
Naming and Integrity: Self-Verifying Data in Peer-to-Peer Systems

Hakim Weatherspoon, Chris Wells, and John D. Kubiatowicz
Computer Science Division

University of California, Berkeley
fhweather, kubitrong@cs.berkeley.edu

http://oceanstore.cs.berkeley.edu

Abstract
Peer-to-peer systems are positioned to take advantage of gains
in network bandwidth, storage capacity, and computational re-
sources to provide long-term durable storage infrastructures.
In this paper, we contribute a naming technique to allow an
erasure encoded document to be self-verified by the client or
any other component in the system.

1 Introduction
Today’s exponential growth in network bandwidth,

storage capacity, and computational resources has in-
spired a whole new class of distributed, peer-to-peer
storage infrastructures. Systems such as Farsite[3],
Freenet[5], Intermemory[4], OceanStore[8], CFS[6], and
PAST[7] seek to capitalize on the rapid growth of re-
sources to provide inexpensive, highly-available storage
without centralized servers. The designers of these sys-
tems propose to achieve high availability and long-term
durability, in the face of individual component failures,
through replication and coding techniques.

Although wide-scale replication has the potential to
increase availability and durability, it introduces two im-
portant challenges to system architects. First, system ar-
chitects must increase the number of replicas to achieve
high durability for large systems. Second, the increase
in the number of replicas increases the bandwidth and
storage requirements of the system. Erasure Coding
vs. Replication[15] showed that systems that employ
erasure-resilient codes[2] have mean time to failures
many orders of magnitude higher than replicated sys-
tems with similar storage and bandwidth requirements.
More importantly, erasure-resilient systems use an order
of magnitude less bandwidth and storage to provide sim-
ilar system durability as replicated systems.

This paper makes the following contributions: First,
we discuss some problems with data integrity associated
with erasure codes. Second, we contribute a naming
technique to allow an erasure encoded document to be
self-verified by the client.

2 Background
Two common methods used to achieve high data dura-

bility are replication[3, 7] and parity schemes such as
RAID[11]. The former imposes high bandwidth and
storage overhead, while the latter fails to provide suffi-
cient robustness for the high rate of failures expected in
the wide area.

An erasure code provides redundancy without the
overhead of strict replication. Erasure codes divide an
object intom fragments and recode them inton frag-
ments, wheren > m. We call r =

m

n
< 1 the rate

of encoding. A rater code increases the storage cost by
a factor of 1

r
. The key property of erasure codes is that

the original object can be reconstructed fromanym frag-
ments. For example, using ar = 1

4
encoding on a block

divides the block intom = 16 fragments and encodes the
originalm fragments inton = 64 fragments; increasing
the storage cost by a factor offour. Erasure codes are a
superset of replicated and RAID systems. For example,
a system that creates four replicas for each block can be
described by an (m = 1, n = 4) erasure code. RAID
level 5 can be described by (m = 4, n = 5).

Identifying Erasures: When reconstructing informa-
tion from fragments, we must discard failed or corrupted
fragments (callederasures). In traditional applications,
such as RAID storage servers, failed fragments are iden-
tified by failed devices or uncorrectable read errors. In
a malicious environment, however, we must be able to
prevent adversaries from presenting corrupted blocks as
valid. This suggests cryptographic techniques to permit
the verification of data fragments; assuming that such a
scheme exists, we can utilize any anym correctly veri-
fied fragments to reconstruct a block of data. In the best
case, we could start by requestingm fragments, then in-
crementally requesting more as necessary. Without the
ability to identify corrupted fragments directly, we could
still request fragments incrementally, but might be forced
to try a factorial combination of all returned fragments to
find a set ofm that reconstructs our data; that is,

�
n

m

�

combinations.

1



Hd H1 H2 H3 H4

Data

H12 H34

Encoded Fragments
F1 F2 F3 F4

H14

GUID

(a)

H4 H12 Hd

H1 H34 Hd

H34 HdH2

H3 H12 Hd

Fragment 1:

Fragment 2:

Fragment 3:

Fragment 4: F4−fragment data

F3−fragment data

F2−fragment data

F1−fragment data

Data: H14 data

(b)

Figure 1: A Verification Tree: is a hierarchical hash over the
fragments and data of a block. The top-most hash is the block’s
GUID. (b) Verification Fragments: hashes required to verify
the integrity of a particular fragment.

Naming and Verification: A dual issue is the naming of
data and fragments. Within a trusted LAN storage sys-
tem, local identifiers consisting of tuples of server, track,
and block ID can be used to uniquely identify data to
an underlying system. In fact, the inode structure of a
typical UNIX file system relies on such data identifica-
tion techniques. In a distributed and untrusted system,
however, some other technique must be used to identify
blocks for retrieval and verify that the correct blocks have
been returned. In this paper, we will argue that a secure
hashing scheme can serve the dual purpose of identifying
and verifying both data and fragments. We will illustrate
how data in both its fragmented and reconstructed forms
can be identified with the same secure hash value.

