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Abstract—Utilizing a highly precise network measurement
device, we investigate router’s inherent variation on packet
processing time and its effect on interpacket delay and packet
clustering. We propose a simple pipeline model incorporating the
inherent variation and a metric to measure packet clustering.
To isolate the effect of the inherent variation, we begin our
analysis with no cross traffic and step through setups where
the input streams have different data rate, packet size and go
through different number of hops. We show that a homogeneous
input stream with a sufficiently large interpacket gap will
emerge at the router’s output with interpacket delays that are
negative correlated with adjacent values and have symmetrical
distributions. We show that for smaller interpacket gaps, the
change in packet clustering is smaller. It is also shown that the
degree of packet clustering could in fact decrease for a clustered
input. We generalize our results by adding cross traffic. We
apply these results to demonstrate how we could reduce jitter
by minimizing interpacket gap. All the results predicted by the
model are validated with experiments with real routers.

Index Terms—Router modeling, traffic burstiness, queuing
theory

I. INTRODUCTION

For real-world network traffic, the observation that pack-

ets tend to cluster together or become bursty after passing

through one or multiple routers is well-documented for several

timescales [2], [1], [11], [9]. On longer timescales, proposed

explanations for burstiness are centered on input traffic charac-

teristics such as the distribution of user’s idle and active time

[17], the distribution of file sizes [5], and TCP congestion

control [9], [16]. At the packet level, the clustering could

be attributed to contention and scheduling with cross-traffic

at the switching fabric and timing variation in routing table

lookup. Is there any other factor that can cause bursty traffic,

maybe on an even finer timescale? Consider an experimental

setup where all the above mentioned factors are not present.

Let a single packet stream with fixed packet size, constant

interpacket gap, as well as identical destination goes through

a single isolated and idle router with no cross traffic. One

would expect the router’s output packet stream to have the

same constant interpacket gap as the input stream. However,

it has been observed that the interpacket gap is not constant

but instead exhibits some variation on the order of 100 ns at

the output, and when the experiment is repeated for various

interpacket delay constants, the variation is observed to be

sufficient to induce packet clustering in some experiments [8].

Moreover, if the input stream goes through multiple routers,

the clustering effect can be more prominent.

In the absence of external factors, such variation could only

be explained by factors inherent in the router design itself.

Possible explanations include clock drift, buffering scheme and

quantization of packets into cells [3]. Our goal in this paper,

though, is not on the causes of the variation, but on the effect of

the router’s inherent variation on interpacket delay and packet

clustering. Such a fine-scale investigation was not feasible

experimentally prior to [8], as network measurement devices

have significant measurement error, see e.g. [14]. BIFOCALS

as introduced in [8] allows exact timing measurement of

network packet streams by directly capturing the physical layer

symbol stream in real-time and time-stamping in off-line post-

processing. The time-stamps are exact since the precision of

the device is smaller than the width of a single symbol.

In this paper, we propose a simple device-independent

model incorporating a router’s inherent variation (Section

II-A). We next propose a metric to quantify packet clustering

(Section II-B) and show how packet clustering in terms of

this metric changes as it passes through one or multiple

router (Section III and IV). We then generalize our results by

incorporating cross traffic and interpret the results obtained

under the context of jitter and show how to control jitter

(Section V). Finally, we verify all the model results with

repeatable experiments (Section VI).

II. PROBLEM SETUP

A. Model

We first establish some terminologies. The interpacket delay

(IPD) is the space, in bits, between the first bit of a packet

and the first bit of the subsequent packet. The interpacket gap

(IPG) is the space between the last bit of a packet and the first

bit of the subsequent packet, i.e. IPG = IPD−packet size. We

say that a stream of packets is homogeneous if all the packets

have the same size, the same interpacket delay, and are heading

for the same destination. We use shorthand such as 1526B

3G to refer to a homogenous packet stream with 1526-byte

Ethernet frames and 3 Gbps data rate. We assume the input

packet stream is homogeneous; though all our results in this

section hold as long as the IPD is independent and identically

distributed (i.i.d.).

