
Efficiently Binding Data to Owners in
Distributed Content-Addressable Storage Systems

Patrick Eaton, Hakim Weatherspoon, and John Kubiatowicz
University of California, Berkeley

{eaton, hweather, kubitron}@cs.berkeley.edu

Abstract

Distributed content-addressable storage systems use
self-verifying data to protect data integrity and to enable
graceful scaling. One feature commonly missing from these
systems, however, is the ability to identify the owner of a
piece of data in a non-repudiable manner. While a solu-
tion that associates a certificate with each block of data is
conceptually simple, researchers have traditionally claimed
that the cost of creating and maintaining certificates is too
great. In this paper, we demonstrate that systems can, in
fact, efficiently map data to its owner in a secure and non-
repudiable fashion. To reduce the cost of creating and
maintaining certificates, we extend the traditional content-
addressable interface to allow the aggregation of many
small data blocks into larger containers. The aggregation is
performed in a way that also supports self-verifying data at
the granularity of the block and container, fine-granularity
access, and incremental updates. We describe two proto-
type implementations and present preliminary performance
results from deployments on PlanetLab and a local cluster.

1 Introduction

In content-addressable storage (CAS) systems, data is
addressed not by its physical location but by a name that
is derived from the content of that data. In recent years, the
CAS interface, similar to the traditionalput()/get() in-
terface of a hashtable, has proven to be a solid foundation
upon which to build wide-area distributed storage systems
(e.g. [2] [13] [12]).

Distributed storage systems derive several favorable
properties from the CAS interface. First, a CAS interface
helps ensure data integrity. If a system carefully selects the
method used to derive names from data, clients can validate
the integrity of data retrieved from the system against the
name by which it was accessed. With self-verifying data,
clients can detect data altered by faulty or compromised

components and re-fetch from alternate sources. Also, a
CAS interface promotes system scalability. Because the in-
terface does not expose physical addresses to applications,
the system can replicate and transfer data freely to add hard-
ware resources or upgrade internal protocols.

One feature commonly missing from distributed content-
addressable storage systems, however, is the ability to deter-
mine the owner of data stored in the system. Identifying the
owner of a piece of data is critical for any system that wishes
to monitor per-user storage consumption or compute usage-
based fees. In this paper, we consider how to implement
efficiently this feature—the ability to identify the owner of
each piece of data—in distributed CAS systems.

The approach most commonly proposed for implement-
ing such functionality is to include a certificate with each
block of data. The certificate provides a secure, non-
repudiable binding between the data and its owner. The cer-
tificate remains co-located with the data, even as the data is
replicated or transferred.

While this solution is conceptually simple, an efficient
implementation has proved elusive. One impediment is the
time it takes the client to sign all of the certificates. In
fact, some designers have rejected the solution by reason-
ing that the cost of producing certificates is prohibitively
expensive [4]. To illustrate this problem, assume an appli-
cation running on a 3 GHz processor wishes to store 1 TB
of data. Dividing the data into 8 KB blocks and using 1024-
bit RSA cryptography, it would take more than six days to
create certificates for the data 1.

One approach to reduce the cost of creating certificates is
to allow the system to aggregate blocks into larger container
objects [6]. Then, a client needs only to provide a certificate
for each container, not each individual block. Aggregation
can reduce the cost of producing signatures dramatically.
Consider an application storing 1 TB of data into a system
that aggregates data into 4 MB containers. A client machine
with a 3 GHz processor could create the certificates in 17

1A 3 GHz Pentium-class processor can create a signature in 4 ms, as
measured with the command openssl speed rsa1024.

minutes, a reduction of three orders of magnitude over a
system that implements the certificate-per-block approach.

Aggregation, however, introduces other problems. For
example, because the current CAS interface provides no
support for aggregating data, clients must perform aggrega-
tion locally. This requires clients to buffer data until it can
fill a container; buffering limits data durability. Also, if the
system requires a client to retrieve an entire container when
accessing only a single small block, it unnecessarily wastes
bandwidth which can be especially costly at the edges of the
network where bandwidth may be scarce or expensive.

