet size). A homogeneous packet stream consists

of packets that have the same destination, the same size

and the same IPGs (IPDs) between them. Furthermore,

the variance of IPGs and IPDs of a homogeneous packet

stream is always zero.

3.5 Encoding and Decoding

Chupja embeds covert bits into interpacket gaps of a ho-

mogeneous packet stream of an overt channel. In order

to create Chupja, the sender and receiver must share two

parameters: G and W . G is the number of /I/s in the

IPG that is used to encode and decode hidden messages,

and W (Wait time) helps the sender and receiver synchro-

nize (Note that interpacket delay D = G + packet size).

Figure 1 illustrates our design. Recall that IPGs of a

homogeneous packet stream are all the same (=G, Fig-

ure 1a). For example, the IPG of a homogeneous stream

with 1518 byte packets at 1 Gbps is always 13738 /I/s;

the variance is zero. To embed a secret bit sequence

2We use the term switch to denote both bridge and router.

Pi Pi+1 Pi+2

D D

G G

IPG IPG

(a) Homogeneous packet stream

Pi Pi+1 Pi+2

D - ε D + ε

G - ε G + ε

IPG IPG

(b) Timing channel: Sender

Pi Pi+1 Pi+2

Di Di+1 

Gi Gi+1

IPG IPG

(c) Timing channel: Receiver

Figure 1: Chupja encoding and decoding.

{bi, bi+1, · · · }, the sender encodes ‘one’ (‘zero’) by in-

creasing (decreasing) the IPG (G) by ε /I/s (Figure 1b):

Gi = G− ε if bi = 0

Gi = G+ ε if bi = 1

where Gi is the ith interpacket gap between packet i and

i+1. When Gi is less than the minimum interpacket gap

(or 12 /I/ characters), it is set to twelve to meet the

standard requirement.

Interpacket gaps (and delays) will be perturbed as

packets go through a number of switches. However, as

we will see in Section 4.3, many switches do not sig-

nificantly change interpacket gaps. Thus, we can expect

that if ε is large enough, encoded messages will be pre-

served along the path. At the same time, ε must be small

enough to avoid detection by an adversary. We will eval-

uate how big ε must be with and without cross traffic and

over multiple hops of switches over thousands of miles

in a network path (Section 4).

Upon receiving packet pairs, the receiver decodes bit

information as follows:

b′i = 1 if Gi ≥ G

b′i = 0 if Gi < G

b′i might not be equal to bi because of network noise. We

use BER to evaluate the performance of Chupja (Sec-

tion 4.2).

Because each IPG corresponds to a signal, there is no

need for synchronization between the sender and the re-

ceiver [11]. However, the sender occasionally needs to

pause until the next covert packet is available. W is used

when there is a pause between signals. The receiver con-

siders an IPG that is larger than W as a pause, and uses

the next IPG to decode the next signal.

3.6 Implementation

We used SoNIC to implement and evaluate Chupja.

SoNIC [22] allows users to access and control every bit
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Figure 2: Maximum capacity of PHY timing channel

of 10 GbE physical layer, and thus we can easily control

(count) the number of /I/s between packets. We ex-

tended SoNIC’s packet generation capability to create a

timing channel. Given the number of /I/ characters in

the original IPG (G), the number of /I/s to modulate (ε)

and a secret message, IPGs are changed accordingly to

embed the message. On the receiver side, it decodes the

message by counting the number of /I/s between pack-

ets in realtime. The total number of lines added to the

SoNIC implementation was less than 50 lines of code.

The capacity of this PHY timing channel is equal to

the number of packets being transmitted from the sender

when there is no pause. Given a packet size, the max-

imum capacity of the channel is illustrated in Figure 2.

For example, if an overt channel sends at 1 Gbps with

1518 byte packets, the maximum capacity of the covert

channel is 81,913 bits per second (bps). We will demon-

strate in Section 4.2 that Chupja can deliver 81 kilo-

bits per second (kbps) with less than 10% BER over

nine routing hops and thousands of miles over National

Lambda Rail (NLR).

3.7 Discussion

Chupja uses homogeneous packet streams to encode

messages, which creates a regular pattern of IPGs. For-

tunately, as we will discuss in the following section, the

adversary will be unable to accurately timestamp incom-

ing packets when the data rate is high (Section 4.4). This

means that it does not matter what patterns of IPGs are

used for encoding at above a certain data rate. Therefore,

we chose the simplest form of encoding for Chupja. The

fact that the PHY timing channel works over multiple

hops means that a non-homogeneous timing channel will

work as well. For instance, consider the output after one

routing hop as the sender, then the PHY timing chan-

nel works with a non-homogeneous packet stream. If,

on the other hand, the sender wants to use other patterns

for encoding and decoding, other approaches can easily

be applied [12, 24, 25, 36]. For example, if the sender

wants to create a pattern that looks more random, we can

also use a shared secret key and generate random IPGs

for encoding and decoding [25]. However, the focus of

this paper is to demonstrate that even this simplest form

of timing channel can be a serious threat to a system and

not easily be detected.