Each packet transitioning through the router experiences

a service time, which is the sum of various delays related

to processing time and and transmission time. Typically the

constant transmission time is the dominant delay while other

delays are shorter and could have some inherent variation.
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Figure 1. A two-server model of a router with the total service time S being
a sum of X , a random processing time and u, a constant transmission time

Without loss of generality, we group all the possible sources

of variation together and refer to it as part of processing time.

The model then is simple — the total service time, S, of a

packet going through a router is the sum of delays through

two servers:

S = X + u

In the first server, the packet takes a random processing time,

X ≥ 0 to be processed. In the second stage, the packet takes

a constant transmission time, u to be transmitted (see figure

1). The transmission time is simply the packet size divided by

capacity rate we will sometimes refer to u as the packet size.

This two-server model means that it is possible for parallel

processing and transmission of different packet, i.e. pipelining,

to occur.

Each packet of the input stream is indexed with i and its

associated processing time, Xi is assumed to be i.i.d. We

denote the interpacket delay between packet i and i+ 1 with

the random variable Di. We assume packet arrival rate is

smaller than the capacity rate, i.e. E [D] > u and packets

are processed faster than it can be transmitted, i.e. u > E [X].
We also assume there is sufficient buffer such that neither the

processing server nor the transmission server ever overflows.

In short, we have modeled the router with two serial servers

with deterministic arrivals, independent service time and a

first-in, first-out queue discipline.

With this simple model, we are going to analyze how

interpacket delay varies as the input stream passes through

a router. But first we clarify the notational convention of

this paper. We use superscript on the variables to denote

router number, e.g. D1
i is the ith interpacket delay after

going through the first router. The 0 superscript refers to the

input packet stream. Since we will have expressions involving

exponents, except for 0 or 1, all other integer superscripts

should be interpreted as exponents, e.g. D2
i is the square of

the ith interpacket delay and not the ith interpacket delay

after passing through 2 routers. The superscript is sometimes

omitted when we are referring to interpacket delay in general

while the subscript is sometimes omitted when the statement

is applicable to all packets. We denote E [·] as the expectation

function.

B. Packet Clustering Metric

We propose a metric to represent the degree of packet

clustering. To start, given that the packet arrival rate is smaller

than the router capacity rate, we know the average input data

rate is the same as the average output data rate. This simple
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Figure 2. An intuitive figure depicting how packet clustering evolves as
interpacket delay changes. The square of the interpacket gap fits the intuitive
notion.

observation implies that the average IPD is the same before

and after going through a router. Armed with this observation,

we consider the simplest setup with a sequence of 3 packets as

shown in Figure 2 to gain intuition. Since the average IPD is

the same, the only variable here is the relative position of the

second packet. Intuitively, the least clustering setup is when

the packets are uniformly spaced, i.e. the IPG between packet

1 and 2 is the same as between packet 2 and 3. Packets are

seen to be more clustered as packet 2 is closer to either packet

1 or 3 and the packets are most clustered when two packets

have minimal IPG in between.

A metric that fits the intuition is the sum of the square of

the IPG. The packet clustering metric, c, given the IPG of all

packets, g is given by

c (g) =
1

n

n
∑

i=1

g2i (1)

where we have normalized by n, the number of IPGs.

Next, we want to obtain an equivalent metric that is ex-

pressed in terms of IPD instead of IPG. To do so, we first

clarify what we mean by an equivalent metric. A metric

is equivalent to another if it fits the intuitive notion of

packet clustering in Figure 2 or more formally, if it is order-

preserving, i.e. if packet stream a is rated as more clustered

than packet stream setup b under the first metric, then the

second metric should also rate packet stream a as more

clustered than b. We leave the verification of equivalent metrics

for the rest of this subsection to the reader.

We claim that since the packet size is constant, an equivalent

metric is the sum of the square of the IPD c (d) =
∑n

i=1
d2i /n.

The metric c (d) computes a value when each Di takes on

a particular value di. Often times, we are interested with

Di in general, in which case, the expected packet cluster-

ing metric, E [c (D)] is more relevant. Using the identity

var (D) = E
[

D2
]

− E [D]
2

and assuming the interpacket

delays are i.i.d., we obtain var (D) as an equivalent metric, and

this is the metric that we will use to analyze packet clustering

for the rest of the paper. In short, the metric states that a

packet stream is more clustered if its IPD is more variable.