3 The Integrity Scheme
In this section, we show how a cryptographically-

secure hash, such SHA-1[10], can be used to generate
a single, verifiable name for a piece of data and all of
its encoded fragments. We may utilize this name as a
query to location services or remote servers, then verify
that we have received the proper information simply by
recomputing the name from the returned information.

Verification Tree: For each encoded block, we create a
binary verification tree[9] over its fragments and data as
shown in Figure 1a. The scheme works as follows: We
produce a hash over each fragment, concatenate the cor-
responding hash with a sibling hash and hashing again to
produce a higher level hash, etc.. We continue until we
reach a topmost hash (H14 in the figure). This hash is
concatenated with a hash of the data, then hashed one fi-
nal time to produce a globally-unique identifier (GUID).

The GUID is a permanent pointer that serves the dual
purpose of identifying and verifying a block. Figure 1b
shows the contents of each verification fragment. We
store with each fragment all of the sibling hashes to the
topmost hash, a total of (logn) + 1 hashes, where n is
the number of fragments.

Verification: On receiving a fragment for re-coalescing
(i.e. reconstructing a block), a client verifies the frag-
ment by hashing over the data of the fragment, concate-
nating that hash with the sibling hash stored in the frag-
ment, hashing over the concatenation, and continuing
this algorithm to compute a topmost hash. If the final
hash matches the GUID for the block, then the fragment
has been verified; otherwise, the fragment is corrupt and
should be discarded. Should the infrastructure return a
complete data block instead of fragments (say, from a
cache), we can verify this by concatenating the hash of
the data with the top hash of the fragment hash tree (hash
H14 in Figure 1) to get the GUID. As a result, data sup-
plemented with hashes as above may be considered self-
verifying.

More Complex Objects: We can create more complex
objects by constructing hierarchies, i.e. placing GUIDs
into blocks and encoding them. The resulting structure
is a tree of blocks, with original data at the leaves. The
GUID of the topmost block serves much the same pur-
pose as an inode in a file system, and is a verifiable name
for the whole complex. We verify an individual data
block (a leaf) by verifying all of the blocks on the path
from the root to the leaf. Although composed of many
blocks, such a complex is immune to substitution attacks
because the integrity and position of each block can be
checked by verifying hashes. Complex objects can serve
in a variety of rolls, such as documents, directories, logs,
etc.

4 Discussion
Self-verifying data adds an interesting property to

large-scale distributed storage infrastructures targeted
for the untrusted wide area. Specifically, self-verifying
data enhances location-independent routing infrastruc-
tures (such as, CAN[12], Chord[13], Pastry[7], and
Tapestry[16]) by cryptographically binding the name of
objects to their content. Consequently, any node that has
a cached copy of an object or piece of an object can re-
turn it on a query; the receiving node does not have to
trust the responder, merely check that the returned data
is correct.

In the following paragraphs, we explore additional is-
sues with erasure-coding data as we have advocated here:

Human-Readable Name Resolution: Up to this point
in the document, we have used the word “name” and

2



“GUID” interchangeably. Of course, what people typ-
ically call a “name” is somewhat different: a human-
readable ASCII string. ASCII names can be accommo-
dated easily by constructing objects that serve as directo-
ries or indexes. These objects can map human readable
names into GUIDs. By constructing a hierarchy of direc-
tory objects, we easily recover a hierarchical name-space
such as present in most file systems. The GUID of a
top-level directory becomes the root inode, with all self-
verifying objects available along a path from this root.

Mutable Data: One obvious issue with the scheme pre-
sented in this paper is that data is fundamentally read-
only, since we compute the name of an object from
its contents; if the contents change, then the name will
change, or alternatively, a new object is formed. This
latter viewpoint is essentially versioning [14], namely
the idea that every change creates a new and indepen-
dent version1. As a result, any use of this verification
scheme for writable data must be supplemented with
some technique to associate a fixed name with a changing
set of version GUIDs. Unfortunately, this binding can no
longer be verified via hashing, but must instead involve
other cryptographic techniques such as signatures. This
is the approach taken in OceanStore [8].

Encoding Overhead: Each client in an erasure-resilient
system sends messages to a larger number of distinct
servers than in a replicated system. Further, the erasure-
resilient system sends smaller “ logical” blocks to servers
than the replicated system. Both of these issues could
be considered enough of a liability to outweigh the re-
sults of the last section. However, we do not view it
this way. First, we assume that the storage servers are
utilized by a number of clients; this means that the ad-
ditional servers are simply spread over a larger client
base. Second, we assume intelligent buffering and mes-
sage aggregation; that is, temporarily storying fragments
in memory and writing them to disk in clusters. Although
the outgoing fragments are “smaller” , we simply aggre-
gate them together into larger messages and larger disk
blocks, thereby nullifying the consequences of fragment
size. These assumptions are implicit in the exploration
via metrics of total bandwidth and number of disk blocks
in [15].

Retrieval Latency: Another concern about erasure-
resilient systems is that the time and server overhead to
perform a read has increased, since multiple servers must
be contacted to read a single block. The simplest an-
swer to such a concern is that mechanisms for durabil-
ity should be separated from mechanisms for latency re-
duction. Consequently, we assume that erasure-resilient
coding will be utilized for durability, while replicas (i.e.