Sender

Cross Traffic

 Generator
Adversary

splitter

Receiver

SoNIC1 SoNIC1

SoNIC2

Figure 3: Network topology for evaluation. All lines are

10 gigabit fiber optic cables

Finally, note that a Chupja sender and receiver do not

need to be endpoints of a network path, but could actually

be within the network as middleboxes. Such a covert

timing channel middlebox would require constant overt

traffic in order to manipulate interpacket gaps.

4 Evaluation
In this section, we evaluate Chupja over real networks.

We attempt to answer following questions.

• How robust is Chupja (Section 4.2)? How effec-

tively can it send secret messages over the Internet?

• Why is Chupja robust (Section 4.3)? What proper-

ties of a network does it exploit?

• How undetectable is Chupja (Section 4.4)? Why is

it hard to detect it and what is required to do so?

In Section 4.2, we first demonstrate that Chupja works

effectively over the Internet, and achieves a Bit Error

Rate (BER) less than 10% which is the design goal of

Chupja (Section 3). In particular, we evaluated Chupja

over two networks: A small network that consists of

multiple commercial switches, and the National Lambda

Rail (NLR). We discuss what is the optimal interpacket

gap (IPG) modulation, ε , that makes Chupja work. Then,

in order to understand why Chupja works, we provide a

microscopic view of how network devices behave in Sec-

tion 4.3. We conducted a sensitivity analysis over com-

mercial switches. We mainly show how network devices

preserve small interpacket delays along the path even

with and without the existence of cross traffic. Lastly,

we discuss how to detect a sophisticated timing channel

such as Chupja in Section 4.4.

4.1 Evaluation Setup

For experiments in this section, we deployed two SoNIC

servers [22] each equipped with two 10 GbE ports to

connect fiber optic cables. We used one SoNIC server

(SoNIC1) to generate packets of the sender destined to a

server (the adversary) via a network. We placed a fiber

optic splitter at the adversary which mirrored packets

to SoNIC1 for capture (i.e. SoNIC1 was both the tim-

ing channel sender and receiver). SoNIC2 was used to

generate cross traffic flows when necessary (Figure 3).

Throughout this section, we placed none or multiple

commercial switches between the sender and the adver-

sary (the cloud within Figure 3).

Table 1 summarizes the commercial switches that we
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Type 40G 10G 1G Full bandwidth Forwarding

SW1 Core 0 8 0 160 Gbps SF

SW2 ToR 4 48 0 1280 Gbps CT

SW3 ToR 0 2 48 136 Gbps SF

SW4 ToR 0 2 24 105.6 Gbps SF

Table 1: Summary of evaluated network switches. “SF”

is store-and-forward and “CT” is cut-through.

used. SW1 is a core / aggregate router with multiple 10

GbE ports, and we installed two modules with four 10

GbE ports. SW2 is a high-bandwidth 10 GbE top-of-rack

(ToR) switch which is able to support forty eight 10 GbE

ports at line speed. Moreover, it is a cut-through switch

whose latency of forwarding a packet is only a few mi-

croseconds. SW3 and SW4 are 1 GbE ToR switches with

two 10 GbE uplinks. Other than SW2, all switches are

store-and-forward switches.

We used a Dell 710 server for the adversary. The

server has two X5670 2.93GHz processors each with six

CPU cores, and 12 GB RAM. The architecture of the

processor is Westmere [4] that is well-known for its capa-

bility of processing packets in a multi-threading environ-

ment [13, 18, 27]. We used one 10 GbE Dual-port NICs

for receiving packets. No optimization or performance

tuning such as irq balancing, or interrupt coalescing,

was performed except New API (NAPI) [7] which is en-

abled by default.

Packet size Data Rate Packet Rate IPD IPG

[Bytes] [Gbps] [pps] [ns] [/I/ ]

1518 9 737028 1356.8 170

1518 6 491352 2035.2 1018

1518 3 245676 4070.4 3562

1518 1 81913 12211.2 13738

64 6 10416666 96.0 48

64 3 5208333 192.0 168

64 1 1736111 576.0 648

Table 2: IPD and IPG of homogeneous packet streams.