Thus, for a homogeneous packet stream, since the IPD is

constant, var (D) = 0, which conforms with our intuition that

the homogenous packet stream is the least clustered.



For the rest of the paper, for conciseness, we refer to (ex-

pected) packet clustering metric as simply packet clustering.

We note here that our proposed metric is not the only one that

fits the intuitive notion of packet clustering in Figure 2. Other

convex metrics are possible and we choose the current metric

due to its relative ease of analysis.

III. THE SINGLE-HOP CASE

We begin our analysis with the single hop case. There are

two regions to consider here: when all packets have no waiting

time (large interpacket gap) and when some of them do (small

interpacket gap).

A. Large interpacket gap

With no waiting time, the interpacket delay after one router

is relatively straightforward to figure out. Consider the se-

quence of discrete events that occur on packet 1 and 2. Packet

1 arrives at the router, receives service for a time period of

S1
1 = X1

1 + u and leaves the router. The second packet then

arrives and receives service for a time period of S1
2 = X1

2 +u.

The interpacket delay after 1 router for packet 1 and 2 is thus

D1
1 = D0

1 − S1
1 + S1

2 . One could continue by considering

packets 3, 4, 5 and so on to find that the same results hold:

D1
i = D0

i −S1
i +S1

i+1 = D0
i −X1

i +X1
i+1, i = 1, 2, . . . (2)

While equation (2) looks simple, we can extract plenty of in-

formation: symmetry of interpacket histogram (Lemma 1 and

Theorem 2), and negative correlation of adjacent interpacket

delay (Theorem 1).

To prove symmetry, we say that a random variable D has a

distribution that is symmetrical about d if D−d has the same

distribution as − (D − d), which we write as

D − d ∼ − (D − d)

For such a random variable, its probability density function is

symmetrical about d.

Lemma 1. If the distribution of D0 is symmetric about

E
[

D0
]

, then the distribution of D0
i −Xi+Xi+1 is symmetric

about E
[

D0
]

for all i.

Proof: Due to space restriction, all the proofs in this paper

are omitted and could instead be found in [7].

However, Lemma 1 is not sufficient to prove symmetry, as

the interpacket delay sequence D1
1, D

1
2, . . . is not i.i.d. Neigh-

boring terms of the sequence are correlated: D0
1 −X1

1 +X1
2

is not independent of D0
2 − X1

2 + X1
3 due to the X1

2 term.

Since the interpacket delays are correlated via the X1
2 term,

which has an opposite sign in each of the interpacket delay,

we expect the correlation to be negative.

Theorem 1. After one hop, the correlation coefficient between

two neighboring interpacket delay is -1/2, that is

ρi,j ,
cov

(

D1
i , D

1
j

)

√

var (D1
i ) var

(

D1
j

)

= −
1

2
, for |i− j| = 1 (3)

Even though the interpacket delay is negatively correlated,

we can still prove symmetry by observing that every other

term of the interpacket delay sequence is i.i.d and by using

superposition.

Theorem 2. The interpacket delay histogram of a homoge-

neous packet stream at a router’s output is symmetrical about

E
[

D0
]

.

Note that Lemma 1, Theorem 1 and Theorem 2 all make

heavy use of the assumption that the random processing time

X is i.i.d. Thus, if experimental data turns out to match

the analysis here, then it is reasonable to adopt the i.i.d.

assumption. We will see in Section VI that this is indeed the

case.

We now switch attention to packet clustering. Since D0
i , X1

i

and X1
i+1 are all independent of each other

var
(

D1
)

= var
(

D0
)

+ 2var
(

X1
)

(4)

For a homogeneous input packet stream, D0 is a constant and

thus var
(

D1
)

= 2var
(

X1
)

.

