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Abstract

Failure independenceis an important assumptionfor
manyfault tolerancetechniques. Unfortunately, real sys-
temexhibit correlatedfailures. In this paper, wepresenta
framework for online discovery of groupsof servernodes
that are maximallyindependentin their failure character-
istics. We discussthe framework in detail and provide a
preliminaryevaluation.

1 Introduction

Many systemsare basedon simplifying assumptions.
Makingsuchassumptionsaidsin reasoningaboutthesesys-
tem,but canfail to captureimportantaspectsof actualsys-
tem behavior. Oneimportantexampleis that of reliability
metrics. Many fault tolerantalgorithmsare designedun-
dertheassumptionthatno morethananexplicit fractionof
componentscanfail [11]. This characterizationimplicitly
assumesthat the probability of a componentfailing while
a protocol is in progressis independentof the durationof
the protocol, that all componentshave an identical prob-
ability of failure, and that componentsfail independently.
Theseassumptionsdo not adequatelyreflect the natureof
real-world network environments. In practice,failuresare
correlated. Correlatedfaults can lead to reducedsystem
availability or reliability [10].

This papermakesthefollowing contributions.First, we
givetwo examplesin whichfault tolerancecanbeincreased
by using independentlyfailing components. Second,we
presentfailureanalysisframework thatallow nodesthatfail
with low correlationto bechosenasthesetof � machines.
Finally, we show preliminaryresultswhenthis techniqueis
usedto clusterrelatedwebserverstogether.

2 � of � Fault Tolerance

Redundancy is the simplesttechniqueusedto increase
reliability in P2Psystems.Redundancy is the useof mul-
tiple resources(computations,copiesof data,etc.) when
a smallersubsetor singleonewould suffice. We call the
generaluseof redundantcomponents� of � fault toler-
ance;that is, whenany � (out of � ) componentsfunction
correctly, thesystembehavescorrectly. In this section,we
show two examplesof this typeof fault tolerance.

Byzantine Fault Tolerance ByzantineAgreementproto-
cols[13] allow asetof serversto cometo aunifieddecision,
evenif someof them(lessthan �� ) areactively attemptingto
compromisethe process.As anexample,OceanStore[12]
andFarsite[2] useByzantineAgreementduringtheserial-
ization of updates.In the terminologyof this section,we
cansaythatByzantineAgreementfunctionscorrectlywhen
any �	��

����� out of ����������� nodesareuncompro-
mised. If morethan ��������� nodesarecompromised,
thesystemstopsfunctioningcorrectly. By selectingnodes
that aresufficiently uncorrelatedin their behavior (operat-
ing characteristics,software,ownership,etc), we canmin-
imize the chancethat an adversarycould compromisethe
decisionprocess.

Erasure Coding Erasure codes provide redundancy
without theoverheadof strict replication[4, 16, 6]. Erasure
codesencodean object into � fragments, any � of which
are sufficient to reconstructthe object ( ����� ). We call� ��� � �!� therateof encoding.A rate� codeincreasesthe
storagecostby afactorof �" . For example,an � � �# encod-
ing mightproduce�$�&%
' fragments,any �(���)% of which
aresufficient to reconstructdata,with a total overheadfac-
tor of four. Note that ���*� representsstrict replication,
andRAID level 5 canbe describedby ( �+�,' , �-�/. ).
Figure1 illustratesthedurabilityof ablockof dataencoded
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Figure 1. Fractionof BlocksLost PerYear(FBLPY) for
a rate 12 , erasure-encodedblock. Here, disksfail after five
years anda repairprocessreconstructsdataregularly. The
four-fragmentcase(topline) isequivalenttosimplereplica-
tion on four servers. Increasingnumberof fragmentsdras-
tically increasesthedurability of a block whiletotal storage
overheadremainsconstant.Notice, for example, that for a
repair interval of 6 monthsthe four-way replication (top
line) loses0.03(3%) of blocksper year while the64 frag-
ments,any16of which are sufficientto reconstruct(bottom
line) loses3547698;: of blocksper year.

in an erasurecode,measuredin Fractionof Blocks Lost
PerYear(FBLPY). Eachline representsa differentdegree
of fragmentation( � ) at the sametotal overhead– illustrat-
ing that increasedfragmentationprovidesgreatlyincreased
durability [19].