ε (/I/s) 16 32 64 128 256 512 1024 2048 4096

ns 12.8 25.6 51.2 102.4 204.8 409.6 819.2 1638.4 3276.8

Table 3: Evaluated ε values in the number of /I/s and

their corresponding time values in nanosecond.

For most of the evaluation, we used 1518 byte and

64 byte packets for simplicity. We define packet size

as the number of bytes from the first byte of the Eth-

ernet header to the last byte of the Ethernet frame check

sequence (FCS) field (i.e. we exclude seven preamble

bytes and start frame delimiter byte from packet size).

Then, the largest packet allowed by Ethernet is 1518

bytes (14 byte header, 1500 payload, and 4 byte FCS),

and the smallest is 64 bytes. In this section, the data rate

refers to the data rate of the overt channel that Chupja

is embedded. Interpacket delays (IPDs) and interpacket

gaps (IPGs) of homogeneous packet streams at different

data rates and with different packet sizes are summarized

SW3 Server2 Server3 SW4

SW2 SW2

SW1 SW1

SoNIC SoNICServer1 Server4

α

α

αα α

α

α α

ββ3α 3α

3α+β 3α+β3α+β

Figure 4: A small network. Thick solid lines are 10G

connections while dotted lines are 1G connections.

in Table 2. Table 3 shows the number of /I/s (ε) we

modulate to create Chupja and their corresponding time

values in nanosecond. We set ε starting from 16 /I/s

(= 12.8 ns), doubling the number of /I/s up to 4096

/I/s (= 3276.8 ns). We use a tuple (s, r) to denote a

packet stream with s byte packets running at r Gbps. For

example, a homogeneous stream with (1518B, 1Gbps) is

a packet stream with 1518 byte packets at 1 Gbps.

4.2 Efficiency of Chupja

The goal of a covert timing channel is to send secret mes-

sages to the receiver with minimum errors (robustness).

As a result, Bit Error Rate (BER) and the achieved covert

bandwidth are the most important metrics to evaluate a

timing channel. Our goal is to achieve BER less than

10% over a network with high bandwidth. In this section,

we evaluate Chupja over two networks, a small network

and the Internet (NLR), focusing on the relation between

BER and the number of /I/s being modulated (ε).

4.2.1 A small network

We created our own network by connecting six switches,

and four servers (See Figure 4). The topology resembles

a typical network where core routers (SW1) are in the

middle and 1 GbE ToR switches (SW3 and SW4) are leaf

nodes. Then, SoNIC1 (the sender) generates packets to

SW3 via one 10 GbE uplink, which will forward packets

to the receiver which is connected to SW4 via one 10

GbE uplink. Therefore, it is a seven-hop timing channel

with 0.154 ms round trip time delay on average, and we

measured BER at the receiver.

Before considering cross traffic, we first measure BER

with no cross traffic. Figure 5a illustrates the result.

The x-axis is ε modulated in the number of idle (/I/)

characters (see Table 3 to relate /I/s to time), and

the y-axis is BER. Figure 5a clearly illustrates that the

larger ε , the smaller BER. In particular, modulating 128

/I/s (=102.4 ns) is enough to achieve BER=7.7% with

(1518B, 1Gbps) (filled in round dots). All the other

cases also achieve the goal BER except (64B, 6Gbps)

and (64B, 3Gbps). Recall that Table 2 gives the capacity

of the covert channel. The takeaway is that when there is
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(c) Over National Lambda Rail

Figure 5: BER of Chupja over a small network and NLR. X-Y-Z means that workload of cross traffic is X (H-heavy,

M-medium, or L-light), and the size of packet and data rate of overt channel is Y (B-big=1518B or S-small=64B) and

Z (1, 3, or 6G).

no cross traffic, modulating small number of /I/s (128

/I/s, 102.4 ns) is sufficient to create a timing channel.

In addition, it is more efficient with large packets.

Now, we evaluate Chupja with cross traffic. In order

to generate cross traffic, we used four servers (Server1

to 4). Each server has four 1 GbE and two 10 GbE

ports. Server1 (Server4) is connected to SW3 (SW4) via

three 1 GbE links, and Server2 (Server3) is connected

to SW3 via two 10 GbE links. These servers gener-

ate traffic across the network with Linux pktgen [30].

