
NetSlices: Scalable Multi-Core Packet Processing in
User-Space

Tudor Marian
∗

Google
Ki Suh Lee

Cornell University
Hakim Weatherspoon

Cornell University

ABSTRACT
Modern commodity operating systems do not provide developers
with user-space abstractions for building high-speed packet pro-
cessing applications. The conventional raw socket is inefficient
and unable to take advantage of the emerging hardware, like multi-
core processors and multi-queue network adapters. In this paper
we present the NetSlice operating system abstraction. Unlike the
conventional raw socket, NetSlice tightly couples the hardware and
software packet processing resources, and provides the application
with control over these resources. To reduce shared resource con-
tention, NetSlice performs domain specific, coarse-grained, spa-
tial partitioning of CPU cores, memory, and NICs. Moreover,
it provides a streamlined communication channel between NICs
and user-space. Although backward compatible with the conven-
tional socket API, the NetSlice API also provides batched (multi-)
send / receive operations to amortize the cost of protection domain
crossings. We show that complex user-space packet processors—
like a protocol accelerator and an IPsec gateway—built from com-
modity components can scale linearly with the number of cores and
operate at 10Gbps network line speeds.

Categories and Subject Descriptors
C.2.6 [Computer-Communication Networks]: Internetwork-
ing; D.4.4 [Operating Systems]: Communications Management;
D.4.7 [Operating Systems]: Organization and Design; D.4.8
[Operating Systems]: Performance

Keywords
Software routers, software packet processors, software router per-
formance, operating systems support

1. INTRODUCTION
Extensible and programmable router support is becoming more

important within today’s experimental networks [1,2,6,40,51]. In-
deed, general purpose packet processors enable the rapid prototyp-

∗Work performed while at Cornell University

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ANCS’12, October 29–30, 2012, Austin, Texas, USA.
Copyright 2012 ACM 978-1-4503-1685-9/12/10 ...$15.00.

ing, testing, and validation of novel protocols. For example, Open-
Flow [47] evolved quickly into a mature specification, and was able
to do so by leveraging highly extensible NetFPGA [44] forwarding
elements. Moreover, the OpenFlow specification is currently being
incorporated into silicon fabric by enterprise grade router manu-
facturers. Such extensible router support seamlessly enables the de-
ployment of functionality that is currently implemented by network
providers through special purpose network middleboxes, like pro-
tocol accelerators and performance enhancement proxies [4, 7, 8].

Traditionally, the tradeoff between specialized hardware packet
processors and software packet processors running on general pur-
pose commodity hardware has been, and remains still, one of high
performance versus ease of programmability. The currency for
packet processors is performance. More recently, several signif-
icant efforts strived to render networking hardware more extensi-
ble [3, 10, 44]. Conversely, software routers have successfully har-
nessed the raw horsepower of modern hardware to achieve consid-
erably high data rates [27, 40, 45]. However, for the sake of perfor-
mance, such software routers were devised to run within the kernel,
at a low level immediately on top of the hardware.

Writing a packet processor on domain specific, albeit extensible,
hardware is hard since the developer needs to be aware of low level
issues, intricacies, and limitations. We argue that building packet
processors in the kernel, even when taking advantage of elegant
frameworks such as Click [41], is equally difficult. In particular, the
developer does not simply learn a new “programming paradigm.”
She needs to be aware of the idiosyncrasies of the memory alloca-
tor (e.g. small virtual address spaces, the limit on physically con-
tiguous memory chunks, the inability to swap out pages), under-
stand various execution contexts and their preemptive precedence
(e.g. interrupt context, bottom half, task / user context), understand
synchronization primitives and how they are intimately intertwined
with the execution contexts (e.g. when an execution context is not
allowed to block), deal with the lack of standard development tools
like debuggers, and handle the lack of fault isolation. A bug in
a conventional monolithic kernel brings the system into an incon-
sistent state and is typically lethal—leading at best to a crash, or
worse, may corrupt data on persistent storage or cause permanent
hardware component failure.

Although user-space packet processing applications could ease
the development burden and provide fault isolation, the premium
on performance has rendered such an option largely invalid for all
but modest data rates. Packet processors running in user-space on
modern operating systems (OSes) are rarely able to saturate mod-
ern networks [24,27,48], given that 10 Gigabit Ethernet (GbE) Net-
work Interface Controllers (NICs) are currently a commodity. Yet
the opportunity to achieve both performance, fault isolation, and
programmability rests in taking advantage of multi-core processors

and multi-queue NICs. However, to scale linearly with the number
of cores, contention must be kept to a minimum. Conventional wis-
dom, and Amdahl’s law [13,39], states that when adding processors
to a system the benefit grows at most linearly while the costs (cache
coherency, memory / bus contention, serialization) grow quadrat-
ically. Unfortunately, operating systems fail to provide general-
purpose abstractions for packet processing in user-space that take
advantage of modern hardware transparently. For example, packet
processors built with the raw socket—the de-facto packet process-
ing mechanism—are unable to sustain high rates.

In this paper we report on the design and implementation of
NetSlice—a new operating system abstraction that enables linear
performance scaling with the number of cores while processing
packets in user-space. We achieves this through an efficient raw
communication channel akin to the raw socket, that leverages mod-
ern hardware. NetSlice performs spatial partitioning (i.e. exclusive
assignment instead of time sharing) of the CPU cores, memory, and
multi-queue NIC resources at coarse granularity, to aggressively re-
duce overall memory and interconnect contention.

NetSlice provides high performance and multi-core scalability.
It tightly couples the hardware and software resources involved in
packet processing. The spatial partitioning effectively offers the
illusion of a battery of independent, isolated SMP machines work-
ing in parallel with little contention. At the same time, each indi-
vidual NetSlice partition is designed to provide a fast, lightweight,
streamlined path for packets between the NICs and the user-space
raw endpoint. Moreover, the NetSlice application programming
interface (API) exposes fine-grained control over the hardware re-
sources, and provides efficient batched send / receive operations.

NetSlice is practical; it works out-of-the-box with vanilla Linux
kernels running stock NIC device drivers (simply build and load
NetSlice at runtime), achieving high-performance without requir-
ing any invasive patches (e.g. it requires no new system-calls or
modified zero-copy drivers). Unlike NetTap [17] and the more re-
cent netmap [55], NetSlice does not rely on zero-copy techniques,
though it could benefit from them; consequently, NetSlice is able
to trivially enforce strict address space isolation, as well as provide
seamless portability and usability. NetSlice is self-contained, as
portable as any device driver, and easy to deploy, requiring only a
simple kernel extension that can be loaded at runtime.

We show that complex user-space packet processors built
with NetSlice—a protocol accelerator and an IPsec gateway—
closely match the performance of state-of-the art in-kernel Route-
Bricks [27] variants. Moreover, NetSlice packet processors scale
linearly with the number of cores and operate at nominal 10Gbps
network line speeds, vastly exceeding alternative user-space im-
plementations that rely on the conventional raw socket. NetSlice
is fundamentally different than high-speed in-kernel variants like
RouteBricks since the latter does not provide fault isolation. Fur-
ther, RouteBricks does not enable high-speed packet processing in
user-space any more than the conventional raw socket does.

The contributions of this paper are as follows:

• We argue that the conventional abstractions (e.g. the raw
socket) are ill-suited for packet processing applications.

• We propose NetSlice—a new operating system abstraction
for developing packet processors in user-space that can lever-
age modern hardware.

• We show that the throughput of NetSlice applications scales
linearly with the number of cores, closely following the per-
formance of state-of-the-art, in-kernel variants. NetSlice also
provides fault isolation.

• NetSlice requires only a simple kernel extension which can
be loaded at runtime, providing hardware independent drop-
in replacement for conventional raw sockets.

The rest of the paper is structured as follows. Section 2 expands
on the motivation behind user-mode packet processors. Section 3
details the NetSlice design and implementation while Section 4
presents our evaluation. Section 5 contains the related work and
Section 6 concludes.

2. RAW SOCKETS AND MANY CORES:
WHERE HAVE ALL MY CYCLES
GONE?

The new reality is that software packet processors must scale
with the number of cores (e.g. routing throughput should increase
as the number of cores increase). This is true even for user-space
packet processors. Currently, packet processors and packet capture
libraries rely on the raw socket (PF_PACKET and SOCK_RAW) and
BSD Packet Filter [46] (BPF/LSF). Unfortunately, these abstrac-
tions were designed when the ratio between single CPU perfor-
mance (expressed in cycles/MIPS/MFLOPS) and network speed
remained the same over time. By shifting the focus from single
CPU scaling to placing many cores on the same silicon chip, the
semiconductor industry has ushered in a new world in which fast
networks are driven in unison by many slow cores. For example,
modern 10 Gbps commodity network adaptors are commonplace,
and while the number of cores per chip has been steadily increas-
ing, single core performance has been stagnant for years.