In this paper, we present a design that allows members of
a distributed content-addressable storage system to identify,
in a secure and non-repudiable fashion, the owner of each
piece of data stored in the system. To address the efficiency
challenges described above, the design exploits aggregation
in a novel way. The proposal aggregates small blocks of
data into larger containers (to amortize the cost of creating
and managing certificates) while simultaneously supporting
incremental updates (to obviate data buffering at clients)
and fine-granularity access (to allow clients to retrieve ex-
actly the data they need). The design protects data integrity
by maintaining self-verifiability at both the block and con-
tainer granularity. We also describe prototype implementa-
tions of the interface and present preliminary performance
from deployments running on PlanetLab and a local cluster.

In Section 2, we review some background concepts and
early distributed CAS systems. In Section 3, we present a
solution that allows systems to identify in a non-repudiable
fashion the owner of each piece of stored data while simul-
taneously supporting incremental updates, fine-granularity
access, and self-verifiability. Section 4 shows how to use
the interface to build a versioning back-up application. Sec-
tion 5 describes prototype implementations that we are
building and preliminary performance evaluations. Finally,
Section 6 concludes.

2 Background and prior work

In this section, we begin by reviewing the concepts be-
hind self-verifying data. We then study the designs of pop-
ular, first-generation distributed CAS systems, focusing on
their similarities and the consequences of those decisions.

2.1 Self-verifying data

Data is said to be self-verifying if it is named in a
way that allows any client to validate the integrity of data
against the name by which it was retrieved. Names of self-
verifying data, thus, serve ideally as identifiers in a content-
addressable storage system. The self-verifying property en-
ables clients to request data from any machine in the net-
work without concern of data corruption or substitution at-

tack. A malicious or compromised machine cannot deceive
a client with corrupt data—its attack is limited to denying a
block’s existence.

Traditionally, data is made self-verifying via one of two
techniques: hashing and embedded signatures. These tech-
niques were made popular by the Self-certifying Read-only
File System [4]. Hash-verified data is named by a secure
hash of its content. A client can verify hash-verified data
by computing the hash of the returned data and comparing
it to the name used to fetch the data. Hash-verified data is
immutable—if the data changes, the hash-verified name of
the data changes too.

Key-verified data is verified by a certificate that is signed
by a user’s public key. The certificate contains some token,
such as a secure hash of the content, that securely describes
the data. To verify key-verified data, a client checks the sig-
nature on the certificate and compares the data against the
verifier in the certificate. Commonly, key-verified data is
named by a hash of the public key that signs the data’s cer-
tificate. With this approach, each key pair can be associated
with only a single object. To allow the system to associate
multiple objects with a single key pair, other schemes hash
a combination of data, such as the public key and a human-
readable name, to create the name for the data. Key-verified
data can be mutable—a client can associate new data with a
key by creating a new certificate.

Many systems employ Merkle’s chaining technique [9]
with hash-verified data to combine blocks into larger,
self-verifying data structures. Such systems embed self-
verifying names into other data blocks as secure, unforge-
able pointers. To bootstrap the process, systems often store
the name of the root of the data structure in a key-verified
block, providing an immutable name for mutable data. To
update data, a client replaces the key-verified block. See,
for example, CFS [2], Ivy [11], and Venti [12].

2.2 Distributed CAS systems

Recently, researchers have used self-verifying data and
the content-addressable interface as a foundation for build-
ing distributed storage systems. Despite their independent
development, many systems share important design fea-
tures. In identifying common design features, we have
considered a number of popular, first-generation content-
addressable storage systems in the research literature in-
cluding CFS [2], Ivy [11], OceanStore [13], Total Re-
call [1], and Venti [12].