The bandwidth of cross traffic over each link between

switches is illustrated in Figure 4: 1 GbE links were

utilized with flows at α Gbps and 10 GbE links at

β Gbps. We created three workloads where (α,β ) =
(0.333,0.333), (0.9,0.9), and (0.9,3.7), and we call

them Light, Medium and Heavy workloads. Packets

of cross traffic were always maximum transmission unit

(MTU) sized. Then SoNIC1 generated timing channel

packets at 1, 3, and 6 Gbps with 1518 and 64 byte pack-

ets. Figure 5b illustrates the result. At a glance, be-

cause of the existence of cross traffic, ε must be larger

to transmit bits correctly compared to the case without

cross traffic. There are a few takeaways. First, regardless

of the size of workloads, timing channels with (1518B,

1Gbps) and (1518B, 3Gbps) work quite well, achieving

the goal BER of less than 10% with ε ≥ 1024 . On the

other hand, channels at a data rate higher than 6 Gbps

are not efficient. In particular, ε = 4096 is not sufficient

to achieve the goal BER with (1518B, 6Gbps). Second,

creating timing channels with small packets is more dif-

ficult. Generally, BER is quite high even with ε = 4096

except H-S-1G case (BER=9%).

4.2.2 National Lambda Rail

In this section, we evaluate Chupja in the wild over a

real network, National Lambda Rail (NLR). NLR is a

wide-area network designed for research and has signif-

icant cross traffic [29]. We set up a path from Cornell

university to NLR over nine routing hops and 2500 miles

BostonChicago

Cleveland

Cornell (NYC) NYC

Cornell (Ithaca)

Sender Receiver

Figure 6: Our path on the National Lambda Rail

one-way (Figure 6). All the routers in NLR are Cisco

6500 routers. We used a SoNIC server to generate and

capture Chupja packets at each end. The average round

trip time of the path was 67.6 ms, and there was always

cross traffic. In particular, many links on our path were

utilized with 1∼2 Gbps cross traffic during the experi-

ment. Cross traffic was not under our control, however

we received regular measurements of traffic on external

interfaces of all routers.

Figure 5c illustrates the results. Again, we changed

the size and the data rate of overt packets. In NLR, it

becomes more difficult to create a timing channel. In

particular, only (1518B, 1Gbps) achieved BER less than

10% when ε is larger than 2048 (8.9%). All the other

cases have higher BERs than our desired goal, although

BERs are less than 30% when ε is 4096. Creating a chan-

nel with 64 byte packet is no longer possible in NLR.

This was because more than 98% of IPGs were mini-

mum interpacket gaps, i.e. most of bit information was

discarded because of packet train effects [15].

We demonstrated in this section (Figure 5c) that

we can create an effective covert timing channel with

(1518B, 1Gbps), and with large enough ε over the NLR.

The capacity of this channel can be as high as 81 kbps

(Table 2). In general, large packets at slower data rate is

desirable to create a timing channel. In the following sec-
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tion, we will investigate why this is possible by closely

analyzing the behavior of network devices with respect

to IPG modulations, ε .

4.3 Sensitivity Analysis

Network devices change interpacket gaps while forward-

ing packets; switches add randomness to interpacket

gaps. In this section, we discuss how Chupja can de-

liver secret messages via a PHY timing channel in spite

of the randomness added from a network. In particular,

we discuss the following observations.

• A single switch does not add significant perturba-

tions to IPDs when there is no cross traffic.

• A single switch treats IPDs of a timing channel’s

encoded ‘zero’ bit and those of an encoded ‘one’

bit as uncorrelated distributions; ultimately, allow-

ing a PHY timing channel receiver to distinguish an

encoded ‘zero’ from an encoded ‘one’.

• The first and second observations above hold for

multiple switches and cross traffic.

In other words, we demonstrate that timing channels

can encode bits by modulating IPGs by a small number

of /I/ characters (hundreds of nanoseconds) and these

small modulations can be effectively delivered to a re-

ceiver over multiple routing hops with cross traffic.

In order to understand and appreciate these observa-

tions, we must first define a few terms. We denote the

interpacket delay between packet i and i + 1 with the

random variable Di. We use superscript on the variables

to denote the number of routers. For example, D1
i is

the interpacket delay between packet i and i + 1 after

processed by one router, and D0
i is the interpacket delay

before packet i and i+ 1 are processed by any routers.

Given a distribution of D, and the average interpacket

delay µ , we define I90 as the smallest ε that satisfies

P(µ − ε ≤ D ≤ µ + ε)≥ 0.90. In other words, I90 is the

interval from the average interpacket delay, µ , which

contains 90% of D (i.e. at least 90% of distribution D

is within µ ± I90). For example, I90 of a homogeneous

stream (a delta function, which has no variance) that

leaves the sender and enters the first router is zero; i.e.

D0 has I90 = 0 and P(µ −0 ≤D ≤ µ +0) = 1 since there

is no variance in IPD of a homogeneous stream. We will

use I90 in this section to quantify perturbations added by

a network device or a network itself. Recall that the goal

of Chupja is to achieve a BER less than 10%, and, as a

result, we are interested in the range where 90% of D

observed by a timing channel receiver is contained.