The raw socket and other sister operating systems abstractions
for packet processing in user-space are overly general, and in need
of an overhaul. The issues stem from the fact that the entire network
stack handles the raw socket in the same fashion it handles a regular
endpoint (e.g. TCP or UDP) socket—essentially taking the least
common denominator between the two. However, unlike TCP or
UDP sockets, a raw socket is different in that it manipulates the
entire traffic seen by the host. Given today’s network capabilities
and the relatively slow cores, such traffic is sufficient to overwhelm
a host that uses raw sockets. We argue that applications are unable
to take advantage of modern hardware since:

1. The raw socket abstraction is too general and provides the
user-mode application with no control over the physical re-
sources involved in packet reception and transmission.

2. Although simple and common to all types of sockets, the
socket API is largely inefficient.

3. The conventional network stack is loosely coupled. In par-
ticular, the hardware and software resources that are involved
in packet processing are loosely coupled, which results in in-
creased contention.

4. Likewise, the conventional network stack was built for the
general, most common case. As a result, the path taken by a
packet between the NIC and the user-space raw endpoint is
unnecessarily expensive.

Engler et al. [30] have similarly argued for an “end-to-end” ap-
proach against the high cost introduced by high-level abstractions.
A fixed set of high level abstractions has been known to i) hurt ap-
plication performance, ii) hide information from applications, and
iii) limit the functionality of applications. The conventional (raw)
socket is such an example: it offers a single, arguably ossified, API
which abstracts away the path taken by a packet between the NIC

and the application, thus providing no control over the hardware
resources utilized, which is why applications fail to perform.

In what follows, we will expand on the four above claims. First,
the socket API does not provide tight control over the physical re-
sources involved in packet processing. For example, the user-mode
application has no control over the path taken by a packet between
some NICs queue and the raw endpoint. Second, although provid-
ing a simplified interface, the socket API is largely inefficient. For
example, it requires a system call for every packet send / receive
operation (the asynchronous I/O interface is currently only used
for file operations, since it does not support ordering—equally im-
portant for both TCP send/receive and UDP send operations).

Third, the network stack is loosely coupled. For example, the
raw socket endpoint is loosely coupled with the network stack by
virtue of the user-mode task it belongs to. Since processing is per-
formed in a separate protection domain, an additional cost is in-
curred due to packet copies between address spaces, cache pol-
lution, context switches, and scheduling overheads. The cost de-
pends on the CPU affinity of the user-mode task relative to the cor-
responding in-kernel network stack that processed the packets in
the first place. In general, there are several choices where the user-
mode task may run with respect to the in-kernel network stack:

• Same-core: in lockstep on the same CPU with the in-kernel
network stack;

• Hyperthread: concurrently on a peer hyperthread of the
CPU that runs the in-kernel network stack;

• Same-chip: concurrently on a CPU that shares the Last
Level Cache (LLC), e.g. L3 for Nehalem;

• Different-chip: concurrently on a CPU that belongs to a dif-
ferent packaging socket / silicon die.

The first option, i.e. same-core, is ideal in terms of cache per-
formance, however one has to consider the cost of frequent context
switches and the impedance mismatch between the in-kernel net-
work stack running in softirq context (a type of bottom half), at
a strictly higher priority than user-mode tasks, and the user-mode
task. If the user-mode task is not allocated sufficient CPU cycles to
clear the socket buffers in a timely fashion, packets will be dropped.

If hyperthreads are available, the second option may be ideal.
However, hyperthreads need to be simultaneous—the CPU can
fetch instructions from multiple threads in a single cycle. Hyper-
threads are not ideal if they work on separate data (i.e. at different
physical locations in memory), since they would split all shared
cache levels into half. However, if hyperthreads work on shared
data, like the packets passed between a user-mode task and the in-
kernel network stack, then this scenario has the potential of also
reducing cache misses beyond the LLC. Alternatively, two CPUs
may only share the LLC—the third option—and still reduce the
number of cache misses. The final option is sub-optimal, since ev-
ery packet would induce an additional LLC cache miss.

However, the kernel scheduler defaults to dynamically selecting
on which CPU to run the user-mode task, constantly re-evaluating
its past decision, and potentially migrating the task onto a differ-
ent CPU. Although the user-space application is able to choose a
CPU affinity to request on which CPUs to run, the socket interface
provides no insight into what the placement should be. The traf-
fic may have been handled by the in-kernel network stack on any
of the available CPUs. Worse, the raw socket was designed to re-
ceive traffic from all queues of every NIC, traffic that is handled by
all (interrupt receiving) CPUs, thus increasing the cross-core con-
tention overhead (e.g. cache coherency, cache pollution).

Fourth, and final, the in-kernel network stack is overly general,
bulky, and unnecessarily expensive. To illustrate this, consider a
user-space application processing the entire traffic by means of raw
sockets. For the system depicted in Figure 1(a), in order to utilize
the available CPU cores, boilerplate solutions either use several raw
sockets in parallel, one per process / thread, or a single raw socket
and load balance traffic to several worker threads.

If several raw sockets are used in parallel, each received packet is
processed by protocol handlers as many times as there are raw sock-
ets, and a copy of the packet is delivered to each of the raw sockets.
Moreover, the original packet is also passed to the default in-kernel
IP layer. To implement a packet processor in user-space, an addi-
tional firewall rule is needed that instructs the kernel to needlessly
drop the packet. Berkeley Packet Filters (BPF) can be installed on
each raw socket in an attempt to disjointly split the traffic, however:

• BPF filters are expensive, and they scale poorly with an in-
crease in the number of sockets [62].

• Writing non-overlapping filters for all possible traffic pat-
terns is hard at best, and requires a priori knowledge of traf-
fic characteristics, not to mention the complexity of handling
traffic imbalances. Filters may be installed at runtime, by re-
acting to the traffic patterns, however, installing filters on the
fly at rates around 10Gbps is not feasible [61].

• Without understanding the NICs opaque hash function that
classifies flows to queues we are unable to predict the CPU
that will be executing the kernel network stack, hence fil-
ters may exacerbate interference (e.g. cache misses). Such
predictions are only possible if the interrupts from queues
are issued in a deterministic fashion, and if the classification
function is itself deterministic. The issue is further aggra-
vated by using NICs from different vendors, which imple-
ment different classification functions. For example, the Intel
82598/82599 NICs do not map flows to queues determinis-
tically unless Flow Director is enabled, yet Flow Director is
not supported by the 82598 NIC; Myricom 10GbE NICs use
a different, albeit deterministic, hash function that is config-
urable to some degree.

Alternatively, a single raw socket may be used to load balance
and quickly dispatch traffic to several worker threads. In this sce-
nario, there are two potential contention spots. First, between the
in-kernel network stacks running on all (interrupt receiving) CPUs
and the dispatch task, and second, between the dispatch task and
the worker threads (we evaluate this scenario in Section 4).

3. NetSlice
We argue that user-mode processes need complete control over

the entire path taken by packets, all the way from the NICs to the
applications and back. NetSlice relies on a four pronged approach
to provide an efficient OS abstraction for packet processing in user-
space. First, NetSlice spatially partitions the hardware resources
at coarse granularity to reduce interference / contention. Second,
the NetSlice API provides the application with fine-grained control
over the hardware resources. Third, NetSlice provides a stream-
lined path for packets between the NICs and user-space. Fourth,
NetSlice exports an efficient API.

The core of the NetSlice design consists of spatial partitioning of
the hardware resources involved in packet processing. In particu-
lar, we provide an array of independent packet processing execution
contexts that “slice” the network traffic to exploit parallelism and
minimize contention. We call such an execution context a NetSlice.

L3 cache

I/O Hub
PCIe

CPU

0,8

CPU

2,10

CPU

4,12

CPU

6,14

NIC 0
PCIe

NIC N

L3 cache

CPU

1,9

CPU

3,11

CPU

5,13

CPU

7,15

socket-IO link
integrated memory

controller

Memory

inter-socket

link

Mem Bus

Memory

Hyper-threads

tx/rx queues (0-8) tx/rx queues (0-8)

(a)

CPU

0

tx/rx

Queue 0

Implicit Processors NIC 0 NIC N

NetSlice 0

NetSlice i

NetSlice 7

tx/rx

Queue i

tx/rx

Queue 7

tx/rx

Queue 0

tx/rx

Queue i

tx/rx

Queue 7

CPU

i

CPU

7

CPU

8

CPU

i+8

CPU

15

...

...

CPU

1

tx/rx

Queue 1
NetSlice 1

tx/rx

Queue 1

CPU

9

...

...

...

...

...

RAM,

PCIe

RAM,

PCIe

RAM,

PCIe

RAM,

PCIe

(b)

Figure 1: Nehalem cores and cache layout (a) and corresponding NetSlice spatial partitioning example (b).

