
Erasure Coding vs. Replication: A Quantitative
Comparison

Hakim Weatherspoon and John D. Kubiatowicz

Computer Science Division
University of California, Berkeley

�hweather, kubitron�@cs.berkeley.edu

Abstract. Peer-to-peer systems are positioned to take advantage of gains in net-
work bandwidth, storage capacity, and computational resources to provide long-
term durable storage infrastructures. In this paper, we quantitatively compare
building a distributed storage infrastructure that is self-repairing and resilient to
faults using either a replicated system or an erasure-resilient system. We show
that systems employing erasure codes have mean time to failures many orders
of magnitude higher than replicated systems with similar storage and bandwidth
requirements. More importantly, erasure-resilient systems use an order of magni-
tude less bandwidth and storage to provide similar system durability as replicated
systems.

1 Introduction

Today’s exponential growth in network bandwidth, storage capacity, and com-
putational resources has inspired a whole new class of distributed, peer-to-peer
storage infrastructures. Systems such as Farsite[2], Freenet[4], Intermemory[3],
OceanStore[8], CFS[5], and PAST[7] seek to capitalize on the rapid growth of
resources to provide inexpensive, highly-available storage without centralized
servers. The designers of these systems propose to achieve high availability and
long-term durability, in the face of individual component failures, through repli-
cation and coding techniques.

Although wide-scale replication has the potential to increase availability and
durability, it introduces two important challenges to system architects. First,
system architects must increase the number of replicas to achieve high durability
for large systems. Second, the increase in the number of replicas increases the
bandwidth and storage requirements of the system.

This paper makes the following contributions: First, we briefly quantify the
availability gained using erasure codes. Second, we show that erasure-resilient
codes use an order of magnitude less bandwidth and storage than replication
for systems with similar mean time to failure (MTTF). Third, we show that
employing erasure-resilient codes increase the MTTF of the system by many
orders of magnitude over simple replication with the same storage overhead and



repair1 times. The contributions of this work over [3, 12] are the addition of
bandwidth as a comparison.

2 Background

Two common methods used to achieve high durability of data are complete
replication[2, 7] and parity schemes such as RAID[9]. The former imposes ex-
tremely high bandwidth and storage overhead, while the latter does not provide
the robustness necessary to survive the high rate of failures expected in the wide
area.

An erasure code provides redundancy without the overhead of strict repli-
cation. Erasure codes divide an object into � fragments and recode them into
� fragments, where � � �. We call � � �

�
� � the rate of encoding. A rate

� code increases the storage cost by a factor of �

�
. The key property of erasure

codes is that the original object can be reconstructed from any � fragments. For
example, using an � � �

�
encoding on a block divides the block into � � ��

fragments and encodes the original � fragments into � � �� fragments; in-
creasing the storage cost by a factor of four.

Erasure codes are a superset of replicated and RAID systems. For example,
a system that creates four replicas for each block can be described by an (� � �,
� � �) erasure code. RAID level 1, 4, and 5 can be described by an (� � �,
� � �), (� � �, � � �), and (� � �, � � �) erasure code, respectfully.

Data Integrity: Erasure coding in a malicious environment requires the precise
identification of failed or corrupted fragments. Without the ability to identify
corrupted fragments, there is potentially a factorial combination of fragments to
try to reconstruct the block; that is,

��
�

�
combinations. As a result, the system

needs to detect when a fragment has been corrupted and discard it. A secure ver-
ification hashing scheme can serve the dual purpose of identifying and verifying
each fragment. It is necessarily the case that any � correctly verified fragments
can be used to reconstruct the block. Such a scheme is likely to increase the
bandwidth and storage requirements, but can be shown to still be many times
less than replication.

3 Assumptions

We assume that replicated and erasure encoded systems consist of a collection
of independently, identically distributed failing disks – same assumption made

1 Data is periodically repaired to replace lost redundancy in both replicated and erasure encoded
systems.



by both A Case for RAID[9] and disk manufacturers – and that failed disks are
immediately replaced by new, blank ones2. During dissemination, each replica
(or fragment) for a given block is placed on a unique, randomly selected disk.
Finally, we postulate a global sweep and repair process that scans the system,
attempting to restore redundancy by reconstructing each block and redistribut-
ing lost replicas (or fragments) over a new set of disks – Repair in RAID[9] is
triggered when a disk fails, which is fundamentally different than sweep and
repair. Some type of repair is required; otherwise, data would be lost in a couple
years regardless of the redundancy. We denote the time period between sweeps
of the same block an epoch.