Failure Independence Both of the previous examples
assumethat failures are independentand identically dis-
tributed. This is not true in general. Server failuresmay
becorrelatedbecausethey sharenetwork routers,software
bugs,configurationproblems,operatingsystems,etc.. The
rate of failure may be elevatedin regionsof the network
thatsharecommonadministrationor unstablehardwareel-
ements.Studieshaveshown thathumanerrorsandnetwork
problemsaremajor causesfor nodefailures[14]. An in-
creasedrateof failurecanbeaddressedthroughgreaterre-
dundancy (i.e. morecomponents),while increasedcorrela-
tion canbedefeatedthroughselectiveuseof resources.We
explore measurementandmodelingtechniquesin the fol-
lowing sectionsthat canbe usedto choosea setof nodes
thataremaximallyindependent.

3 Dissemination Architecture

In this section,we presenta framework for discover-
ing setsof nodesthat fail with low correlation. We call
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Figure 2. Four componentsof disseminationframework.

thesubsequentplacementof elementson suchserversdis-
semination. This framework is partof theOceanStoresys-
tem[12], but couldbeutilized with anarrayof currentsys-
tems,includingFarsite[2], Intermemory[4], CFS[5], and
PAST [7].

The framework is composedof threeparts. The Model
Builder takesinput from humansources,network measure-
ments,andonlineobservationto developamodelof failure
correlation.TheDisseminationSetCreatordiscoversnodes
in thenetwork andutilizestheresultsof theModel Builder
to generatedisseminationsets, setsof nodesthat fail with
low correlation.TheDisseminatorsendsonecomponentto
eachnodein a set. Thesenodesthenperformtheir desired
function(e.g. storefragmentsor performByzantineAgree-
ment).Figure2 showsthis framework. Wedescribeeachof
thesepartsthoroughlyin Sections4, 5, and 6.

This framework hasa coupleof importantperformance
characteristics.First, the Model Builder and the SetCre-
ator can operateasynchronouslyfrom the Disseminator.
Thus, the computationand network latency penaltiesin-
curredby theModelBuilder andtheSetCreatordo not im-
pactthedisseminationlatency. Second,disseminationsets
constructedby the Creatorcanbe usedby many Dissemi-
nators.Thus,thenetwork andcomputationalresourcesare
amortizedoverseveralDisseminators.

4 Model Builder

TheModelBuilder is responsiblefor developingmodels
thatpredictthecorrelationof failureamongtypesof nodes.
A typeis a tupleenumeratinga server’spropertieswith re-
spectto anumberof failuredimensions. A dimensionis any
propertythataffectstheavailability of componentssuchas
geographiclocation,administrative domain,operatingsys-
tem type and release,and IP subnet. The Model Builder
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Figure 3. (a) A samplehistoryof availability for four dif-
ferent typesof machinesis observed.Themarginal proba-
bilities arealsoshown.(b) Thepair-wisejoint probabilities
fromtheexamplehistory.

collectsinformationaboutvariousdimensionsfrom human
sources,network monitoring[1], andobservations.

Implementation Ratherthan searchingthe entire node
spacefor a maximally independentsetof nodes,the prob-
lemof findingnodesthatfail independentlywould bemore
tractableif wegroupedhighly correlatednodestogetherand
considereachgroupa domain. Groupingcorrelatednodes
into domainspermitssimpler analysisand more compact
models. Insteadof simulatingcomplex relationshipsbe-
tweendifferentnodes,we canprofile typesof nodes.

TheModel Builder collectsavailability statisticson dif-
ferentmachinetypes. Figure3(a) shows an examplewith
ten datapoints for eachof four machinetypes. Profiling
typesof machinesgreatlyreducesthenumberof machines
in the systemthat needto be monitored(i.e. type of ma-
chines < numberof machinesin system).From the sim-
pledatacollection,wecancomputemarginalandpair-wise
joint probabilitiesof failure(i.e. uptime,downtime,or com-
binations)asin Figures3(a)and3(b). After datahasbeen
collected,therearemany ways to build a model. For in-
stancetheChi SquareTestfor Independencecanbeusedto
testfor degreeof independencebetweenany two types.A
Bayesianview may alsobe appropiate– thereareseveral
possibleinterpretationsin thecontext of prior world knowl-
edge.Thedifficulty is in specifyingtheprior world knowl-
edge.Also, many well known clusteringalgorithmscanbe
usedto computedomains, highly correlated,ontypeof ma-
chines.Examplesof applyingsuchschemeshave appeared
in literature;suchas,mutualinformation[3].