First-generation distributed content-addressable storage
systems provide a simple interface for clients to interact
with the storage system. The interface, shown in Table 1, is
often called a put()/get() interface due to its similarity
to the interface of a hashtable. Note, while we have shown
put hash() and put key() as distinct members of the

2

Traditional interface:
put hash(H(data), data);
put key(H(PK), data);

data = get(h);

Table 1. First-generation distributed CAS sys-
tems use a simple put()/get() interface.
The put hash() and put key() functions
are often combined into a single put() func-
tion. H() is a secure, one-way hash function;
h is a secure hash, as output from H().

interface, they are often implemented as a single put()
function.

Systems tend to use self-verifying data and the
put()/get() interface in a common manner, illustrated
in Figure 1. A client divides data into small blocks, typi-
cally 4–8 KB or less. It computes the hash-verifiable name
of each block and links the blocks together, using the names
as unforgeable references, to create a Merkle tree. Finally,
the client stores all blocks of the tree in the CAS system
using the put hash() interface. If the system supports
mutable data, the client will typically use the put key()
function to store a key-verified block that points to the root
of the Merkle tree, providing an immutable name to the mu-
table data.

To read data, a client first retrieves and validates the key-
verified root block of the data structure using the get()
function. It can then iteratively fetch and verify the other
hash-verified blocks by following the chain of hash-verified
names embedded in the tree.

Because each new hash-verified block of data has a
unique name, CAS systems naturally provide versioning ca-
pabilities. Some systems expose the versioning feature to
the end user [13] while others do not. Using copy-on-write
to provide efficient versioning has also been implemented
in other systems predating the distributed CAS systems that
we describe [10].

One notable counterexample to these design patterns is
the PAST [15] system. PAST uses the put hash() call
to store whole objects as hash-verified blocks. As a re-
sult, PAST cannot incrementally update objects; instead, it
stores new versions of an object as a single block using the
put hash() interface.

The design features shared among these implementa-
tions have a significant impact on the behavior of the re-
sulting systems. For example, the put()/get() inter-
face forces the storage infrastructure to manage data at the
same granularity as the client. While some applications,
like off-line data processing, handle data in large chunks,
many interactive and user-oriented applications tend to cre-
ate and access relatively small blocks of data. By supporting

V2V1

= Verifiable Pointer

R1:

I1: I2:

B1 B3 B4

I3:

R2:

B6B5B2

Figure 1. Clients divide data into small blocks
that are combined into Merkle trees. A key-
verified block points to the root of the struc-
ture. To update an object, a client overwrites
the key-verified block to point to the new root.
(V = version, R = version root, I = indirect
node, B = data block)

fine granularity access, these systems allow applications to
fetch data without wasting scarce bandwidth at the edges
of the network retrieving data that is not needed or already
cached. It allows applications to push data to the infrastruc-
ture as soon as it is created, improving durability.

Coupling the infrastructure’s unit of management with
the client’s unit of access, however, has several disadvan-
tages. Most relevant to our work, because each block is
managed independently in the infrastructure, to provide
non-repudiable binding of owner to data, a client must cre-
ate a certificate for each block. We have already detailed the
performance cost of such an approach.

Other consequences, though secondary to our work, also
impact the efficiency of the system. For example, some of
the indexing, management, and maintenance costs in the in-
frastructure are independent of the block size. Thus, manag-
ing the small blocks created at the client increases the load
on the infrastructure. Also, because each application-level
block is indexed independently, clients must issue separate
requests for each block they wish to read. Reading an ob-
ject of even moderate size can flood the storage system with
requests.

3 Using aggregation for efficient owner
identification

Our goal in this paper is to allow components of a dis-
tributed CAS system to identify the owner of each block of
data in the system. The solution we present is based on the
common practice of associating with each block of data a
certificate that asserts the owner of the block. Recognizing,
however, the prohibitive cost of providing a certificate for

3

each application-level block, we apply the lessons of previ-
ous storage systems research to our domain, using aggrega-
tion to improve system efficiency.