Each NetSlice tightly couples all software and hardware compo-
nents like NICs and CPUs—executing the in-kernel network stack
and the user-mode task tightly coupled with each-other.

As network speeds have continued to increase and vendors have
switched focus from individual CPU performance scaling to in-
creasing the number of cores per chip, a single core handling traffic
at line rate from a single network interface has few, if any, cycles
to spare. Modern NICs attempt to address the issue by support-
ing in hardware multiple transmit (tx)/receive (rx) queues that can
be handled in parallel by different cores. A NetSlice packet pro-
cessing execution context consists of one such tx and one rx queue
per attached NIC, and two (or more) tandem CPUs. Importantly, a
tx/rx NIC queue belongs to a single context, hence each NetSlice
context can perform any interface-to-interface forwarding indepen-
dently. While the NIC queues and CPU cores are resources explic-
itly partitioned by NetSlice, each execution context also consists of
implicit resources, like a share of the physical memory, PCIe bus
bandwidth, etc. The tandem CPUs share at the very least the LLC;
NetSlice defaults to using hyperthreads if available. NetSlice auto-
matically binds the tx/rx queues of each context to issue interrupts
exclusively to one of the peer CPUs in the context—we call this the
k-peer CPU; we call the other CPU(s) the u-peer CPU(s). The in-
kernel (NetSlice) network stack executes on the k-peer CPU, while
the user-mode (NetSlice) task runs simultaneously on the u-peer
CPU. A NetSlice may have more than two CPUs: several threads
execute in user-mode to balance the processing load between user-
and kernel-space.

There are as many NetSlices as there are CPU tandems. For our
experimental setup depicted in Figure 1(a), NetSlice partitions re-
sources as depicted in Figure 1(b). Every NIC is configured with
eight tx/rx queues, associating the ith tx/rx queue of every NIC (e.g.
NICs 0 and 1 in Figure 1(a)) with tandem pairs consisting of CPUs
i (k-peer) and i+ 8 (u-peer). Each NIC issues interrupts signal-
ing events pertaining to the ith queue to the ith CPU exclusively.
Through this technique, no two k-peer CPUs will handle packets
on the same NIC queue, thus eliminating the costs of contention
like locking, cache coherency, and cache misses. This scheme that
binds NIC queues to CPUs was previously evaluated for 1Gbps
NICs [18] and is the keystone to RouteBricks’ individual forward-
ing element scaling. (RouteBricks relies on Click [41] which uses a
polling driver—the same functionality provided by the “New API”
(NAPI) [56] hybrid polling in conjunction with NIC device inter-
rupt coalescence.)

NetSlice exposes fine-grained control over the hardware re-
sources of the entire packet processing execution context to the
user-mode application. For example, it provides control over which

CPU the in-kernel (NetSlice) network stack is executing with re-
spect to the user-mode application to take advantage of the phys-
ical cache layout. The added control is key to minimizing inter-
CPU contention in general, and cache misses and cache coherency
penalties in particular.

Importantly, the path a packet takes through each NetSlice ex-
ecution context is streamlined, bypassing the default, bulky, in-
kernel general purpose network stack. NetSlice hijacks the packets
at an early stage subsequent to DMA reception and before it would
have been handed off to the network stack. Next it performs min-
imal processing while in kernel context executing on the k-peer
CPU, and then passes the packets to the user-space application to
be processed in overlapped (pipelined) fashion, on the u-peer CPU.
Notably, on an entire NetSlice path there is a single spinlock being
used per send / receive direction. The spinlock is specialized for
synchronization between the communicating execution contexts,
namely between a bottom half and a task context.

While the NetSlice API provides tight control over physical re-
sources, it also supersedes and extends the socket API while main-
taining a level of backwards compatibility. In addition to single-
packet send and receive system calls, the NetSlice API also sup-
ports batched operations to amortize the cost associated with pro-
tection domain crossings. Similarly, the Linux kernel has recently
begun to provide support for receiving and sending multiple mes-
sages on a socket through two new system calls (recvmmsg and
sendmmsg).

3.1 NetSlice Implementation and API
The raw NetSlice API extends the device-file interface and lever-

ages the flexibility of the ioctl mechanism. User-mode libraries
may use it to create a more elegant API, in the same fashion the
Packet CAPture (pcap) library [9] is layered on top of the raw
socket. These user-mode applications perform conventional file op-
erations using the familiar API (read/write/poll) over each
slice, which map to corresponding operations over the per-NetSlice
data flows. For example, a conventional read operation will re-
turn the next available packet, block if no packet is available, or
return -EAGAIN if there are no packets available and the device
was opened with the O_NONBLOCK flag set. We implemented the
NetSlice abstraction as a set of character devices with the same ma-
jor number and N minor numbers—one minor number for each of
the N slices. By overloading the device-file interface we gained
portability since NetSlice could reside in a kernel runtime loadable
module, whereas new system calls cannot.

The ioctl mechanism was sufficient to provide the NetSlice
additional control and API extensions. Consider, for example, the
NETSLICE_CPUMASK_GET ioctl request—it returns the affin-

1: #include "netslice.h"
2:
3: struct netslice_iov {
4: void *iov_base;
5: size_t iov_len; /* capacity */
6: size_t iov_rlen;/* returned length */
7: int flags; /* selective per-packet operations */
8: } iov[IOVS];
9:
10: struct netslice_rw_multi {
11: int flags;
12: } rw_multi;
13:
14: struct netslice_cpu_mask {
15: cpu_set_t k_peer, u_peer;
16: } mask;
17:
18: fd = open("/dev/netslice-1", O_RDWR);
19:
20: rw_multi.flags = MULTI_READ | MULTI_WRITE;
21: ioctl(fd, NETSLICE_RW_MULTI_SET, &rw_multi);
22: ioctl(fd, NETSLICE_CPUMASK_GET, &mask);
23: sched_setaffinity(getpid(), sizeof(cpu_set_t),
24: &mask.u_peer);

25: for (i = 0; i < IOVS; i++) {
26: iov.iov_base = malloc(MTU_LARGE);
27: iov.iov_len = MTU_LARGE;
28: }
29: if (mlockall(MCL_CURRENT) < 0)
30: EXIT_FAIL_MSG("mlockall");
31:
32: for (;;) {
33: ssize_t cnt, wcnt = 0;
34: if ((cnt = read(fd, iov, IOVS)) < 0)
35: EXIT_FAIL_MSG("read");
36:
37: for (i = 0; i < cnt; i++)
38: /* iov_rlen marks bytes read */
39: scan_pkg(iov[i].iov_base, iov[i].iov_rlen);
40: do {
41: size_t wr_iovs;
42: /* write iov_rlen bytes */
43: wr_iovs = write(fd, &iov[wcnt], cnt-wcnt);
44: if (wr_iovs < 0)
45: EXIT_FAIL_MSG("write");
46: wcnt += wr_iovs;
47: } while (wcnt < cnt);
48: }

Figure 2: One NetSlice batched read/write example.

ity mask of the tandem CPUs, providing the current user-mode task
with fine control over the CPU it runs atop. The NETSLICE_TX_
CSUM_SET ioctl allows the user-mode application to offload
TCP, IP, both or no checksum computation (alternatively, one may
set a per-packet flag in the netslice_iov). The in-kernel Net-
Slice stack has the knowledge to enable hardware specific offload
computation to spare CPUs from unnecessarily spending cycles.

Once the NETSLICE_RW_MULTI_SET ioctl is issued, the
user-mode application may overload the read/write calls to
send and receive an array of datagrams encoded into the param-
eters. Note that this is fundamentally different than the readv /
writev calls which can only perform scatter-gather of a single
datagram (or packet) per call. Batched packet receive and send op-
erations are instrumental in mitigating the overheads of issuing a
system call per operation. At the same time, batching reduces per
packet locking overheads, e.g. spinlock induced cycle waste and
cache coherency overheads, between the user-mode task while ex-
ecuting system calls and the in-kernel NetSlice network stack.

Figure 2 shows an example of application code using NetSlice
batched read / write for a naïve deep packet inspection tool. Com-
menting out lines 37 and 39, the application forwards packets be-
having as a regular router. The array of buffers are passed to the
read and write functions encoded in netslice_iov structures.
The example consists of a single NetSlice (namely the first Net-
Slice) hence the application will only receive packets classified to
be handled by the first queue of each NIC. To handle the entire traf-
fic, the example can be easily extended to accommodate all avail-
able queues using either an equal number of threads or processes.