B. Small interpacket gap

The interpacket gap in this region is small while the service

time is sometimes long enough to induce a waiting time in the

next packet. We define Ii as the processing server idle time

in between packet i and i+ 1 and Wi as the waiting time of

packet i at the processing server. By considering the sequence

of discrete events that occur on packet i and i + 1, we find

that the idle time is given by

I1i = max
(

0, D0
i −W 1

i −X1
i

)

=
(

D0
i −W 1

i −X1
i

)+
(5)

where a+ = max (0, a). Similarly, the waiting time of packet

i+ 1 is given by

W 1
i+1 = max

(

0,W 1
i +X1

i −D0
i

)

=
(

D0
i −W 1

i −X1
i

)

−

(6)

where a− = max (0,−a). In the queuing theory literature,

equation (6) is also known as the Lindley equation [12]. The

IPD after one-hop is given by

D1
i = max

{

u, I1i +X1
i+1

}

(7)

The identity a = a+ − a− gives us

D0
i −W 1

i −X1
i = I1i −W 1

i+1 (8)

Combining equation (7) and (8) gives

D1
i ≥ D0

i −
(

W 1
i +X1

i

)

+
(

W 1
i+1 +X1

i+1

)

(9)

Recall that for the large interpacket gap region, equation

(4) tells us that packet clustering increases by 2var
(

X1
)

. For

the small interpacket gap region, some packets are prevented

from getting closer together due to the physical requirement of

a minimum service time. This implies that intuitively, packet

clustering after one router should increase to a value that is

less than 2var
(

X1
)

.

Theorem 3. For a packet stream with i.i.d. interpacket delay

and n → ∞ number of packets, after one hop,

var
(

D1
)

≤ var
(

D0
)

+2
(

var
(

X1
)

− E
[

W 1
]

E
[

I1
])

(10)



Since E
[

W 1
]

E
[

I1
]

> 0, Theorem 3 confirms our in-

tuition that packet clustering increases by a value less than

2var (X). The theorem also tells us that it is possible for the

packet stream to be less clustered if the input packet stream

is not homogeneous and E
[

W 1
]

E
[

I1
]

> var (X). However,

we may not be able to check for it in practice, since we may

not have sufficient knowledge or access to determine E
[

W 1
]

and E
[

I1
]

. We thus have the question: for an input packet

stream with i.i.d. IPD, is there an easily verifiable condition

to know when the packet stream will be less clustered?

Corollary 1. An input packet stream with i.i.d. interpacket

delay will be less clustered after going through a router if

2var
(

X1
)

≤ E

[

{

(

D0 −X1
)

−

}2
]

.

Note that E

[

{

(

D0 −X1
)

−

}2
]

is large if D0 has a large

probability of taking small values, i.e. a large portion of

packets are close together. There are two scenarios for the

packet to be closer together: one, the input packet stream is

getting more clustered and two, the input data rate is getting

higher, as higher data rate implies smaller interpacket delay.

Since var
(

D0
)

+ 2var
(

X1
)

− E

[

{

(

D0 −X1
)

−

}2
]

is an

upper bound for var
(

D1
)

, the upper bound is getting smaller

as either scenario occurs. As such, it is reasonable to expect

that the change in packet clustering, var
(

D1
)

− var
(

D0
)

to

decrease as the input packet stream is getting more clustered

or as the input data rate increases (see Figure 5). In cases

where the input packet stream is very clustered, we have shown

in Corollary 1 that the change in packet clustering could in

fact be negative (see Figure 4)

IV. THE MULTI-HOP CASE

In this section, we extend our results to the multiple-router

scenario. We denote m as the number of routers and the

routers are not assumed to be identical unless otherwise stated.

There are now 3 regions to consider: when packets have no

waiting time for all m routers (large interpacket gap), when

packets have no waiting time for first j < m routers (medium

interpacket gap) and when some packets have positive waiting

time while passing through each router (small interpacket

gap).

A. Large interpacket gap

The analysis is this subsection is mostly a straightforward

generalization of the results of the single-hop case. Apply

equation (2) repeatedly to obtain, for all l ≤ m

Dl
i = D0

i −
l

∑

k=1

Xk
i +

l
∑

k=1

Xk
i+1 (11)

The other results concerning negative correlation and sym-

metry of the IPD histogram generalize in the same manner.

In addition, we have a new result concerning how packet

clustering changes as it passes through the routers. We state

them all formally in the following theorem.