The classical filesystems literature demonstrates repeat-
edly how aggregation can improve efficiency of storage sys-
tems. For example, the Fast File System (FFS) [8] increases
system performance, in part, by aggregating disk sectors
into larger blocks for more efficient transfer to and from
disk. XFS [16] further aggregates data into extents, or se-
quences of blocks, to reduce the size of the metadata and
allow for fast sequential access to data. GoogleFS [5] aggre-
gates data from a single file further still into 64 MB chunks,
improving performance and per-object maintenance costs
for large files typical of their application domain.

More recently, the Glacier [6] distributed CAS system,
has shown how aggregation can reduce the number of ob-
jects that the system must index and manage. Glacier [6] re-
lies on a proxy trusted by the user to aggregate application-
level objects into larger collections. All collections in
Glacier are hash-verified and thus cannot be modified after
they are created.

3.1 System goals

While Glacier pioneered the use of aggregation in a dis-
tributed CAS systems, our work follows from a unique set
of goals. We list below the goals that guide our design for
using aggregation in content-addressable storage systems.

• Identification of data owners: The system must be
able to identify the owner of any piece of stored data
in a secure and non-repudiable fashion without refer-
ence to other blocks. This allows individual nodes in
the system to monitor consumption and compute us-
age fees on a per-user basis locally, without contacting
other machines in the system.

• Self-verifiability: To protect data integrity, all data
must be self-verifying at both the fine granularity of
the block and the coarse granularity of the container.
Self-verifiability allows clients to verify data locally
without rely on secure servers.

• Incremental update: For data durability, a client must
be able to write data to the system as it is created,
without local buffering. Thus, the system must al-
low clients to add blocks to containers that are already
stored in the system.

• Fine-granularity access: To conserve bandwidth at
the edges of the network, the system must allow clients
to access individual blocks without retrieving the en-
tire enclosing container.

cert v cert v

cert’ v’write: read:

Client Client

Distributed CAS System

Key−verified Extent Hash−verified Extent

Figure 2. At a high-level, the design ag-
gregates collections of variable-sized blocks
into extents. Clients can add data blocks
to key-verified extents and read individual
blocks from any extent. With each extent, the
system stores a certificate that identifies the
owner of the data and includes a verifier that
describes the data in the extent.

• Low infrastructural overhead: The system should
not require the infrastructure to index and maintain
data at the block level. The design should allow the
infrastructure to amortize the cost of maintaining data
and verifying certificates over the larger containers.

3.2 Design overview

Figure 2 depicts a high-level design that meets the goals
of Section 3.1. The storage system maintains a collec-
tion of containers filled with variable-sized application-
level blocks called extents. Extents are either mutable key-
verified objects or immutable hash-verified objects. All data
in an extent is owned by a single principal. Associated with
each extent is a certificate signed by a client that includes
the client’s identify. The certificate serves our primary goal
of allowing components to identify the owner of the data.
The certificate also contains a token that represents the cur-
rent contents of the extent. The token is a cryptographically-
secure verifier (e.g. secure hash) that summarizes the con-
tents of the extent.

The system supports incremental update by allowing a
client to add data to a key-verified extent. The client submits
a write request to the storage infrastructure that includes the
data to be written and a new certificate. The certificate con-
tains a new verifier, updated to reflect the data to be added.

To allow different components in the system to manage

4

Two-Level interface:
status = create(H(PK), cert);
status = append(H(PK), cert, data[]);
status = snapshot(H(PK), cert);
status = truncate(H(PK), cert);
status = put(cert, data[]);

cert = get cert(ext name);
data[] = get blocks(ext name, block name[]);
extent = get extent(ext name);

Table 2. By extending the traditional
put()/get() interface, CAS systems
can support extents and two-level naming.