First, switches do not add significant perturbations to

IPDs when there is no cross traffic. In particular, when a

homogeneous packet stream is processed by a switch, I90

is always less than a few hundreds of nanoseconds, i.e.

90% of the received IPDs are within a few hundreds of

nanoseconds from the IPD originally sent. Figure 7 dis-
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Figure 8: I90 comparison between various switches

plays the received IPD distribution measured after pack-

ets were processed and forwarded by one switch: The

x-axis is the received IPD and the y-axis is the cumula-

tive distribution function (CDF). Further, different lines

represent different switches from Table 1. The char-

acteristics of the original sender’s homogeneous packet

stream was a data rate of 1 Gbps with 1518B size pack-

ets, or (1518B, 1Gbps) for short, which resulted in an

average IPD of 12.2 us (i.e. µ = 12.2 us). We can

see in Figure 7 that when µ is 12.2 us and ε is 0.1

us, P(12.2− 0.1 < D < 12.2+ 0.1)≥ 0.9 is true for all

switches. In general, the range of received IPDs was al-

ways bounded by a few hundreds of nanoseconds from

the original IPD, regardless of the type of switch.

Moreover, when a packet stream is processed by the

same switch type, but for multiple hops, I90 increases

linearly. Each packet suffers some perturbation, but the

range of perturbation is roughly constant at every hop

over different packet sizes [23] resulting in a linear in-

crease in I90. In Figure 8, we illustrate I90 for different

switches, at different data rates (1, 3, and 9G), and as we

increase the number of hops: The x-axis is the number

of routing hops, y-axis is measured I90, and each line is

a different type of switch with a different packet stream

data rate. Packet size was 1518B for all test configu-

rations. One important takeaway from the graph is that

I90 for the same switch shows similar patterns regardless

of data rates, except SW3 9 Gbps. In particular, the de-

gree of perturbation added by a switch is not related to

the data rate (or the average interpacket delay). Instead,

IPD perturbation is related to the number of hops, and

the size of packet. Further, a second takeaway is that I90
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Figure 9: Comparison of homogeneous streams and covert channel streams of (1518B, 1Gbps)

values after one hop are all less than 100 ns, except SW3

9 Gbps, and still less than 300 ns after fifteen hops. 300

ns is slightly greater than 256 /I/s (Table 3). Unfortu-

nately, we do not have a definitive explanation on why

I90 of SW3 9 Gbps is larger than any other case, but it is

likely related to how SW3 handles high data rates.

Second, switches treat IPDs of an encoded ‘zero’ bit

and those of an encoded ‘one’ bit as uncorrelated dis-

tributions. After encoding bits in a timing channel,

there will be only two distinctive IPD values leaving the

sender: µ + ε for ‘one’, and µ − ε for ‘zero’. Let a ran-

dom variable D+ be the IPDs of signal ‘one’, and D− be

those of signal ‘zero’. We observed that the encoded dis-

tributions after one routing hop, D1+ and D1−, looked

similar to the unencoded distribution after one routing

hop, D1. The similarity is likely due to the fact that at

the sender the encoded distributions, D0+ and D0−, are

each homogeneous packet streams (i.e. D0, D0+, and

D0− are all delta functions, which have no variance). For

instance, using switch SW1 from Table 1, Figure 9a il-

lustrates D1 (the unencoded distribution of IPDs after one

routing hop) and Figure 9e illustrates D1+ and D1− (the

encoded distribution after one routing hop). The data rate

and packet size was 1Gbps and 1518B, respectively, with

ε = 256 /I/s for the encoded packet stream. We en-

coded the same number of ‘zeros’ and ‘ones’ randomly

into the packet stream. Note the similarity in distribu-

tions between D1 in Figure 9a and D1+ and D1− in Fig-

ure 9e. We observed a similarity in distributions among

D1, D1+, and D1− throughout different data rates and

switches. We can conjecture that D+ and D− are un-

correlated because the computed correlation coefficient

between D+ and D− is always very close to zero.

Because the distributions of D1+ and D1− are uncor-

related, we can effectively deliver bit information with

appropriate ε values for one hop. If ε is greater than
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Figure 10: BER over multiple hops of SW1 with various

ε values with (1518B, 1Gbps)

I90 of D1, then 90% of IPDs of D1+ and D1− will not

overlap. For example, when I90 is 64 ns, and ε is 256

/I/s (=204.8 ns), two distributions of D1+ and D1−
are clearly separated from the original IPD (Figure 9e).