Theorem 4. In the large interpacket gap region, for any

1 ≤ l ≤ m, the interpacket delay sequence Dl
1, D

l
2, . . . has

the following 3 properties: adjacent interpacket delay has

a correlation coefficient of −1/2, the IPD histogram at the

final router’s output is symmetrical and if the m routers are

identical, then packet clustering increases linearly with the

number of routers.

B. Medium and small interpacket gap

For medium interpacket gap, for the first j routers where

there is no waiting time, packet clustering increases linearly

and for the remaining routers, the change in packet clustering

would be similar to the small interpacket gap region, which

we will analyze now.

For small interpacket gap, the results are not as easy to

generalize from the single hop case as large interpacket gap.

The main difficulty arises from the correlated interpacket delay

after the first hop. Such correlation implies that the setup may

not converge to a steady state distribution even if the input

packet stream is sufficiently long. As such, we approximate

by ignoring the correlation and assuming that the input to all

the routers have i.i.d. interpacket delay and our aim in this

subsection is not to derive analytical expressions but to use

the results from Section III-B to argue qualitatively how packet

clustering would evolve with increasing number of identical

hops.

Recall that after Corollary 1 we argue that the change in

packet clustering, var
(

D1
)

− var
(

D0
)

would decrease as

the input packet stream is getting more clustered or as the

input data rate increases. Given the i.i.d. input assumption to

all routers, we could now apply this argument at each hop.

This means that if we start with a homogeneous input packet

stream, then packet clustering would be an increasing and

concave function in the number of identical hops. Conversely,

if we start out with a very clustered input packet stream, then

packet clustering would be a decreasing and convex function

in the number of identical hops (see Figure 4).

The second implication is that if we have two input packet

streams with equal packet clustering but different data rate,

then for the input stream with a higher data rate, its rate

of change for packet clustering in the number of identical

hops would be lower. For instance, suppose we have two

homogeneous packet stream with 4G and 6G data rate. Then

while packet clustering would evolve in an increasing and

concave manner in the number of identical hops for both, the

packet clustering function for 4G should be strictly above that

of 6G’s (see Figure 5).

V. ADDING CROSS TRAFFIC

In this section, we add in cross traffic and show that the

results and discussions from Section III carry over. We need

new terms and assumptions with the addition of cross traffic.

We call the packet stream that we are tracking as it goes

through the router the target traffic while any other traffic

that interferes with it, the cross traffic. It is well-known that

Internet traffic is usually not Poisson in nature and is positively

correlated over time [11]. For such cross traffic, the setup that



we are currently analyzing does not necessarily converge to

the steady state distribution. To make the analysis tractable,

we make the assumption that the cross traffic is not time

varying, i.e. stationary, and the current setup does converge

to the steady state distribution. We assume packets are served

in a first-in, first-out manner. This is again a simplifying

assumption as packets that arrive at different router input ports

typically have to undergo contention and scheduling and the

final packet service order is not necessarily first-in, first-out.

There are two key steps to analyzing the interaction of the

two types of traffic. The first step is to divide our analysis

into two stages by first finding the interpacket delay after

passing through the processing server, ∆1, before moving on

to deal with the transmission server. The second step is to

further subdivide the waiting time and idle time by source. The

waiting time of the ith target packet at the processing server

is now W p
i = T p

i +Cp
i where T p

i is the waiting time incurred

on the ith target packet till target packet i − 1 is processed

and Cp
i is the waiting time incurred on the ith target packet

due to cross traffic that is processed after target packet i− 1.

We define Ipi as the idle time the processing server spends

not processing any target traffic after the departure of the ith
packet and before the arrival of the (i+1)th packet. Note that

it is possible for the processing server to be processing cross

traffic during such idle time. The terms W r
i , T r

i , Cr
i and Iri

are defined analogously for the transmission server. To prevent

notational clustering, we will drop the superscript 1 from all

non interpacket delay terms in this section.

The analysis to derive the interpacket delay and packet

clustering follow the same path as the model with no cross

traffic. Due to space restriction, we skip the intermediate

analysis and instead jump straight to the final result.