For outgoing packets, the routing decision is performed by de-
fault within the in-kernel NetSlice stack. However, there is an
ioctl request (NETSLICE_NOROUTE_SET) that allows appli-
cations to instruct NetSlice that routing will be performed in user-
space (by encoding the chosen output interface within the pa-
rameters of the write call). If the hardware decides which NIC
rx queue to place the received packets onto, the software is re-
sponsible for selecting an outbound NIC queue to transmit pack-
ets on. For the conventional network stack, the core kernel or
the device driver is responsible with implementing this function-
ality. NetSlice provides a specialized classification “virtual func-

tion” that overrides driver or kernel provided hash functions (by
updating the select_queue function pointer of net_device
structures). The NetSlice classification function ensures that the
packets which belong to a particular NetSlice context are placed
solely on the tx queues associated with the context. Unlike the clas-
sification functions provided by the device drivers (e.g. the Myri-
com myri10ge driver provides the myri10ge_select_queue
function) or the kernel’s default simple_tx_hash, the NetSlice
classification function is cheaper, consisting only of three load op-
erations, one arithmetic, one bitwise mask operation, and no con-
ditional branches (by contrast, simple_tx_hash has three con-
ditional statements).

Instead of a character device, we could have implemented Net-
Slice by extending the socket interface with a new socket type (e.g.
SOCK_RAW). However, the current approach enabled us to seam-
lessly commandeer received packets immediately after reception.
A new PF_PACKET socket does not curtail the default network
stack, nor does it prevent the kernel from performing additional
processing per packet (e.g. pass packets through all relevant proto-
col handlers).

3.2 Discussion
NetSlice does not rely on zero-copy techniques, unlike prior

work for which zero-copy was the keystone in boosting the perfor-
mance of I/O and network paths [28, 52]. Instead, NetSlice copies
each packet once between user- and kernel-space, trading off CPU
cycles in exchange for flexibility and portability. The reason we
can afford to make this tradeoff is because modern NUMA (non-
uniform memory access) architectures that replaced the Front-Side-
Bus with point-to-point interconnects can be CPU bound when pro-
cessing packets [27]; with the caveat that cache coherency overhead
and cache misses can be kept sufficiently low [21]. As we will show
in Section 4, NetSlice minimizes these overheads and achieves lin-
ear scalability with the number of cores, while maintaining the cost
of packet copies constant per CPU. The cost is roughly a cache miss
for the first load plus the time it takes to copy the remaining bytes
which the hardware prefetching already brought in the LLC. This
works to our advantage, since CPU cycles and even entire cores are
easier to scale than interconnect and bus capacities: Moore’s Law

currently results in an increase in cores, and the goal is to fully uti-
lize each core. Further, commodity NICs are expected to support
an increasing number of queues, since they are also used to support
virtualization.

NetSlice leverages modern hardware to render zero-copy an or-
thogonal issue, less pivotal for performance, which can be sup-
ported in the future if so desired. By avoiding zero-copy, NetSlice
gains added portability and usability. Currently, NetSlice com-
prises of a single runtime loadable module that works out-of-the-
box with vanilla Linux kernels running stock NIC device drivers.

By contrast, zero-copy techniques, like memory mapping NIC
DMA rings or the NIC’s entire address space into user-space [17,
55] are not only invasive, they also break isolation. New device
drivers may have to be written and supported, and kernels may
have to be extended or modified accordingly. For example, the
kernel scheduler will have to ensure that the user-mode task con-
trolling a NIC is scheduled sufficient CPU time and is not pre-
empted for long continuous periods [19, 25] of time, or packets
may be dropped (when the DMA rings fill up). Moreover, cur-
rent OSes lack support for delivering events to user-space in a
timely fashion—mechanisms like epoll or kqueue / kevent
do not currently feature interrupt delivery. Myricom’s MX-10G
is one such technology that provides zero-copy drivers. However,
the MX-10G drivers are intended for TCP/IP and UDP/IP commu-
nication endpoints, and do not support interface-to-interface for-
warding, the most basic functionality of a router or general purpose
packet processor. In fact, the MX-10G drivers do not provide sup-
port out-of-the-box for two different NICs at the same time on the
same machine.

Likewise, NetSlice is also orthogonal to the large body of past
work that relocated the networking stack into user-space [17,33,35,
53,59]. For example, user-space networking may very well be built
on top of NetSlice, although we did not yet implement the network
stack encapsulation for replacing endpoint sockets. In our experi-
ence, conventional TCP and UDP sockets still perform sufficiently
well, to date. Moreover, given that a typical host may have an ar-
bitrarily large number of concurrent TCP and UDP connections, it
is not clear that user-space networking, even built over NetSlice,
would perform better than the current network stack since it would
require efficient inter-process-communication for de-multiplexing
and multiplexing traffic between user-mode applications. Never-
theless, we plan to investigate NetSlice support for endpoint sock-
ets in the future.

4. EVALUATION
We evaluated software packet processors running NetSlice and

compared them against the state-of-the-art user-space and in-kernel
equivalent implementations. We have ported packet processors to
run over RouteBricks [27] forwarding elements, as well as to run
in user-space using the pcap library [9]. Pcap is implemented on
top of the conventional raw (PF_PACKET) sockets. We also linked
the pcap applications with Phil Wood’s libpcap-mmap library [60],
which uses the memory mapping functionality of PF_PACKET
sockets, known as PACKET_MMAP. (PF_RING [26] sockets are
roughly an alternative implementation of the PACKET_MMAP ap-
proach. Further, PF_RING sockets require an invasive patch
that alters the core-kernel codebase, unlike the readily available
PACKET_MMAP sockets or NetSlice.) A kernel that is built with
the PACKET_MMAP support copies each packet onto a circular
buffer mapped into user-space before optionally adding it to the
socket’s queue. The user-space application can poll the arrival of
new packets and receive them without the cost of issuing additional
system calls. (The PACKET_MMAP support does not implement

Egress

Router

10GbE

CX4

~10m
R710 R710

10GbE

CX4

4x1GbE 10GbE

CX4

10GbE LR optical

single-mode fiber

4x1GbE

Ingress

Router
10GbE

CX4

R900R900 R900 R900

Figure 3: Experimental evaluation physical topology.

a zero-copy receive technique, a packet is copied the same num-
ber of times as with a traditional socket.) The NetSlice batched
receive operation achieves the same net effect, however, unlike
the NetSlice batched transmit, PACKET_MMAP sockets do not of-
fer equivalent support for outbound packets. During our exper-
iments, we set the circular buffer size to the value that yielded
the best performance, incidentally it was the maximum value.
(For our experimental machines, the PCAP_MEMORY=max request
yielded a 1.93GB circular buffer.) We did not compare with the
libnetfilter_queue libipq packet redirection mechanism
since it consistently crashed at high data rates (the netlink sockets
it relies on proved to be inadequate for high data rates). Further,
we did not use the TPACKET_V3 pcap support since it was only
recently introduced with Linux kernel versions 3.2, whereas Net-
Slice currently only supports Linux kernel versions between 2.6.20
and 2.6.36.

NetSlice consists of 1814 lines of kernel module code and 2981
lines of user-space applications—a router, an IPsec gateway (839
lines of AES ports), and an implementation of the Maelstrom [15]
protocol accelerator.

Our evaluation answers the following questions:

• What is the performance of NetSlice with respect to the state-
of-the-art, for both routing and IPsec?

• What is the performance breakdown of the NetSlice tech-
niques? To quantify this scenario, we funnel all traffic to
be handled by a single NIC queue: there is no interference
from extraneous CPUs and NIC resources, and we are able
to quantify, in isolation:

– The benefit of streamlining packet paths;

– The NetSlice performance with respect to possible peer
CPUs placement;

– The benefit of NetSlice batched operations;

– NetSlice added latency and CPU usage.

• How does NetSlice scale with the number of cores?

• Can complex packet processors built with NetSlice deliver
the advertised performance increase?

4.1 Experimental Setup
We deployed a testbed topology as depicted in Figure 3, with

four Dell PowerEdge R900 machines serving as end-hosts that gen-
erate and receive traffic. The traffic is aggregated by two Cisco
Catalyst 4948 series switches before being routed through a pair
of identical Dell PowerEdge R710 machines, which we refer to as
the egress and ingress routers. The egress and the ingress routers
run various packet processor variants, like NetSlice, RouteBricks,
or pcap.

Each R900 machine is a four socket 2.40GHz quad core Xeon
E7330 (Penryn) with 6MB of L2 cache and 32GB of RAM—the

E7330 is effectively a pair of two dual core CPUs packaged on the
same chip, each with 3MB of L2 cache. By contrast, the R710
machines are dual socket 2.93GHz Xeon X5570 (Nehalem) with
8MB of shared L3 cache and 12GB of RAM, 6GB connected to
each of the two CPU sockets. The Nehalem CPUs support hard-
ware threads, or hyperthreads, hence the operating system manages
a total of 16 processors. Each R710 machine is equipped with two
Myri-10G NICs, one CX4 10G-PCIE-8B-C+E NIC and one 10G-
PCIE-8B-S+E NIC with a 10G-SFP-LR transceiver. Figure 1(a)
depicts the R710 internal structure with two NICs.