4 Availability

Availability gained using erasure codes is a result of exploiting the statistical
stability of a large number of components. The availability of a block can be
computed as follows

�� probability that a block is available
� total number of fragments
� number of fragments needed for reconstruction
� total number of machines in the world
� number of currently unavailable machines

�� �
����
���

��
�

�����
���

�
��
�

� (1)

where the probability a block is available is equal to the number of ways in
which we can arrange unavailable fragments on unreachable servers multiplied
by the number of ways in which we can arrange available fragments on reach-
able servers, divided by the total number of ways in which we can arrange all of
the fragments on all of the servers.

With a million machines, ten percent of which are currently down, simply
storing two complete replicas provides only two nines (����) of availability.
A rate �

�
erasure coding of a document into 32 fragments gives the document

over eight nines of availability (�����������), yet consumes the same amount
of storage and bandwidth, supporting the assertion that fragmentation increases
availability.

2 We are ignoring other types of failures such as software errors, operational errors, configura-
tion problems, etc., for this simple analysis.



5 System Comparison

We use the same system size (total blocks) and write rate (��	�
��
�

) to compare
systems based on replication to that of erasure codes. In this section we make
three comparisons. First, we fix the mean time to failure (MTTF) of the system
and repair epoch. Second, we fix the storage overhead and repair epoch. Finally,
we fix the MTTF of the system and the storage overhead.

We compare replicated and erasure encoded systems (denoted by 	) in terms
of total storage 

, total bandwidth (leaving the source or entering the destina-
tion) ��
, and the total number of disk seeks required to sustain rate (repair,
write, and read) 

. We do not compare reads when considering storage and
bandwidth because the amount of data required to read a block is the same for
both systems; that is, � fragments is equivalent to one replica in storage and
bandwidth requirements.

5.1 Fix MTTF and Repair Epoch

In this subsection we compare replicated systems to erasure encoded systems
that have the same fixed system MTTF and repair epoch.

Assuming that we store and do not delete data, the total system size in terms
of the total number of fixed size blocks � that will be reached throughout the
systems lifetime can be computed using the total number of users � as follows

� � � �
�������

�
� total seconds

More generally, given a system size (defined by the number of users) we focus
on answering the question, what are the resources required to store data in a
system long-term. We define the durability of the system to be the expected
MTTF of losing any block is sufficiently larger than the expected lifetime of the
system given some number of users. That is

���������� �
�����	�
�

�
� total seconds

We derive how to compute storage, bandwidth, and disk seeks required by solv-
ing the following equations.



 � total bytes stored in system 	

��
 � ��
����� 	��
������



 � 

����� 	

������ 	

����



 is the total storage capacity required of the system 	, ��
 is a function
of the bandwidth required to support both writes and repair of the total storage



every repair epoch, and 

 is the number of disk seeks required to support
repair, writes, and reads. The repair bandwidth is computed by dividing the total
bytes stored by the repair epoch. Next, we compute the storage for both systems


���	 � � �� ��


����� �
�

�
� � �� � � �

�

�
��

where � is the number of replicas, � � �
�

is the rate of encoding, and � is the
block size. We now compute the bandwidth in terms of storage as follows

�����	 � � �� �� �
�������

�
	

���	

����	

������� � � �
�

�
�� �

�������

�
	

�����

������

where �
 is the repair epoch of system 	 � ��������� ��������. We show now
that the bandwidth due to only the original data being written and repaired can
be expressed as DataRate


�
 � �
�������

�
	
�

�


Further, we compute the number of disk seeks required to support writes, repair,
and reads. ���� is the size of a disk block.


���	 � 
� �� � ��	�
��
�

	� � �
�����

	 �� � �
��	



����� � 
� �� � ��	�
��
�

	 � � �
����	�

	�� � �
����	


The above equation states that the number of disk seeks required is dependent
on the number of replicas (or total number of fragments), throughput, system
size, repair epoch, the number of replicas (or fragments) needed to reconstruct
the block, and the number of replicas (or fragments) that can fit in a disk block.