Theorem 5. With cross traffic, the change in packet clustering,

var
(

D1
)

− var
(

D0
)

is upper bounded by

2 [var (X) + var (Cp) + cov (Ip, Cp) + var (Cr) + cov (Ir, Cr)]

− E

[

{

(

D0 −X − Cp
)

−

}2
]

− E

[

{

(

∆1 − u− Cr
)

−

}2
]

(12)

Similar to the case with no cross traffic, the last two terms

on the RHS of (12) is large if D0 has a large probability

of taking small values, and as such, the observation from the

end of Section III-B carry over and it is reasonable to expect

that even with cross traffic, the change in packet clustering,

var
(

D1
)

− var
(

D0
)

to decrease as the input packet stream is

getting more clustered or as the input data rate increases. We

now apply the observation that we just made to understand

jitter.

There exists several definitions for jitter and the one we are

going to look at is interpacket delay variation (IPDV) as de-

fined in RFC5481 [15]. More specifically, we are investigating

the variance of IPDV, which we will refer to interchangeably

with jitter. In the notation of this paper, IPDV is defined as

Dn
i −D0

i and thus for homogeneous input traffic, its variance

is simply var (Dn
i ) and we could apply the results that we

have so far in the context of jitter.

From the discussion that we just had, we know that jitter

would grow slower or even decrease if the interpacket gap in

between packets are smaller. The phenomena of decreasing

jitter with smaller interpacket gap has been observed in [6],

albeit the definition of jitter used is different. Thus, to control

jitter, we need to decrease interpacket gap, which could be

achieved in three ways. The first is by sending at a higher data

rate, which will increase the end-to-end delay as a tradeoff.

Alternatively, we could send with smaller packet sizes, though

this means we have to send more packets and thus more data

overhead in terms of packet headers. Finally, we could send the

traffic via a dedicated, rate-limited tunnel through the network

though setting up such a tunnel is expensive. Each method of

controlling jitter comes with its own tradeoff, and we leave a

more thorough investigation for future work.

VI. EXPERIMENTAL VALIDATION

A. Experiment Setup

To validate our model, we use SoNIC [10], which is a

software-defined network interface card that achieves the same

level of precision as BIFOCALS. We deploy a SoNIC board

on a Dell T7500 workstation, and use a Cisco Catalyst 6500

router. We mention here that the results are consistent in all

other routers where the experiments are repeated. This includes

Cisco 4948, IBM G8264 and HP Procurve 2900.

B. Validation

Experiment 1: Negative correlation of adjacent interpacket

delays (Theorem 1). The correlation coefficient is computed

using 1 million IPDs obtained from experiment for various

setups. The results are summarized in Table I. We can see that

the computed values are close to the value of -0.5. The The 3

starred values are setups that belong to the small interpacket

delay region.

Experiment 2: IPD properties for the multi-hop, large IPG

setup (Theorem 4). For the large interpacket gap region,

a 1526B 1G homogeneous packet stream goes through 8

identical routers and the IPD is recorded. The IPD histogram

is observed to be symmetrical and packet clustering grows lin-

early. In addition, the correlation coefficient between adjacent

IPD is calculated as -0.4858, which is close to the theoretical

value of -0.5.

Experiment 3: Packet clustering could decrease after

passing through one router (Corollary 1 and Theorem 5).

We verify that for a very clustered input packet stream, packet

clustering decreases after the packet stream passes through the

1526-byte packet 72-byte packet

1 Gbps -0.4942 -0.5022

3 Gbps -0.5494 -0.8673*

6 Gbps -0.4740 -0.1788*

9 Gbps -0.4931 -0.6924*

Table I
CORRELATION COEFFICIENT VALUES
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1526-byte packet and 1 Gbps data rate. Inset shows the linear growth of traffic
burstiness.
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Figure 4. How packet clustering evolves over multiple routers for clustered
vs. homogenous packet stream. Both packet streams are 72B 3G.

router. Without cross traffic, the result is shown in Figure 4.

The clustered packet stream has 10 packets clustered together

with minimal IPG and one huge gap before the next cluster. As

a comparison, we also plotted the change in packet clustering

for a homogenous packet stream with the same packet size and

data rate. Notice that as the number of hops increases, packet

clustering varies in an increasing and concave manner for the

homogeneous packet stream, and decreasing and convex for

the clustered packet stream. This agrees with the discussion

in Section IV-B.