Therearemany other techniquesavailablefor building
thesemodels;we arecurrentlyexamining the viability of
thealternatives.A commonmechanismusedto build these
modelsis to setupaweightedgraph= �->@?BADCFE andsetthe
weightontheedgeconnectingtwo nodesto beameasureof
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Figure 4. (a) H(X) is theentropy of X. Entropyis a mea-
sure of uncertainty. The more randoma variable is, the
more entropy it will have. (b) H(X,Y) is the joint entropy.
The joint entropy is the combineduncertaintyof two ran-
domvariables. (c) H(X IY) is theconditionalentropy. The
conditionalentropyof X giventhevalueof Y. Mutual In-
formation, I(X,Y) , is a measure of the reductionof theen-
tropyof X givenknowledge of Y

thesimilarity betweentwo nodes.Thisgraphis alsoknown
asasimilarity matrixWe show onemetricfor edgeweights
below andhow weusetheedgeweightsto build domainsin
Section5

Mutual Information as a Graph Edge Weight We use
mutual information to perform comprehensive pairwise
comparisonsto producean edgeweight connectingtwo
nodes.Themedicalfield hasusedmutualinformationin the
genomicprojectto find functionalgenomicclustersin RNA
expressiondata[3]. The mutual information is a measure
of theadditionalinformationknown aboutonetypeof ma-
chinewhengivenanother, asshown in equation1. EntropyJ

is themeasureof uncertaintyin a randomvariable.Mu-
tual Information is the reductionof that uncertaintygiven
anotherrandomvariable.
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where
J >_^`E is the entropy of ^ , entropy is a measure

of randomness,and
J >a^cb deE is the conditional entropy.

Mutual information is also definedin termsof joint and
marginalprobabilitydistributionsasin equation2
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where ^$ADd�~����VA��v����� . A mutual information at zero
meansthat the joint distribution of expressionvalueshold
nomoreinformationthanthetypesof machinesconsidered
separately. In this way, mutualinformationcanbeusedas
ametricbetweentwo typesof machinesrelatedby theirde-
greeof independence.It is hypothesizedthatthehigherthe
mutualinformationis betweentwo types,themorelikely it
is they have the samefailure relationship.We usemutual
information to group highly correlatedtypesof machines
into domainsandassertthat type of machinesin different
domainshave low correlation.



Other graph Edge Weights In additionto mutualinfor-
mationasadistancemetricfor correlation,weusedthejoint
pair-wiseprobabilityandthejoint pair-wiselog probability.
The pair-wise probability is the probability that the nodes
fail at thesame.

5 Set Creator

In this sectionwe discusstheSetCreator. To createdis-
seminationsets,theSetCreatormustfirst collect informa-
tion abouta sufficiently large set of nodes. The Creator
relieson thepropertiesof a DecentralizedObjectLocation
andRouting(DOLR)systemsuchasCAN [15], Chord[18],
Pastry[7], or Tapestry[8], to discovernew nodes.A DOLR
routesmessagesto nodesthatmostcloselymatchesthere-
questeddestination.Thus,eventhoughtheDOLR address
spaceis sparse,the SetCreatorcanusea scanof the ad-
dressspaceto reacha randomset of nodes. Servers that
arewilling to hostaspecifiedfunction(e.g.storefragments,
participatein a byzantineagreement,etc) respondwith a
securelysignedstatementof their type.

OncetheCreatorhascollectedasufficiently largepoolof
typesof nodes(e.g. severalhundred),it analyzestheprob-
ability for correlatedfailuresusingthe resultof the Model
Builder andcreatessetsof typeof nodesthat fail with low
correlation. Resultingdisseminationsetsshouldbe large
enoughthateachcomponentof a functionmaybesentto a
differentnodein thesetwith a few additionalnodesto re-
placefailednodes.Becausethemodelis constantlyevolv-
ing andthepropertiesof nodesareconstantlychanging,dis-
seminationsetseventuallyexpire. If no setsof sufficient
sizecanbefound,theSetCreatorseeksout othernodesto
replacesomemembersof thepool.

6 Disseminator

The Disseminatorsendsone componentto eachnode
in a disseminationset andwaits for signedacknowledge-
ments.If acksarereceivedfor all components,dissemina-
tion is complete. If acksfor somecomponentsarenot re-
ceived,theprocessmustdecideif enoughcomponentswere
acknowledgedto considerthe disseminationeffective. If
not, the Disseminatormay re-sendunacknowledgedcom-
ponentsto the extra membersof the set or redisseminate
completely. Notethatwhile theDisseminatornormallyuses
recently-createddisseminationsets,it may reuseold, un-
expired setsif necessary. Computingthe � of � coding
schemeandnetwork latency aretheonly performancebot-
tleneckfor the Disseminatorsincethe disseminationset’s
arepre-computedby aSetCreatorasdescribedin Section5.