Finally, a replicated system can be compared to a similar erasure encoded
system with the following bandwidth, storage, and disk seek ratios

�����

����	�
� � � � (2)

������

�����	�

�
� �������

�

�
������	�

� � � � (3)

�����

����	�

�
�� ������� � �� � �

����

�� ������	� ��� � �
������

� � � � (4)

We make the abstract numbers concrete using the following parameters as ap-
propriate. Bolosky et. al[2] measured that an average workstation produces



����
��

of data. We associate a workstation with a user. We set � � �kB blocks,
���� � �kB disk blocks, � � ��� users, ����	 � ������ � � months, and
���������� � ���� years. As a consequence of the former parameters we
calculate � � ���� total blocks; hence, �����	�
� � ���� years. Finally, us-
ing the analysis described in [12] and reprinted in Appendix A, we solve for the
number of replicas and rate and compute that � � �� and � � ��

��
� �

�
satisfy

above constraints, respectively.
Applying these parameters to equations 2, 3, and 4 we produce the following

result

�����	

�������

� ��


���	


�����
� ��


���	


�����

� ��

These results show that a replicated system requires an order of magnitude more
bandwidth, storage, and disk seeks as an erasure encoded system of the same
size.

5.2 Fix Storage Overhead and Repair Epoch

The same formulas from subsection 5.1 above can be used to verify durability of
system calculations presented in [3, 12]. For example, using our simple failure
model presented in section 3 and parameters in section 5.1, we set repair time
of ����	 � ������ � four months, � � two replicas3, and rate � � ��

��
. Both the

replicated and erasure encoded systems have the same apparent storage over-
head of a factor of two. Using Appendix A, we compute the �����	�
� of a
block replicated onto two servers as 
� years and the �����	�
� of a block
using a rate �

�
code onto � � �� servers as ���� years! It is this difference that

highlights the advantage of erasure coding.

5.3 Fix MTTF and Storage Overhead

As a final comparison, we can fix the MTTF and storage overhead between a
replicated and erasure encoded system. This implies that the storage and band-
width for writes are equivalent for these two systems. In this case erasure en-
coded systems must be repaired less frequently, and hence, require less repair
bandwidth.

3 In section 5.1 � � �� to attain the same durability



For example, we can devise systems that have a �����	�
� � ��� years,
a factor four storage overhead, � � ���� blocks, and a ���������� � ����
years. The replicated system meets the above requirements using � � four
replicas and a repair epoch of ����	 � one month. The erasure encoded system
meets the same requirements using an � � ��

��
� �

�
code and a repair epoch of

������ � �� months. The replicated system uses �� times more bandwidth than
erasure encoded system for repair.

If, instead, the�����	�
� � ���� years,� � ���� blocks,���������� �
���� (as described in subsection 5.1), and still using a factor of four stor-
age overhead, the erasure encoded system meets the requirements using an
� � ��

��
� �

�
code and a repair epoch of ������ � �� months, but a replicated

system with � � � replicas would have to repair all blocks almost instantly and
continuously.

6 Discussion

The previous section presented the advantages of erasure codes, but there are
some caveats as well. Two issues that we would like tob highlight are the need
for intelligent buffering of data and the need for caching.

Each client in an erasure-resilient system sends messages to a larger number
of distinct servers than in a replicated system. Further, the erasure-resilient sys-
tem sends smaller “logical” blocks to servers than the replicated system. Both of
these issues could be considered enough of a liability to outweigh the results of
the last section. However, we do not view it this way. First, we assume that the
storage servers are utilized by a number of clients; this means that the additional
servers are simply spread over a larger client base. Second, we assume intelli-
gent buffering and message aggregation. Although the outgoing fragments are
“smaller”, we simply aggregate them together into larger messages and larger
disk blocks, thereby nullifying the consequences of fragment size. These as-
sumptions are implicit in our exploration via metrics of total bandwidth and
number of disk blocks in the previous section.