The egress router is connected to the ingress router via a 10 meter
single-mode fiber optic patch cable, and each router is connected
to the corresponding switch through a 6 meter CX4 cable. Two
of the R900 machines are each equipped with an Intel 82598EB
10-Gigabit CX4 NIC, while the other two R900 machines are con-
nected to the switches through all of their four Broadcom NetX-
treme II BCM5708 Gigabit Ethernet NICs. We use the additional
R900 machines, although the egress and ingress routers only have
one 10GbE connection on each side, since a single R900 machine
with a 10GbE interface is unable to receive (in the best configu-
ration) more than roughly 5Gbps worth of MTU size (1500 byte
packets) traffic. The packet rate (pps) for the R710 router with the
Myricom 10GbE NIC was the same for both a kernel-level router
and NetSlice: 1215k pps using minimum size packets (64 bytes; or
174 Mbps) and 822k pps with MTU size packets (1500 bytes; or
9.68 Gbps). The same observation applies for the R900 client with
the Intel 10GbE NIC. RouteBricks altered the NIC driver to in-
crease the packet rate by performing DMA transfers of small pack-
ets in a single transaction on the PCIe bus. Our evaluation does
not include such batching since it is not clear it is possible on our
Myricom NICs. Further, we did not use the Intel 82598 NIC for
the evaluation comparisons since it does not support the Intel Flow
Director and does not provide a deterministic mapping from a flow
to a queue. We used the Myricom 10GbE NIC for all evaluation
comparison.

Unless specified otherwise, we generate traffic between the R900
machines with Netperf [5] that consists of MTU size UDP packets
at line rate (10Gbps). The machines run the Linux kernel version
2.6.28-17; we use the myri10ge version 1.5.1 driver for the Myri-
10G NICs and the ixgbe version 2.0.44.13 driver for the Intel NICs.
Both drivers support NAPI and are configured with factory default
interrupt coalescence parameters. To enable RouteBricks, we mod-
ified the myri10ge driver to work in polling mode with Click (we
used Linux kernel version 2.6.24.7 with Click, the most recent ver-
sion supported).

All values presented are averaged over multiple independent
runs, between as low as eight and as high as 32 runs; the error bars
denote standard error of the mean and are always present, although
most of the time they are sufficiently small to be virtually invisible.

4.2 Forwarding / Routing
Figure 4 shows the UDP payload throughput for the most basic

functionality—packet routing with MTU size packets. We compare
the NetSlice implementation with the default in-kernel routing, a
RouteBricks implementation, and with the best configurations of
pcap user-space solutions. Utilizing all NIC queues and all CPUs,
NetSlice forwards packets at nominal line rate (roughly 9.7Gbps
for MTU packet size and MAC layer overhead), as do the kernel
and RouteBricks routing. However, the best pcap variants top off
at about 2.25Gbps. There is no difference between pcap and pcap-
mmap, while Click user-space does in fact perform worse.

For each case, the Figure shows the additional scenario in which
all traffic is handled by a single NIC queue (per available NIC). In

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

kernel
RouteBricks

NetSlice

Click user-space

pcap-mmap

pcap

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

best configuration
single-NIC-queue

Figure 4: Packet routing throughput.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

1 2 4 8 16 32 64 128 256

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Batched send/receive number of I/O vectors

no affinity
the same core
hyperthreads

on the same chip, but not hyperthreads
on different chips

Figure 5: Routing throughput for single a NIC queue, a single
NetSlice, and various u-peer CPU placements.

this case, the kernel achieves 7.59Gbps, while NetSlice achieves
74% of the kernel throughput, while pcap-mmap achieves 1

11 of the
throughput achieved by NetSlice, and about 7.6 times better than
regular pcap. As expected, in-kernel variants perform better since
routing is performed at an early stage, and less CPU work (zero-
copy forwarding) is expended per dropped packet [49].

The take-away is that the NetSlice kernel to user-space commu-
nication channel is highly efficient, even when a single channel
is used (a single NetSlice is two CPUs and one NIC queue per
NIC). Moreover, using more than a single NetSlice easily sustains
line rate—currently, our clients are not able to generate more than
10Gbps worth of MTU-size packet traffic.

Next, we evaluate the importance of the u-peer CPU placement.
User-space processing takes place on the u-peer CPU as part of the
spatial partitioning that isolates individual NetSlices. Here we used
a single NetSlice to stress one communication channel that handles
all traffic in isolation. Since only two tandem CPU cores and one
NIC queue per NIC are utilized, the experiment only accounts for
direct interference (like cache coherency, cache misses due to pol-
lution) within a single NetSlice. Additional indirect interference is
expected in the general case, however, the NetSlice spatial parti-
tioning was designed precisely to keep such interference to a mini-
mum. Figure 5 shows the throughput given various core placement

Configuration Packets / µs RTT (µs)
Linux kernel 1/100 242.24±42.14
Linux kernel 10/100 279.48±42.74

NetSlice (no batching) 1/100 255.38±39.98
NetSlice (no batching) 10/100 308.10±44.51
NetSlice (128-batch) 1/100 255.67±40.18
NetSlice (128-batch) 10/100 301.33±42.16

Table 1: Round-trip-time (RTT) between the end-hosts.

choices and the number of I/O vectors used for batched operations.
There are several key observations. First, if the user-mode task
does not use the CPU affinity as instructed by NetSlice, the default
choice made by the OS scheduler is suboptimal. Moreover, the high
error bars imply that the kernel does not attempt to perform smart
task placement. The Linux scheduler is primitive in that it typically
moves a task on the runqueue of a different CPU only if the current
CPU is deemed congested.

The second observation is that using the same CPU for both
in-kernel and user-space processing performs the worst—there are
simply not enough cycles to counter the excessive overheads intro-
duced by the context switches. Additionally, there is an impedance
mismatch between the task context and the in-kernel processing
that is performed in a softirq context and is of strictly higher priority
than the task, i.e. the task is not scheduled enough cycles. This set-
ting is complicated further by the kernel’s per-CPU ksoftirqd
threads that are spawned to act as rate-limiters during receive-live-
lock scenarios [49].

The third observation is that same-chip and hyperthread place-
ment outperform the scenario in which the user-space processing
happens on a different chip. This is consistent with the memory
hierarchy—i.e. accessing the shared L3 cache is faster than access-
ing data over the QuickPath inter-socket link. However, note that
the gap between same-chip and different-chip data access decreases
considerably with the increase in the number of I/O vectors. This is
likely because batching increases code and data locality, and hard-
ware optimizations like pre-fetching and pipelined processing are
in effect. Batched processing also improves the performance of
user-space processing on the hyperthread, however to a lesser ex-
tent than same-chip placement, presumably because the hardware
threads still contend for functional units (e.g. ALUs) within the
(shared) physical core.

The best case is when the peer CPUs are on the same chip yet are
not hyperthreads. However, the Figure shows the scenario in which
a single NetSlice is used, hence only the peer CPUs are utilized, all
the remaining cores are idle. In the general case, such a placement
choice is only viable when there is a lower number of NetSlices
than there are available CPUs. By default, NetSlice performs user-
space processing on the sibling hyperthread, if one is available—
having two sibling hyperthreads work on different NetSlices would
split the cache levels (higher than the LLC) into half.

Figure 5 also shows the performance increase due to NetSlice
batching. For the default peer CPU placement (i.e. sibling hy-
perthreads) we observe a 46.2% increase in aggregate through-
put from singleton send / receive to 256 batched I/O vectors shut-
tled between user-space and the kernel in a single operation, even
though the kernel uses the fast system call processor instructions
(e.g. SYSENTER).

In summary, the forwarding throughput of a single NetSlice is
eleven times larger than the best pcap. Of that, batching provides a
46.2% throughput increase, peer CPU placement provides a 78.3%
throughput increase when batching is used and 66.6% increase with
no batching, while the streamlined path of packets (with no batch-

Datarate CPU usage (% of single CPU)
(Mbps) Total k-peer u-peer
1000.9 31.34±1.00 1.90±0.30 29.44±0.73
2001.8 63.49±1.39 12.41±0.72 51.09±0.68
3002.7 100.38±0.88 24.56±1.61 75.82±0.92
4003.2 102.28±2.69 14.29±3.41 87.99±0.72
5003.1 103.40±2.78 17.94±2.90 85.46±1.36

Table 2: CPU usage: One NetSlice (2 CPUs) forwarding.

ing or peer CPU placement) provides a 4.5 times throughput in-
crease over pcap-mmap. This coarse break-down does not reveal
the subtle interaction between NIC queues nor the cross core, cross
PCIe bus, and cross QuickPath interconnect interference.