On the other hand, if ε is less than I90 of D1, then many

IPDs will overlap, and thus the BER increases. For in-

stance, Table 4 summarizes how BER of the timing chan-

nel varies with different ε values. From Table 4, we can

see that when ε is greater than 64 /I/s, BER is always

less than 10%. The key takeaway is that BER is not re-

lated with the data rate of the overt channel, rather it is

related to I90.

ε (/I/s) 16 32 64 128 256 512 1024

BER

1G 0.35 0.24 0.08 0.003 10−6 0 0

3G 0.37 0.25 0.10 0.005 10−5 0 0

6G 0.35 0.24 0.08 0.005 0.8×10−6 0 0

9G 0.34 0.24 0.07 0.005 0.0005 0.0004 0.0005

Table 4: ε and associated BER with (1518B, 1Gbps)

Third, switches treat IPDs of an encoded ‘zero’ bit and

those of an encoded ‘one’ bit as uncorrelated distribu-

tions over multiple switches and with cross traffic. In

particular, distributions Dn+ and Dn− are uncorrelated

regardless of the number of hops and the existence of
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Figure 11: Packet size distributions of CAIDA traces

cross traffic. However, I90 becomes larger as packets go

through multiple routers with cross traffic. Figures 9b

and 9f show the distributions of D15, D15+, and D15−
without cross traffic (Note that the y-axis is log-scale).

The data rate and packet size was 1 Gbps and 1518B,

respectively, with ε = 256 /I/s for the encoded packet

stream. We conjecture that the distributions are still un-

correlated without cross traffic and after multiple hops of

routers: The computed correlation coefficient was close

to zero. Further, the same observation is true with the

other switches from Table 1. Figure 10 shows BER over

multiple hops of SW1. When ε is greater than 256 /I/s

(=204.8 ns), BER is always less than 10% after fifteen

hops. Recall that I90 of D after 15 hops of SW1 is 236 ns

(Figure 8).

Figures 9c and 9g show the distributions after one

routing hop when there was cross traffic: Distributions

D1, D1+, and D1− using overt data rate and packet size

1 Gbps and 1518B, respectively. The cross traffic was

(64B, 1Gbps). We can see in the figures that there is

still a similarity in D1+ and D1− even with cross traffic.

However, I90 becomes larger due to cross traffic when

compared to without cross traffic. Table 6 summarizes

how I90 changes with cross traffic. We used five different

patterns of cross traffic for this evaluation: 10-clustered

(10C), 100-clustered (100C), one homogeneous stream

(HOM), two homogeneous streams (HOM2), and ran-

dom IPD stream (RND). A N-clustered packet stream

consists of multiple clusters of N packets with the mini-

mum interpacket gap (96 bits, which is 12 /I/ charac-

ters) allowed by the standard [3] and a large gap between

clusters. Note that a larger N means the cross traffic is

bursty. For the RND stream, we used a geometric dis-

tribution for IPDs to create bursty traffic. In addition, in

order to understand how the distribution of packet sizes

affect I90, we used four CAIDA traces [8] at different

data rates to generate cross traffic (Table 5). With packet

size and timestamp information from the traces, we re-

constructed a packet stream for cross traffic with SoNIC.

In the CAIDA traces, the distribution of packet sizes is

normally a bimodal distribution with a peak at the lowest

packet size and a peak at the highest packet size (Fig-

ure 11).

Data Rate Packet Rate I90 BER

[Gbps] [pps] [ns] ε = 512 ε = 1024

CAIDA1 2.11 418k 736.0 0.10 0.041

CAIDA2 3.29 724k 848.1 0.148 0.055

CAIDA3 4.27 723k 912.1 0.184 0.071

CAIDA4 5.12 798k 934.4 0.21 0.08

Table 5: Characteristics of CAIDA traces, and measured

I90 and BER

We observe that I90 increases with cross traffic (Ta-

ble 6). In particular, bursty cross traffic at higher data

rates can significantly impact I90, although they are still

less than one microsecond except 100C case. The same

observation is also true using the CAIDA traces with dif-

ferent data rates (Table 5). As a result, in order to send

encoded timing channel bits effectively, ε must increase

as well. Figure 9d and 9h show the distributions of IPDs

over the NLR. It demonstrates that with external traffic

and over multiple routing hops, sufficiently large ε can

create a timing channel.