Another concern about erasure-resilient systems is that the time and server
overhead to perform a read has increased, since multiple servers must be con-
tacted to read a single block. The simplest answer to such a concern is that
mechanisms for durability should be separated from mechanisms for latency re-
duction. Consequently, we assume that erasure-resilient coding will be utilized
for durability, while replicas (i.e. caching) will be utilized for latency reduction.
The nice thing about this organization is that replicas utilized for caching are
soft-state and can be constructed and destroyed as necessary to meet the needs
of temporal locality. Further, prefetching can be used to reconstruct replicas



Archiver

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

����
����
����
����
����
����
����

����
����
����
����
����
����
����

Fragments

Fragments

Fragments

REPLICAS

REPLICAS

REPLICAS

Fragments

UPDATES

����
����
����
����
����
����
����

����
����
����
����
����
����
����

Fig. 1. Hybrid Update Architecture: Updates are sent to a central “Archiver”, which produces
archival fragments at the same time that it updates live replicas. Clients can achieve low-latency
read access by utilizing replicas directly.

from fragments in advance of their use. Such a hybrid architecture is illustrated
in Figure 1. This is similar to what is provided by OceanStore [8].

7 Future Work

We present some open research issues that affect both replicated and erasure
encoded systems alike.

Failure Independence: The most troubling assumption of the previous sections
are that failures are independent and identically distributed. This is not true
for all sets of storage servers. We list two possible techniques to address inde-
pendence. First, most routing overlay networks, such as CAN[11], Chord[13],
Pastry[7], and Tapestry[14], provide a location and routing infrastructure that
permits fragments to be distributed to geographically diverse locations, elimi-
nating a large class of correlations caused by natural disasters, denial of service
attacks, and administrative boundaries. Second, sophisticated measurement and
modeling techniques could be used to choose a set of nodes that are maximally
independent during fragment dissemination.



Efficient Repair: Action must be taken to maintain replicas (or fragments) de-
spite failure; otherwise, all replicas (or fragments) will be lost. The sweep and
repair is simplistic because it assumes that all data in the world is reconstructed
on some periodic basis. While this is not entirely implausible (every object is
independent and could be repaired in parallel), it does consume many resources.

8 Related Work

The idea of a global-scale, distributed, persistent storage infrastructure was first
motivated by Ross Anderson in his proposal for the Eternity Service[1]. To our
knowledge the tradeoffs between bandwidth, storage, and disk seeks when com-
paring a replicated system to an erasure coded system have not been discussed
in literature. A discussion of the durability gained from building a system from
erasure codes first appeared in Intermemory[3]. The authors describe how their
technique increases an object’s resilience to node failure, but the system does
not incorporate a repair mechanism that would also increase objects durability.
More recently, there has appeared a large body of work on the subject of wide-
scale, distributed storage. FreeHaven[6] is a system for anonymous publishing
that uses an information dispersal algorithm, in a manner analogous to erasure
codes.

Our discussion in Section 6 motivated the need for a hybrid system. OceanStore[8]
is a distributed storage system that uses the notion of promiscuous caching,
where replicas are soft-state and only for read benefit, while erasure codes are
used for durability.

Other systems with similar goals include PAST[7] and Farsite[2]. PAST is a
large-scale peer-to-peer storage utility. Farsite seeks to provide an organizational-
scale distributed file system comprised of cooperating, but not trusting, ma-
chines. Both rely on replication for durability and availability.

9 Conclusion

In this paper we have described the availability and durability gains provided
by an erasure-resilient system. We quantitatively compared systems based on
replication to systems based on erasure codes. We showed that the mean time
to failure (MTTF) of an erasure encoded system can be shown to be many or-
ders of magnitude higher than that of a replicated system with the same storage
overhead and repair period. A novel result of our analysis showed that erasure-
resilient codes use an order of magnitude less bandwidth and storage than repli-
cation for systems with similar MTTF. Finally, if care is taken to take advantage
of temporal and spatial locality erasure encoded systems can use an order of
magnitude less disk seeks than replicated systems.



References

1. ANDERSON, R. The eternity service. In Proceedings of Pragocrypt (1996).
2. BOLOSKY, W., DOUCEUR, J., ELY, D., AND THEIMER, M. Feasibility of a serverless

distributed file system deployed on an existing set of desktop PCs. In Proc. of Sigmetrics
(June 2000).