Experiment 4: How packet clustering evolves for differ-

ent data rates with increasing number of hops (Section

IV-B). Figure 5 shows experimental data for fixed packet size

but varying data rates. For the first few hops, packet clustering

evolves almost linearly for all data rates. As the number of

hops increases, the increment decreases at a faster rate for the

higher rate. The figure tells us that for increasing data rates,

packet clustering increases at a decreasing rate, in agreement

with the discussion in Section IV-B.

VII. CONCLUSION AND FUTURE WORKS

Our model has formed a framework for understanding how

inherent variation in a router affects the input-output charac-

teristic of a router. There are plenty of interesting research

directions that we could pursue with this paper as a starting

point. On the practical side, we could delve into the workings

of a router, try to understand how inherent variation comes

about and build a practical router model in the same spirit as
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Figure 5. How packet clustering evolves as a homogenous packet stream of
520-byte packets passes through different number of routers for various data
rates.

[4] but which incorporates inherent variation as an important

parameter. On the application side, as mentioned before, we

could investigate deeper into the tradeoffs between the various

methods of controlling jitter by minimizing interpacket gap.

We could also look at bandwidth estimation using packet-train

dispersion [13] and see if our analysis could help in improving

the accuracy of existing bandwidth estimation methods.

REFERENCES

[1] Jean-Chrysotome Bolot. End-to-end packet delay and loss behavior in
the internet. SIGCOMM, 1993.

[2] A. Broido, R. King, E. Nemeth, and KC Claffy. Radon spectroscopy of
inter-packet delay. In HSN Workshop, 2003.

[3] H.J. Chao and B. Liu. High Performance Switches and Routers. Wiley,
2007.

[4] R. Chertov and S. Fahmy. Forwarding devices: From measurements to
simulations. ACM T. Model Comput. S., 21(2):12, 2011.

[5] M.E. Crovella and A. Bestavros. Self-similarity in world wide web traf-
fic: Evidence and possible causes. IEEE/ACM Trans. Netw., 5(6):835–
846, 1997.

[6] H. Dahmouni, A. Girard, and B. Sansò. An analytical model for jitter
in IP networks. Ann. Telecommun., 67(1-2):81–90, 2012.

[7] C.L. Lim et. al. Packet clustering introduced by routers. Technical
report, 2013. http://networks.ece.cornell.edu/tech/Lim13TR.pdf.

[8] D.A. Freedman, T. Marian, J. H. Lee, K. Birman, H. Weatherspoon, and
C. Xu. Exact temporal characterization of 10 Gbps optical wide-area
network. In IMC, 2010.

[9] H. Jiang and C. Dovrolis. Why is the internet traffic bursty in short time
scales. In Sigmetrics, 2005.

[10] K.S. Lee, H. Wang, and H. Weatherspoon. SoNIC: Precise Realtime
Software Access and Control of Wired Networks. In NSDI, 2013.

[11] W.E. Leland, M.S. Taqqu, W. Willinger, and D.V. Wilson. On the self-
similar nature of ethernet traffic. In SIGCOMM, 1993.

[12] D.V. Lindley. The theory of queues with a single server. In Math. Proc.
Carmbridge, volume 48, pages 277–289. Cambridge University Press,
1952.

[13] X. Liu, K. Ravindran, and D. Loguinov. A queueing-theoretic foundation
of available bandwidth estimation: Single-hop analysis. IEEE/ACM
Trans. Netw.., 15(4):918 –931, aug. 2007.

[14] T. Marian, D.A. Freedman, K. Birman, and H. Weatherspoon. Empirical
characterization of uncongested optical lambda networks and 10gbe
commodity endpoints. In DSN, 2010.

[15] A. Morton and B. Claise. RFC 5481: Packet delay variation applicability
statement. 2009.

[16] A. Tang, Andrew L., Jacobsson K., Johansson K., Hjalmarsson H., and
Low S. Queue dynamics with window flow control. IEEE/ACM Trans.
Netw., 18(5):1422–1435, 2010.

[17] W. Willinger, M.S. Taqqu, R. Sherman, and D.V. Wilson. Self-similarity
through high-variability: Statistical analysis of ethernet lan traffic at the
source level. IEEE/ACM Trans. Netw., 5(1):71–86, 1997.