1Whether all past versions are kept around is an orthogonal issue.

Archiver

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

Fragments

Fragments

Fragments

REPLICAS

REPLICAS

REPLICAS

Fragments

UPDATES

����
����
����
����
����
����
����

����
����
����
����
����
����
����

Figure 2: Hybrid Update Architecture: Updates are sent to a
central “Archiver”, which produces archival fragments at the
same time that it updates live replicas. Clients can achieve
low-latency read access by utilizing replicas directly.

caching) will be utilized for latency reduction. The nice
thing about this organization is that replicas utilized for
caching are soft-state and can be constructed and de-
stroyed as necessary to meet the needs of temporal lo-
cality. Further, prefetching can be used to reconstruct
replicas from fragments in advance of their use. Such
a hybrid architecture is illustrated in Figure 2. This is
similar to what is provided by OceanStore [8].

5 Related and Future Directions
In this paper, we described the availability and durabil-

ity gains provided by an erasure-resilient system. More
importantly, we contributed a naming technique to allow
an erasure encoded document to be self-verified.

The idea of a global-scale, distributed, persistent stor-
age infrastructure was first motivated by Ross Anderson
in his proposal for the Eternity Service[1]. A discussion
of the durability gained from building a system from era-
sure codes first appeared in Intermemory[4]. The authors
describe how their technique increases an object’s re-
silience to node failure, but the system does not incorpo-
rate a checksum technique since the target environment
is trusted.

Some open research issues deal with data structures
for documents that take advantage of the peer-to-peer
networks and self-verifying data. That is, replicating
the document as whole, sequence of bytes, higher level
structure, such as a B-tree, etc. Another issue with Peer-
to-peer storage infrastructures is that they will fail if no

3



repair mechanisms are in place. Self-verifying docu-
ments lend themselves well to distributed repair tech-
niques. That is, the integrity of a replica or fragment
can be checked locally or in a distributed fashion.

References
[1] ANDERSON, R. The eternity service. In Proceedings of

Pragocrypt (1996).

[2] BLOEMER, J., KALFANE, M., KARPINSKI, M., KARP, R.,
LUBY, M., AND ZUCKERMAN, D. An XOR-based erasure-
resilient coding scheme. Tech. Rep. TR-95-048, The Interna-
tional Computer Science Institute, Berkeley, CA, 1995.

[3] BOLOSKY, W., DOUCEUR, J., ELY, D., AND THEIMER, M.
Feasibility of a serverless distributed file system deployed on an
existing set of desktop PCs. In Proc. of Sigmetrics (June 2000).

[4] CHEN, Y., EDLER, J., GOLDBERG, A., GOTTLIEB, A., SOBTI,
S., AND YIANILOS, P. Prototype implementation of archival
intermemory. In Proc. of IEEE ICDE (Feb. 1996), pp. 485–495.

[5] CLARK, I., SANDBERG, O., WILEY, B., AND HONG, T.
Freenet: A distributed anonymous information storage and re-
trieval system. In Proc. of the Workshop on Design Issues
in Anonymity and Unobservability (Berkeley, CA, July 2000),
pp. 311–320.

[6] DABEK, F., KAASHOEK, M. F., KARGER, D., MORRIS, R.,
AND STOICA, I. Wide-area cooperative storage with CFS. In
Proc. of ACM SOSP (October 2001).

[7] DRUSCHEL, P., AND ROWSTRON, A. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer storage
utility. In Proc. of ACM SOSP (2001).

[8] KUBIATOWICZ, J., ET AL. Oceanstore: An architecture for
global-scale persistent storage. In Proc. of ASPLOS (Nov. 2000),
ACM.

[9] MERKLE, R. A digital signature based on a conventional encryp-
tion function. In Proc. of CRYPTO (1988), C. Pomerance, Ed.,
Springer-Verlag, pp. 369–378.

[10] NIST. FIPS 186 digital signature standard. May 1994.

[11] PATTERSON, D., GIBSON, G., AND KATZ, R. The case for raid:
Redundant arrays of inexpensive disks, May 1988.

[12] RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND

SCHENKER, S. A scalable content-addressable network. In Pro-
ceedings of SIGCOMM (August 2001), ACM.

[13] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F.,
AND BALAKRISHNAN, H. Chord: A scalable peer-to-peer
lookup service for internet applications. In Proceedings of SIG-
COMM (August 2001), ACM.

[14] STONEBRAKER, M. The design of the Postgres storage system.
In Proc. of Intl. Conf. on VLDB (Sept. 1987).

[15] WEATHERSPOON, H., AND KUBIATOWICZ, J. Erasure coding
vs. replication: A quantitative comparison. In Proc. of Interna-
tional Workshop on Peer-to-Peer Systems (2002).

[16] ZHAO, B., JOSEPH, A., AND KUBIATOWICZ, J. Tapestry: An
infrastructure for fault-tolerant wide-area location and routing.
Tech. Rep. UCB//CSD-01-1141, University of California, Berke-
ley Computer Science Division, April 2001.

4