3. CHEN, Y., EDLER, J., GOLDBERG, A., GOTTLIEB, A., SOBTI, S., AND YIANILOS, P.
Prototype implementation of archival intermemory. In Proc. of IEEE ICDE (Feb. 1996),
pp. 485–495.

4. CLARK, I., SANDBERG, O., WILEY, B., AND HONG, T. Freenet: A distributed anonymous
information storage and retrieval system. In Proc. of the Workshop on Design Issues in
Anonymity and Unobservability (Berkeley, CA, July 2000), pp. 311–320.

5. DABEK, F., KAASHOEK, M. F., KARGER, D., MORRIS, R., AND STOICA, I. Wide-area
cooperative storage with CFS. In Proc. of ACM SOSP (October 2001).

6. DINGLEDINE, R., FREEDMAN, M., AND MOLNAR, D. The freehaven project: Distributed
anonymous storage service. In Proc. of the Workshop on Design Issues in Anonymity and
Unobservability (July 2000).

7. DRUSCHEL, P., AND ROWSTRON, A. Storage management and caching in PAST, a large-
scale, persistent peer-to-peer storage utility. In Proc. of ACM SOSP (2001).

8. KUBIATOWICZ, J., ET AL. Oceanstore: An architecture for global-scale persistent storage.
In Proc. of ASPLOS (Nov. 2000), ACM.

9. PATTERSON, D., GIBSON, G., AND KATZ, R. The case for raid: Redundant arrays of
inexpensive disks, May 1988.

10. PATTERSON, D., AND HENNESSY, J. Computer Architecture: A Quantitative Approach.
Forthcoming Edition.

11. RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND SCHENKER, S. A scalable
content-addressable network. In Proceedings of SIGCOMM (August 2001), ACM.

12. RHEA, S., WELLS, C., EATON, P., GEELS, D., ZHAO, B., WEATHERSPOON, H., AND

KUBIATOWICZ, J. Maintenance free global storage in oceanstore. In Proc. of IEEE Internet
Computing (2001), IEEE.

13. STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND BALAKRISHNAN, H.
Chord: A scalable peer-to-peer lookup service for internet applications. In Proceedings of
SIGCOMM (August 2001), ACM.

14. ZHAO, B., JOSEPH, A., AND KUBIATOWICZ, J. Tapestry: An infrastructure for fault-
tolerant wide-area location and routing. Tech. Rep. UCB//CSD-01-1141, University of Cal-
ifornia, Berkeley Computer Science Division, April 2001.

A Appendix: Durability Derivation

In this appendix we describe the mathematics involved in computing the mean
time to failure (MTTF) of a particular erasure encoded block.

Considering the server failure model and repair process as described in Sec-
tion 3, we can calculate the MTTF of a block as follows. First, we calculate
the probability that a given fragment placed on a randomly selected disk will
survive until the next epoch as

�
�� �

��
�

���
��

�

� � �

�
�� (5)



�
�

�

��
�

��
��
� � ���� (6)

where � is the length of an epoch, � is the average life of a disk, and ��
�� is
the probability distribution of disk lives. This equation is derived similarly to
the equation for the residual average lifetime of a randomly selected disk. The
term 	��

	
reflects the probability that, given a disk of lifetime �, a new fragment

will land on the disk early enough in its lifetime to survive until the next epoch.
The probability distribution ��
�� was obtained from disk failure distributions
in [10], augmented by the assumption that all disks still in service after five
years are discarded along with their data.

Next, given �
��, we can compute the probability that a block can be recon-
structed after a given epoch as

��
�� �
��

����

�
�

�

�
��
������� �
������ (7)

where � is the number of fragments per block and � is the rate of encoding. This
formula computes the probability that at least �� fragments are still available at
the end of the epoch.

Finally, the MTTF of a block for a given epoch size can be computed as

MTTF�	�
�
�� � � �
��
���

���� ��
������
���
� (8)

� � �
��
��

�� ��
��
� (9)

This last equation computes the average number of epochs a block is expected
to survive times the length of an epoch.