Table 1 shows the additional latency introduced by a single Net-
Slice forwarding element. The experiment shows the roud-trip-
time (RTT) between an R900 end-host and the Ingress Router while
traffic flows through the Egress Router (Figure 3). The Table de-
picts the Egress Router performing standard in-kernel forwarding,
and forwarding through NetSlice with batching both disabled and
enabled (128 I/O vectors). The table shows two scenarios, one in
which the sender issues packets at a steady rate of one every 100µs
and a second in which the sender issues 10 packets in rapid suc-
cession every 100µs. The two-way latency introduced by NetSlice
is 19µs on average (at most 28µs), which is half the standard de-
viation of the reported RTTs. The latency introduced by NetSlice
is in fact smaller than the effects of NIC interrupt coalescence (IC)
and NAPI, two ubiquitous techniques that have been universally
adopted to the detriment of latency (e.g. the myri10ge driver de-
faults the rx-usecs IC parameter to 75µs and does not compile
without NAPI).

Table 2 shows the NetSlice CPU utilization while forwarding
traffic through a single NIC queue, for increasing input data rates.
As expected, the CPU utilization increases with the data rate, how-
ever, the increase is less sharp for rates greater than 3Gbps. This is
due to batching which, while seldom used for rates less than 3Gbps,
is required to forward packets at increasingly higher data rates, as
we previously showed in Figure 5.

4.3 IPsec
Next we evaluate a CPU intensive packet processing task,

namely IPsec encryption with 128 bit key (typically used by
VPNs). We implemented AES encryption in Cipher-block Chain-
ing (CBC) [31] mode of operation. Our experiments focused on
steady-state performance, hence the key establishment protocol is
not evaluated. We use IPsec to evaluate how NetSlice scales with
the number of cores. IPsec accelerators typically need all the CPU
cycles they can spare and two NetSlices proved sufficient to for-
ward all the 10Gbps MTU-size traffic that our testbed was able to
generate.

Ideally, NetSlice should only trail RouteBricks by a constant fac-
tor (per CPU) due to the cycles spent performing an additional
copy per packet and the overhead of protection domain crossings
(system calls). Figure 6 shows that NetSlice does scale linearly
with the number of CPUs, closely following RouteBricks. The
NetSlice throughput is roughly 8% less than that of RouteBricks.
RouteBricks tops off at 9157Mbps, about 600Mbps shy of nom-
inal line rate. NetSlice tops off at about 8513Mbps. We expect
both NetSlice and RouteBricks to continue to scale linearly given
more cores. By contrast, the user-space variants using pcap scale
poorly and are unable to take advantage of the current technology
trend towards placing many independent cores on the same silicon
die. (The Figure reports on the best user-space pcap variants with

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

of CPUs used

RouteBricks
NetSlice

pcap
pcap-mmap

Click user-space

Figure 6: IPsec throughput scaling with cores.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

RouteBricks

NetSlice

Click user-space

pcap-mmap

pcap

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

best configuration
single-NIC-queue

Figure 7: IPsec throughput, all vs. single NIC queue.

a dispatch thread load balancing packets to threads bound to CPUs
exclusively.)

Figure 7 shows IPsec throughput results for the best configura-
tions of NetSlice, RouteBricks, and pcap user-space solutions along
with the additional scenario in which all traffic is handled by a sin-
gle NIC queue. First, notice that the pcap variants top off at about
2258Mbps in the common case and perform poorly when traffic is
handled by a single NIC queue. As with routing, the pcap-mmap
outperforms conventional pcap in the latter scenario and NetSlice,
like RouteBricks, vastly outperforms the user-space variants. Net-
Slice also achieves better throughput than RouteBricks since all
traffic that is routed to a single NIC queue is handled by Route-
Bricks with a single CPU in kernel mode, whereas NetSlice han-
dles it with a pair of CPUs, one running in kernel-mode and one
running the user-mode task.

The take-away is that NetSlice scales with the number of avail-
able cores as good as the in-kernel RouteBricks implementation
does. By contrast, user-space variants that use conventional raw
sockets scale poorly and are comprehensively outperformed by
NetSlice and RouteBricks during a CPU intensive task like IPsec.

4.4 The Maelstrom Protocol Accelerator
To get more insight into the feasibility of building highly com-

plex protocol accelerators atop NetSlice, we ported and evaluated

the Maelstrom [15] appliance. Maelstrom is a performance en-
hancement proxy developed to overcome the poor performance of
TCP when loss occurs on high bandwidth / high latency network
links. Maelstrom appliances work in tandem, each appliance lo-
cated at the perimeter of the network and facing a LAN on one side
and a high bandwidth / high latency WAN link on the opposite side.
The appliances perform forward error correction (FEC) encoding
over the egress traffic on one side and decoding over the ingress
traffic on the opposite side. In Figure 3, the egress and the ingress
routers are running Maelstrom appliances, with the egress router
encoding over all traffic originating from the clients on the same
LAN and destined for the clients on the LAN behind the ingress
router. The ingress router receives both the original IP traffic and
the additional FEC traffic and forwards the original traffic and po-
tentially any recovered traffic to original destination nodes. In real-
ity, each Maelstrom appliance works both as an encoder and as an
decoder at the same time.

The existing hand-tuned, in-kernel version of Maelstrom is about
8432 lines of C code. It is self contained with few calls into the
exported kernel base symbols, and it was not yet retrofitted to take
advantage of multi-queue NICs and multiple cores. By contrast, the
NetSlice implementation required 934 lines of user-space C code,
not counting the NetSlice kernel module or the 263 lines of hash-
table implementation. For MTU size packets, NetSlice achieves
a goodput of 6993.69± 35.7Mbps for a throughput of 8952.04±
37.25Mbps. For the nominal FEC parameters we used (namely, for
every r=8 packets, an additional c=3 FEC packets are sent), there is
a 27.27% overhead. NetSlice achieves close to maximum goodput:
6993.69Mbps ×

(
1+ c

r+c
)
= 8901Mbps.

5. RELATED WORK
It has been well known that large scale cache coherent, possi-

bly NUMA, multiprocessors require careful operating system de-
sign, or else various bottlenecks prevent the systems from realizing
their performance potential. Indeed, operating systems like Tor-
nado/K42 [32, 42, 58] have been carefully designed to minimize
contention by clustering and replicating key kernel data structures,
and by employing intricate scheduling algorithms that, for exam-
ple, take NUMA locality into account.

More recently, there have been several research efforts that
aimed at redesigning the OS from the ground up in order to effec-
tively exploit the emerging and now ubiquitous multi-core archi-
tectures. Corey [20] is an ExoKernel-like OS within which shared
kernel data structures and kernel intervention are kept to a mini-
mum, while applications are given explicit control over the sharing
of resources. This allows the Corey kernel to perform finer grained
locking of highly accessed data structures, like process memory
regions. The Barrelfish research operating system [16] explores
how to structure the OS as a distributed system in order to best
utilize future multi- and many-core, potentially heterogeneous sys-
tems. Similarly, the Helios [50] operating system tackles building
and tuning applications for heterogeneous systems through satel-
lite kernels. Satellite kernels export a uniform set of OS abstrac-
tions across all CPUs and communicate one with another by means
of explicit message passing instead of relying on a cache coher-
ent memory system. The Tessellation OS [43] introduces a “nano-
visor” to enforce strict spatial and temporal resource multiplexing
between library OSes. To ensure resource isolation, the Tessella-
tion OS envisions hardware support for resources that have been
traditionally hard to share, like caches and memory bandwidth.

Like the Tessellation OS, NetSlice performs spatial partitioning
of the CPU, memory, and multi-queue NIC resources at coarse
granularity. However, the NetSlice partitioning is domain specific,

and the performance isolation need not be strongly enforced, in-
stead it is implicit by the design of the NetSlice abstraction itself.

Historically, there have been a large number of zero-copy user-
space network stacks proposed [17, 26, 28, 35, 52, 53, 55, 59]. Their
general approach was to eliminate the OS involvement on the com-
munication path, and virtualize the NIC while providing direct,
low-level access to the network. Some of these approaches relied
on hardware support, for example, U-Net [59] and its commercial
successor VIA [14, 29] required a communications co-processor
capable of demultiplexing packets into user-space buffers, and an
on-board MMU (Memory Management Unit) to perform RDMA
(Remote DMA) [12]. The former is not available on typical Ether-
net NICs, moreover, IOMMUs are currently unable to handle page
faults [34]. Other systems [22, 23, 28] rely on virtual memory and
page protection techniques, however, on demand memory mapping
of shared buffers is tricky and can be unnecessarily expensive; such
techniques are yet to be adopted by mainstream kernels.

NetSlice is orthogonal to prior work that placed the network
stack in user-space. Further, it does not use zero-copy techniques
since they were not necessary (see Section 3.2) and they would have
prevented portability.