7 Experimental Setup

Our experimentalsetupconsistedof 1909 web servers
locatedthroughoutthe world. We extractedeachnodes
characteristicsthrougha combinationof thewhoisnetwork
program,netcraft[1], andtelnet. The nodepropertiesthat
wecollectedwereadministrativedomain,operatingsystem,
geographiclocation,andwebserverprogram.Wecollected
uptimestatisticsthroughnetcraft[1], asnetcrafthasa con-
tractual1 agreementwith the siteowner to monitor thesite
for uptime. Theuptimestatisticswerecollectedon a daily
scale;that is, we queriedthe sitesuptimeon a daily basis
andif the sitesuptimewaslessthan24 hoursthe site was
considerednot available during someinterval in time the
previousday. We conductedourstudyfor two weeks.

After we collectedtheuptimedata,we performedthree
qualitative evaluations. First, we evaluatedwhether the
clusteringsmadesense;that is, we did a sanity checkto
seeif highly relatednodeswere placedin the sameclus-
ter. For example,web servers from microsoft.comin the
samebuilding shouldbe clusteredtogether. Second,we
comparedthe differentclusteringalgorithmsto eachother
usingthesamemetricfor comparison.Third, we seperated
thetwo weeksof datainto atrainingset(i.e. themodel)and
testset,first andsecondweek,respectfully. Thenwe com-
paredthe testsetto the modelwith our objective function
to minimizeinterclustersimilarity. Thatis, theaveragedis-
tance(edgeweight)betweena randomnodein onecluster
anda randomnodein a differentclusteris minimized.

Clustering We have implementedtwo different cluster-
ing algorithms: hierarchicalclustering[9] and normalized
cuts[17]. Thereare many other typesof clusteringalgo-
rithms to choosefrom, we chosethesetwo to seehow
a greedylinear running time algorithm(hierarchicalclus-
tering) would compareto an algorithmthat doeswhat we
want (i.e. simultaneouslyminimizing interclustersimilar-
ity andmaximizingintraclustersimilarity), but is possibly
NP-Complete.Normalizedcutsapproximatesby settingup
the analysisasan eigenvectorproblem. Hierarchicalclus-
teringcancreatesolutionsthathave local minimasbut are
not optimalglobally. Normalizedcutsis usedin thevision
communityto partitionandsegmentimages.

8 Preliminary Results

In this sectionwe presentpreliminaryevaluationfor the
disseminationarchitectureusingbothhierarchicalandnor-
malizedcutsclustering,both with mutual informationand
joint probability as a metric (the edgeweight). Also, we

1Thecontractoccursautomaticallywhenthesiteownerqueriesnetcraft
to bemonitored.Netcraftmonitorsover38million sites.
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Figure 5. Twoexampleclustersusingthenormalizedcuts
algorithmwith mutualinformationasa metric.Onecluster
is possiblyin thesameserverroomof ezboard.comwhere
all the servers havethe sameoperating system,and web
serverapplication. Theother cluster is spreadmore geo-
graphically, but all servers usesolarisasan operating sys-
temandtwoservers are locatedin Virginia.

usedthreedifferent clustersizes(16, 32, and 128) since
both clusteringalgorithmstake the numberof clustersas
input. In all, weproducedtwelvedifferentclustersfrom the
samedatainput.

Sanity Check In the two weeksthat we monitoredthe
1909web servers,only 306 exhibited at leastone failure.
Wedid notclustertheother1603serversbecausetherewas
nouncertaintyin thetimethatwemonitoredthenodes;that
is, the nodeswere always up. Hence,therewould be no
reductionin uncertainty(i.e. entropy) andthemutualinfor-
mationwouldbezero.Therefore,weperformedthecluster-
ing algorithmsonly on the306nodesthatshowedfailure.

Both hierarchicaland normalizedcuts clusteredma-
chinestogetherthatarelikely to becolocated,on thesame
powergrid,and/oronthesamesubnet.Figure5 showssome
of theclustersthat thenormalizedcutsalgorithmscreated,
demonstratingthat nodesthat were likely to fit the above
profilewereclusteredtogether.