Data Rate Packet Size I90

[Gbps] [Byte ] 10C 100C HOM HOM2 RND

0.5

64 79.9 76.8 166.45 185.6 76.8

512 79.9 79.9 83.2 121.6 86.3

1024 76.8 76.8 80.1 115.2 76.8

1518 111.9 76.8 128.0 604.7 83.2

1

64 111.9 108.8 236.8 211.2 99.3

512 115.2 934.4 140.8 172.8 188.9

1024 111.9 713.5 124.9 207.9 329.5

1518 688.1 1321.5 64.0 67.1 963.3

Table 6: I90 values in nanosecond with cross traffic.

Summarizing our sensitivity analysis results, I90 is de-

termined by the characteristics of switches, cross traf-

fic, and the number of routing hops. Further, I90 can

be used to create a PHY timing channel like Chupja.

In particular, we can refine the relation between I90 and

ε∗ (the minimum ε measured to achieve a BER of less

than 10%). Let I+90 be the minimum ε that satisfies

P(D > µ − ε)≥ 0.90 and let I−90 be the minimum ε that

satisfies P(D < µ + ε) ≥ 0.90 given the average inter-

packet delay µ . Table 7 summarizes this relationship be-

tween ε∗, I90 and max(I+90, I
−
90) over the NLR (Figure 6)

and our small network (Figure 4).

Network Workload I90 max(I+90,I
−
90) ε∗ (ns)

Small network Light 1065.7 755.2 819.2

Small network Medium 1241.6 1046.3 1638.4

Small network Heavy 1824.0 1443.1 1638.4

NLR 2240.0 1843.2 1638.4

Table 7: Relation between ε , I90, and max(I+90, I
−
90) over

different networks with (1518B, 1Gbps). Values are in

nanosecond.

In our small network, BER is always less than 10%

when ε is greater than max(I+90, I
−
90). On the other hand,

we were able to achieve our goal BER over the NLR

when ε∗ is slightly less than max(I+90, I
−
90). Because we
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(b) Zero-copy timestamping.
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(c) Hardware timestamping.

Figure 12: Comparison of various timestampings. Each line is a covert channel stream of (1518B, 1Gbps) with a

different ε value.

do not have control over cross traffic in the NLR, I90 var-

ied across our experiments.

4.4 Detection

In order to detect timing channels, applying statistical

tests to captured IPDs is widely used. For example, the

adversary can use regularity, similarity, shape test, and

entropy test of IPDs in order to detect potential timing

channels [11, 12, 16, 32]. The same strategies can be ap-

plied to Chupja. Since our traffic is very regular, those

algorithms could be easily applied to detect Chupja.

However, we argue that none of these algorithms will

work if the IPG modulations cannot be observed at all.

In particular, endhost timestamping is too inaccurate to

observe fine-grained IPG modulations whereas Chupja

modulates IPGs in hundreds of nanoseconds to create a

timing channel. In fact, the accuracy of endhost times-

tamping is at most microsecond resolution. Specialized

NICs can provide a few hundreds of nanosecond reso-

lution. In this section, we demonstrate that endhost or

hardware timestamping is not sufficient to detect Chupja

timing channels. We focus on measuring and comparing

an endhost’s ability to accurately timestamp arrival times

(i.e. accurately measure IPDs) since the ability to detect

a PHY timing channel is dependent upon the ability to

accurately timestamp the arrival time of packets. As a

result, we do not discuss statistical approaches further.

There are mainly three places where packets can be

timestamped at an endhost: Kernel, userspace, and hard-

ware (NIC). Kernel network stacks record arrival times

of packets upon receiving them from a NIC. Since so

many factors are involved during the delivery of a packet

to kernel space, such as DMA transaction, interrupt rou-

tines, and scheduler, kernel timestamping can be inac-

curate in a high-speed network. As a result, userspace

timestamping will also be inaccurate because of delays

added due to transactions between kernel and userspace.

To reduce the overhead of a network stack between ker-

nel and userspace and between hardware and kernel, a

technique called zero-copy can be employed to improve

the performance of userspace network applications. An

example of a zero-copy implementation is Netmap [33].

In Netmap, packets are delivered from a NIC directly to

a memory region which is shared by a userspace appli-

cation. This zero-copy removes expensive memory op-

erations and bypasses the kernel network stack. As a re-

sult, Netmap is able to inject and capture packets at line

speed in a 10 GbE network with a single CPU. There-

fore, detection algorithms can exploit a platform similar

to Netmap to improve the performance of network moni-

toring applications. We call this zero-copy timestamping.

In hardware timestamping, a NIC uses an external clock

to timestamp incoming packets at a very early stage to

achieve better precision. The accuracy of timestamping

is determined by the frequency of an external clock. Un-

fortunately, hardware timestamping is not often available

with commodity NICs. However, we did include in our

evaluation a specialized NIC, the Sniffer 10G [5], which

can provide 500 ns resolution for timestamping.