Software routers Achilles’ heel has been, and continues to be, the
low performance with respect to their hardware counterparts. Nev-
ertheless, recent efforts, like RouteBricks [27], have shown that
modern multi-core architectures and multi-queue NICs are well
suited for building low-range software routers, albeit in kernel-
space. RouteBricks relies on a cluster of PCs fitted with Nehalem
multi-core CPUs and multi-queue NICs, connected through a k-
degree butterfly interconnect. Packets are forwarded / routed at ag-
gregate rates of 24.6Gbps per PC, however, the interconnect routing
algorithm introduces packet re-ordering. The PacketShader [37]
software router takes RouteBricks further by providing an entire
framework for general-purpose packet processing that utilizes the
Graphics Processing Unit (GPU).

Internally, RouteBricks uses the Click [41] modular router, an
elegant framework for building functionality from smaller building
blocks that can be arranged in an acyclic control flow graph. How-
ever, Click is aimed at building routers and does not easily express
general packet processing; e.g. it cannot support global state that
extends across building blocks.

In general, software routers are implemented within the ker-
nel [36, 57], early in the network stack and below the (raw) socket
interface. Full blown software routers like RouteBricks [27] may
require distributed coordination algorithms to decide interconnect
forwarding paths [11]. By contrast, NetSlice provides support for
user-space implementation of individual packet processing units,
independent of interconnects. Complex packet processing logic,
like rule-based forwarding [54], or the distributed coordination in
RouteBricks may be seamlessly built using NetSlice (NetSlice does
not re-order packets).

NetSlice can be used to implement the XORP [38] open source
routing platform, or to provide rapid prototyping of OpenFlow [47]
forwarding elements. For example, the current NetFPGA [44] ref-
erence implementation is limited to four 1GbE interfaces (the re-
cently launched NetFPGA-10G supports four 10GbE interfaces),
whereas NetSlice is only limited by the number of CPUs and PCIe
connections a commodity server can support. Moreover, develop-
ers need not have intimate Verilog knowledge, or worry about de-
tails such as gateware real-estate.

The new Threaded NAPI (TNAPI) PF_RING [26] support im-
proves on the raw socket by creating one virtual NIC per receive
queue and capturing traffic from each virtual NIC with a different
user-space thread (somewhat similar to NetSlice’s spatial partition-

ing). In general, such packet capture techniques are only optimized
for the receive path, ignoring the transmission, which means that
they provide no support for efficient interface-to-interface forward-
ing, which is the most basic software router / packet processor func-
tionality.

6. CONCLUSION
The end of CPU frequency scaling is ushering in a world of slow

cores and fast networks. This paper introduced the NetSlice oper-
ating system abstraction that enables building scalable packet pro-
cessors in user-space. NetSlice tightly couples the hardware and
software packet processing resources by performing domain spe-
cific, coarse-grained, spatial partitioning of CPU cores, memory,
and NIC resources. NetSlice also provides the application with
control over these resources. On top of each resource partition, Net-
Slice superimposes independent streamlined communication chan-
nels to shuttle packets between NICs and user-space and bypass the
default network stack. While it is backward compatible with the
conventional socket API, the NetSlice API also provides batched
send / receive operations to amortize the cost of protection domain
crossings. Further, NetSlice is portable, working with existing de-
vice drivers. We demonstrate NetSlice by showing that complex
user-space packet processors can scale linearly with the number of
cores and operate at nominal 10Gbps line speeds.

7. AVAILABILITY
The NetSlice source code is published under BSD license and

is freely available for download at http://netslice.cs.
cornell.edu.

8. ACKNOWLEDGEMENTS
We would like to thank our shepherd, Ripduman Sohan, and

the anonymous reviewers for their comments. This work was par-
tially funded and supported by an IBM Faculty Award, NetApp
Faculty Fellowship, and Alfred P. Sloan award received by Hakim
Weatherspoon. Further partial support includes NSF TRUST (No.
0424422), NSF Future Internet Architecture (No. 1040689), NSF
CAREER (No. 1053757), and DARPA Computer Science Study
Panel (No. D11AP00266).

9. REFERENCES
[1] GENI: Global Environment for Network Innovations.

http://www.geni.net.
[2] Internet2. http://www.internet2.edu.
[3] Juniper Networks: Open IP Service Creation Program

(OSCP). http://www.ictnetworks.com.au/pdf/
1000167-en.pdf.

[4] Netequalizer. http://netequalizer.com.
[5] Netperf. http://netperf.org.
[6] NLR: National LambdaRail. http://www.nlr.net.
[7] PacketLogic. http://proceranetworks.com.
[8] Riverbed. http://www.riverbed.com.
[9] tcpdump / libpcap. http://www.tcpdump.org.

[10] Cisco opening up IOS. http://www.networkworld.
com/news/2007/121207-cisco-ios.html, 2007.

[11] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,
commodity data center network architecture. In Proceedings
of the ACM SIGCOMM 2008 conference on Data
communication, SIGCOMM ’08, pages 63–74, New York,
NY, USA, 2008. ACM.

[12] AMD. I/O Virtualization Specification, 2007.
[13] G. M. Amdahl. Validity of the single processor approach to

achieving large scale computing capabilities. In Proceedings
of the April 18-20, 1967, spring joint computer conference,
AFIPS ’67 (Spring), pages 483–485, New York, NY, USA,
1967. ACM.

[14] P. Balaji, P. Shivam, P. Wyckoff, and D. Panda. High
performance user level sockets over gigabit ethernet. In
Proceedings of the IEEE International Conference on
Cluster Computing, CLUSTER ’02, pages 179–,
Washington, DC, USA, 2002. IEEE Computer Society.

[15] M. Balakrishnan, T. Marian, K. Birman, H. Weatherspoon,
and E. Vollset. Maelstrom: transparent error correction for
lambda networks. In Proceedings of the 5th USENIX
Symposium on Networked Systems Design and
Implementation, NSDI’08, pages 263–278, Berkeley, CA,
USA, 2008. USENIX Association.

[16] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs,
S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania. The
multikernel: a new os architecture for scalable multicore
systems. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, SOSP ’09,
pages 29–44, New York, NY, USA, 2009. ACM.

[17] S. Blott, J. Brustoloni, and C. Martin. NetTap: An Efficient
and Reliable PC-Based Platform for Network Programming.
In Proceedings of OPENARCH, 2000.

[18] R. Bolla and R. Bruschi. Pc-based software routers: high
performance and application service support. In Proceedings
of the ACM workshop on Programmable routers for
extensible services of tomorrow, PRESTO ’08, pages 27–32,
New York, NY, USA, 2008. ACM.

[19] H. Bos, W. de Bruijn, M. Cristea, T. Nguyen, and
G. Portokalidis. FFPF: fairly fast packet filters. In
Proceedings of the 6th conference on Symposium on
Opearting Systems Design & Implementation - Volume 6,
OSDI’04, pages 24–24, Berkeley, CA, USA, 2004. USENIX
Association.

[20] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek,
R. Morris, A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang,
and Z. Zhang. Corey: an operating system for many cores. In
Proceedings of the 8th USENIX conference on Operating
systems design and implementation, OSDI’08, pages 43–57,
Berkeley, CA, USA, 2008. USENIX Association.

[21] E. Bröse. ZeroCopy: Techniques, Benefits and Pitfalls.
[22] J. C. Brustoloni and P. Steenkiste. Effects of buffering

semantics on i/o performance. In Proceedings of the second
USENIX symposium on Operating systems design and
implementation, OSDI ’96, pages 277–291, New York, NY,
USA, 1996. ACM.

[23] J. C. Brustoloni, P. Steenkiste, and C. Brustoloni. User-Level
Protocol Servers with Kernel-Level Performance. In Proc. of
IEEE Infocom Conference, pages 463–471, 1998.

[24] P. Crowley, M. E. Fluczynski, J.-L. Baer, and B. N. Bershad.
Characterizing processor architectures for programmable
network interfaces. In Proceedings of the 14th international
conference on Supercomputing, ICS ’00, pages 54–65, New
York, NY, USA, 2000. ACM.

[25] W. de Bruijn and H. Bos. Beltway buffers: Avoiding the os
traffic jam. In INFOCOM, 2008.

[26] L. Deri and S. Suin. Effective traffic measurement using
ntop. Comm. Mag., 38(5):138–143, May 2000.

[27] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall,

G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy.
RouteBricks: exploiting parallelism to scale software
routers. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, SOSP ’09,
pages 15–28, New York, NY, USA, 2009. ACM.

[28] P. Druschel and L. L. Peterson. Fbufs: a high-bandwidth
cross-domain transfer facility. In Proceedings of the
fourteenth ACM symposium on Operating systems principles,
SOSP ’93, pages 189–202, New York, NY, USA, 1993.
ACM.

[29] D. Dunning, G. Regnier, G. McAlpine, D. Cameron,
B. Shubert, F. Berry, A. M. Merritt, E. Gronke, and C. Dodd.
The Virtual Interface Architecture. IEEE Micro,
18(2):66–76, Mar. 1998.