Cluster Algorithm Comparison Hierarchicalclustering
andnormalizedcutshave two differentobjective functions.
Hierarchicalclusteringattemptsto minimize the interclus-
ter similarity betweenclustersin a greedyscheme.Due to
the greedinessof the algorithmthe sizeof the clustersare
often highly skewed (i.e. many nodesin one clusterand
many clusterswith few nodes). On the other hand,nor-
malizedcutsattemptto simultaneouslymaximizetheintra-

Days Hier#16 Norm#16 Hier#32 Norm#32
2 2.1082 2.0976 2.0084 2.0582
3 1.5607 1.5262 1.4702 1.4991
4 1.2789 1.3734 1.3091 1.3432
5 0.9138 1.0844 1.0157 1.0622
6 0.7928 1.0331 0.9631 1.0144

Table 1. Givena modelfrom the traing set (first week),
we computedthe average distance(mutual informationor
joint probability ) betweena nodein oneclusterandall the
nodesin the other clusters with an increasingnumberof
daysin the testset. This table showsthe relativeaverage
distancesfor the different clusteringalgorithms. We used
mutual informationfor this table, but joint probability has
similar relativedifferences.

clustersimilarity andminizetheinterclustersimilarity. This
leadsto amoreevendistributionof clustersize,but possibly
increasestheinterclustersimilarity.

In the datawe gathered,for hierarchicalclusteringinto
16 clusters,13 clustershadonenodeandoneclusterhad
themajority of theothernodes.Hierachicalclusteringinto
32and128clustersweresimilarly skewed.Thenormalized
cutsinto 16,32,and128hadmoreevenlydistributedcluster
sizes.

We computedthe averagemutual information(or joint
probability) betweennodesin different clustersafter the
first week; that is, the training set or “the model”. Then
we computedtheaveragedistancebetweenall nodesnot in
thesameclusterwith thesecondweekof data,the testset.
Table1 shows the relative comparisionbetweenhierarchi-
cal andnormalizedcutsclustering.Noticethathierarchical
clusteringhasa lower averagerelative to normalizedcuts,
asmentionedearlier.

9 Discussion and Future Work

Resultsin the previous sectionwas extremelyprelimi-
nary. With as little as two weeksof uptime statistics,it
is remarkablethat obviousclusterscanbe createddemon-
stratingcorrelationbetweensetsof nodes.However, some
nodesthat arelikely relatedmay not be clusteredwith the
limited datawe collected.Furtherdatagatheringandanal-
ysisis clearlyrequired.

In addition, more work needsto be doneto definean
objective function that clusterssimilar nodestogetherand
generatesclustersof reasonablesize. Thereis an interest-
ing tradeoff betweenthedegreeof non-correlationbetween
clustersandthefreedomto chosedisseminationsets(many
clustersof equalsizes). For instance,it is easyto put all
nodesin a singlecluster;this is not particularlyuseful for
dissemination.More than � clustersare desirableduring
dissemination– shouldoneor moreof thembeunavailable.



Thereare many featuresthat observation and analysis
may not capture. For example, the samecodebase(e.g.
operatingsystem)managedby differentcompaniesmayex-
hibit differentfailurecharacteristicsandthereforebeplaced
into differentclusters.For ByzantineAgreement,we may
needto takeanextrastepandmakesurethatwepick nodes
from different clustersin sucha way that the dissemina-
tion sethasdifferentsoftwarebase(operatingsystem)and
is spreadgeographically. The analysisof “types” of inde-
pendencemayneedto bedoneona per-applicationbasis.

In a world-scalesystem,data gatheringand analysis
must be a collaborative process. The collective probing
of millions or billions of nodesat fine granularityis some-
thingthatshouldprobablybeperformedby many individual
Model Builders.Theresultingdatawould needto becom-
binedtogetherin a scalablefashionto form a singlemodel.
Even more difficult is the questionof trust: Set Creators
mustdecidewhetherto trust modelsgeneratedby others.
Techniquesfor validatinginformationgeneratedby others
areanopenproblemat this time.

10 Conclusion

In this paper, we presenta framework for onlinediscov-
ery of groupsof server nodesthataremaximally indepen-
dentin their failure characteristics.We discussthe frame-
work in detail andprovide a preliminaryevaluation. This
type of framework is necessaryto achieve the strongre-
liablity guaranteespromisedby � of � replication tech-
niques. As peer-to-peersystemsbecomecommonplace,
techniquesfor correlationanalysiswill becomeincreasingly
important.
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