In order to compare kernel, zero-copy, and hardware

timestamping, we connected a SoNIC server and a net-

work monitor directly via an optical fiber cable, gener-

ated and transmitted timing channel packets to a NIC in-

stalled in the network monitor, and collected IPDs using

different timestampings. The network monitor is a pas-

sive adversary built from a commodity server. Further,

we installed Netmap in the network monitor. Netmap

originally used the do gettimeofday for timestamp-

ing packets in kernel space, which provides only mi-

crosecond resolution. We modified the Netmap driver to

support nanosecond resolution instead. For this evalua-

tion, we always generated ten thousand packets for com-

parison because some of the approaches discarded pack-

ets when more than ten thousand packets were delivered

at high data rates.

Figure 12 illustrates the results. Figure 12a demon-

strates the effectiveness of kernel timestamping of a tim-

ing channel with various IPG modulation (ε) values. The

data rate of the overt channel was 1 Gbps and the packet

size was 1518 bytes. The x-axis is interpacket delays

(IPDs) in microsecond and y-axis is a cumulative dis-

tribution function (CDF). The vertical line in the mid-

dle is the original IPD (=12.2 us) of Chupja. In order

to detect Chupja, the timestamping CDF would be cen-
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Figure 13: Kernel timestamping with (1518B, 1Gbps).

tered around the vertical line at ≈12.2 us. Instead, as

can be seen from the graph, all measured kernel times-

tamps were nowhere near the vertical line regardless of ε
values (ε varied between ε=0 [HOM] to ε=4096 /I/s).

As a result, kernel timestamping cannot distinguish a

PHY covert channel like Chupja. In fact, even an i.i.d

random packet stream is inseparable from other streams

(Figure 13). Unfortunately, zero-copy timestamping does

not help the situation either (Figure 12b). Netmap does

not timestamp every packet, but assigns the same times-

tamp value to packets that are delivered in the one DMA

transaction (or polling). This is why there are packets

with zero IPD. Nonetheless, Netmap still depends on un-

derlying system’s timestamping capability, which is not

capable.

On the other hand, hardware timestamping using

the Sniffer 10G demonstrates enough fidelity to detect

Chupja when modulation (ε) values are larger than 128

/I/s (Figure 12c). However, hardware timestamping

still cannot detect smaller changes in IPDs (i.e. modu-

lation, ε , values smaller than 128 /I/s), which is clear

with a timing channel with smaller packets. A timing

channel with 64 byte packets at 1 Gbps is not detectable

by hardware timestamping (Figure 14). This is because

packets arrive much faster with smaller packets making

IPGs too small for the resolution of hardware to accu-

rately detect small IPG modulations.

The takeaway is that to improve the possibility of de-

tecting Chupja, which modulates IPGs in a few hundreds

of nanoseconds, a network monitor (passive adversary)

must employ hardware timestamping for analysis. How-

ever, using better hardware (more expensive and sophis-

ticated NICs) still may not be sufficient; i.e. for much

finer timing channels. Therefore, we can conclude that a

PHY timing channel such as Chupja is invisible to a soft-

ware endhost. However, a hardware based solutions with

fine-grained capability [1] may be able to detect Chupja.

5 Countermeasures
So far, we demonstrated that covert timing channels im-

plemented in the physical layer can leak secret informa-

tion without being detected. Such channels are great

threats to a system’s security, and should be prevented

or detected. However, as we discussed, detecting a PHY

timing channel is not easy with commodity components.
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Figure 14: Hardware timestamping with (64B, 1Gbps)

As a result, a network administrator who is worried about

information leaks from the network must employ ca-

pable network appliances for prevention or detection:

PHY-enhanced network jammers or monitoring appli-

ances could potentially prevent or detect the existence

of a covert channel.

6 Conclusion
In this paper, we presented Chupja, a PHY covert timing

channel that is high-bandwidth, robust and undetectable.

The covert timing channel embeds secret messages into

interpacket gaps in the physical layer by modulating in-

terpacket gaps at sub-microsecond scale. We empirically

demonstrated that our channel can effectively deliver 81

kilobits per second over nine routing hops and thousands

miles over the Internet, with a BER less than 10%. As a

result, a Chupja timing channel works in practice and is

undetectable by software endhosts since they are not ca-

pable of detecting such small modulations in interpacket

gaps employed by Chupja. Now that we have demon-

strated that a PHY covert timing channel is a security

risk, future directions include efficient methods to pre-

vent or detect such covert channels.

7 Availability
The Chupja and SoNIC source code is published under

a BSD license and is freely available for download at

http://sonic.cs.cornell.edu
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