[30] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel:
an operating system architecture for application-level
resource management. In Proceedings of the fifteenth ACM
symposium on Operating systems principles, SOSP ’95,
pages 251–266, New York, NY, USA, 1995. ACM.

[31] S. Frankel, R. Glenn, and S. Kelly. The AES-CBC Cipher
Algorithm and Its Use with IPsec (RFC 3602), 2003.

[32] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm. Tornado:
maximizing locality and concurrency in a shared memory
multiprocessor operating system. In Proceedings of the third
symposium on Operating systems design and
implementation, OSDI ’99, pages 87–100, Berkeley, CA,
USA, 1999. USENIX Association.

[33] G. R. Ganger, D. R. Engler, M. F. Kaashoek, H. M. Briceño,
R. Hunt, and T. Pinckney. Fast and flexible application-level
networking on exokernel systems. ACM Trans. Comput.
Syst., 20(1):49–83, Feb. 2002.

[34] P. Geoffray. A Critique of RDMA. High-Perf. Comp. ’06.
[35] P. Geoffray, L. Prylli, and B. Tourancheau. BIP-SMP: high

performance message passing over a cluster of commodity
SMPs. In Proceedings of the 1999 ACM/IEEE conference on
Supercomputing (CDROM), Supercomputing ’99, New York,
NY, USA, 1999. ACM.

[36] D. Guo, G. Liao, L. N. Bhuyan, B. Liu, and J. J. Ding. A
scalable multithreaded L7-filter design for multi-core
servers. In Proceedings of the 4th ACM/IEEE Symposium on
Architectures for Networking and Communications Systems,
ANCS ’08, pages 60–68, New York, NY, USA, 2008. ACM.

[37] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: a
GPU-accelerated software router. In Proceedings of the ACM
SIGCOMM 2010 conference, SIGCOMM ’10, pages
195–206, New York, NY, USA, 2010. ACM.

[38] M. Handley, E. Kohler, A. Ghosh, O. Hodson, and
P. Radoslavov. Designing extensible IP router software. In
Proceedings of the 2nd conference on Symposium on
Networked Systems Design & Implementation - Volume 2,
NSDI’05, pages 189–202, Berkeley, CA, USA, 2005.
USENIX Association.

[39] M. D. Hill and M. R. Marty. Amdahl’s law in the multicore
era. Computer, 41(7):33–38, July 2008.

[40] J.-C. Huang, M. Monchiero, Y. Turner, and H.-H. S. Lee.
Ally: OS-Transparent Packet Inspection Using Sequestered
Cores. In Proceedings of the 2011 ACM/IEEE Seventh
Symposium on Architectures for Networking and
Communications Systems, ANCS ’11, pages 1–11,
Washington, DC, USA, 2011. IEEE Computer Society.

[41] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.

Kaashoek. The click modular router. ACM Trans. Comput.
Syst., 18(3):263–297, Aug. 2000.

[42] O. Krieger, M. Auslander, B. Rosenburg, R. W. Wisniewski,
J. Xenidis, D. Da Silva, M. Ostrowski, J. Appavoo,
M. Butrico, M. Mergen, A. Waterland, and V. Uhlig. K42:
building a complete operating system. In Proceedings of the
1st ACM SIGOPS/EuroSys European Conference on
Computer Systems 2006, EuroSys ’06, pages 133–145, New
York, NY, USA, 2006. ACM.

[43] R. Liu, K. Klues, S. Bird, S. Hofmeyr, K. Asanović, and
J. Kubiatowicz. Tessellation: space-time partitioning in a
manycore client OS. In Proceedings of the First USENIX
conference on Hot topics in parallelism, HotPar’09, pages
10–10, Berkeley, CA, USA, 2009. USENIX Association.

[44] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb,
P. Hartke, J. Naous, R. Raghuraman, and J. Luo.
NetFPGA–An Open Platform for Gigabit-Rate Network
Switching and Routing. In Proceedings of the 2007 IEEE
International Conference on Microelectronic Systems
Education, MSE ’07, pages 160–161, Washington, DC,
USA, 2007. IEEE Computer Society.

[45] Y. Ma, S. Banerjee, S. Lu, and C. Estan. Leveraging
parallelism for multi-dimensional packet classification on
software routers. In Proceedings of the ACM SIGMETRICS
international conference on Measurement and modeling of
computer systems, SIGMETRICS ’10, pages 227–238, New
York, NY, USA, 2010. ACM.

[46] S. McCanne and V. Jacobson. The bsd packet filter: a new
architecture for user-level packet capture. In Proceedings of
the USENIX Winter 1993 Conference Proceedings on
USENIX Winter 1993 Conference Proceedings, USENIX’93,
pages 2–2, Berkeley, CA, USA, 1993. USENIX Association.

[47] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. Openflow:
enabling innovation in campus networks. SIGCOMM
Comput. Commun. Rev., 38(2):69–74, Mar. 2008.

[48] A. G. Miklas, S. Saroiu, A. Wolman, and A. D. Brown.
Bunker: a privacy-oriented platform for network tracing. In
Proceedings of the 6th USENIX symposium on Networked
systems design and implementation, NSDI’09, pages 29–42,
Berkeley, CA, USA, 2009. USENIX Association.

[49] J. C. Mogul and K. K. Ramakrishnan. Eliminating receive
livelock in an interrupt-driven kernel. In Proceedings of the
1996 annual conference on USENIX Annual Technical
Conference, ATEC ’96, pages 9–9, Berkeley, CA, USA,
1996. USENIX Association.

[50] E. B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel,
and G. Hunt. Helios: heterogeneous multiprocessing with
satellite kernels. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, SOSP ’09,
pages 221–234, New York, NY, USA, 2009. ACM.

[51] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang,
P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat.
PortLand: a scalable fault-tolerant layer 2 data center
network fabric. In Proceedings of the ACM SIGCOMM 2009
conference on Data communication, SIGCOMM ’09, pages
39–50, New York, NY, USA, 2009. ACM.

[52] V. S. Pai, P. Druschel, and W. Zwaenepoel. IO-Lite: a unified
I/O buffering and caching system. ACM Trans. Comput.
Syst., 18(1):37–66, Feb. 2000.

[53] S. Pakin, M. Lauria, and A. Chien. High performance
messaging on workstations: Illinois fast messages (FM) for

Myrinet. In Proceedings of the 1995 ACM/IEEE conference
on Supercomputing (CDROM), Supercomputing ’95, New
York, NY, USA, 1995. ACM.

[54] L. Popa, N. Egi, S. Ratnasamy, and I. Stoica. Building
extensible networks with rule-based forwarding. In
Proceedings of the 9th USENIX conference on Operating
systems design and implementation, OSDI’10, pages 1–6,
Berkeley, CA, USA, 2010. USENIX Association.

[55] L. Rizzo. Netmap: a novel framework for fast packet I/O. In
Proceedings of the 2012 USENIX conference on Annual
Technical Conference, USENIX ATC’12, pages 9–9,
Berkeley, CA, USA, 2012. USENIX Association.

[56] J. H. Salim, R. Olsson, and A. Kuznetsov. Beyond softnet. In
Proceedings of the 5th annual Linux Showcase & Conference
- Volume 5, ALS ’01, pages 18–18, Berkeley, CA, USA,
2001. USENIX Association.

[57] M. J. Schultz, B. Wun, and P. Crowley. A Passive Network
Appliance for Real-Time Network Monitoring. In
Proceedings of the 2011 ACM/IEEE Seventh Symposium on
Architectures for Networking and Communications Systems,
ANCS ’11, pages 239–249, Washington, DC, USA, 2011.
IEEE Computer Society.

[58] R. C. Unrau, O. Krieger, B. Gamsa, and M. Stumm.
Experiences with locking in a NUMA multiprocessor
operating system kernel. In Proceedings of the 1st USENIX
conference on Operating Systems Design and
Implementation, OSDI ’94, Berkeley, CA, USA, 1994.
USENIX Association.

[59] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: a
user-level network interface for parallel and distributed
computing. In Proceedings of the fifteenth ACM symposium
on Operating systems principles, SOSP ’95, pages 40–53,
New York, NY, USA, 1995. ACM.

[60] P. Wood. http://public.lanl.gov/cpw, 2008.
[61] Z. Wu, M. Xie, and H. Wang. Swift: a fast dynamic packet

filter. In Proceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementation, NSDI’08,
pages 279–292, Berkeley, CA, USA, 2008. USENIX
Association.

[62] M. Yuhara, B. N. Bershad, C. Maeda, and J. E. B. Moss.
Efficient packet demultiplexing for multiple endpoints and
large messages. In Proceedings of the USENIX Winter 1994
Technical Conference on USENIX Winter 1994 Technical
Conference, WTEC’94, pages 13–13, Berkeley, CA, USA,
1994. USENIX Association.