Certificate contents:
verifier token that verifies extent contents
num blocks the number of blocks in the container
size the size of data stored in the container
timestamp creation time of certificate
ttl time the certificate remains valid

Table 3. The certificate stored with each ex-
tent includes fields to bind the data to its
owner and other metadata fields.

data at different granularities, the system supports two-level
naming. In two-level naming, each block is identified not by
a single name, but by a tuple. The first element of the tuple
identifies the enclosing extent; the second element names
the block with the extent. Retrieving data from the system
is a two-step process. The system first locates the enclosing
extent; then, it extracts individual application-level blocks
from the extent. Two-level naming reduces the management
overhead incurred by the infrastructure by decoupling the
infrastructure’s unit of management from the client’s unit
of access. The infrastructure needs only to track data at
the extent level, and the client can still address individual
blocks.

3.3 An API for extent-based storage

Table 2 presents an interface for an extent-based storage
system like the one described above. All operations that
modify data stored in the system require the client to pro-
vide a certificate authenticating the change; Table 3 lists the
contents of a certificate. To support the extent-based model,
the interface extends the traditional put()/get() inter-
face, shown in Table 1, defining additional operations for
key-verified data.

The new operations allow the system to support ex-
tents and two-level naming. Figure 3 shows how the

putappend
truncate

create

Key−verified Data Hash−verified Data

snapshot

get

Figure 3. The expanded interface of Ta-
ble 2 provides different commands to op-
erate on different types of self-verifying
data. Commands create(), append(), and
truncate() operate on key-verified extents
while snapshot() converts a key-verified ex-
tent into a hash-verified extent.

operations relate to different types of self-verifying data.
The create(), append(), and truncate() opera-
tions allow clients to manage key-verified extents. The
create() operation initializes a new, empty container for
the client; append() allows the client to add data to an
existing key-verified extent; and truncate() deletes the
contents of an extent. The success of these operations de-
pends on the client providing a certificate that contains a
valid verifier. To produce a valid verifier on an append()
operation, the client must know the current contents of an
extent. To simplify the task, the system constructs the veri-
fier in a special manner (described in Section 3.4).

Another extension in the interface is the snapshot()
operation. The snapshot() operation converts muta-
ble key-verified extents to immutable hash-verified extents.
While the interface derives much of its power from the
ability to append data to key-verified extents, it is not fea-
sible to store all data in key-verified extents. Doing so
would require clients to manage a large number of key
pairs (which is a difficult key management challenge) or
extents to grow boundlessly large (which is undesirable be-
cause it limits how the storage system can replicate, man-
age, and transfer data). Depending on the implementation,
the system may copy the data to a new set of servers dur-
ing the snapshot() operation. Since the verifier is a
cryptographically-secure digest of the contents of an extent,
it is a natural name for the new hash-verified extent. We
envision that a client-side library responsible for communi-
cating with the storage system will call the snapshot()
when an extent reaches a specified maximum capacity.

The interface also provides three functions to access data
stored in the system. The get blocks() operation is the
primary function for reading data, allowing applications to
retrieve one or more application level blocks from the sys-
tem. The get cert() operation returns the certificate as-
sociated with an extent, allowing an application to deter-

5

mine the state of data stored in the system. Finally, the
get extent() operation supports bulk transfer and re-
trieval; it returns the entire container including all blocks
and the certificate.

Consider the following example to illustrate a typical use
of the proposed interface. Upon joining the system for the
first time, a client uses the create() interface to create a
new key-verified extent in the system. The storage system
recruits a set of storage servers to host the extent. (For the
current discussion, assume the existence of a black box that
can identify candidate servers. We call this the set identi-
fication service.) The set of servers allocate space for the
extent and agree to participate in its management.

After an extent has been created, the client can add data
using the append() operation. A client can append data to
any key-verified extent for which it can create a certificate,
signed with the proper key, that asserts those changes.

When the key-verified extent reaches a predetermined
maximum size, the client (or more likely, a library work-
ing on behalf of the client) converts mutable extent to an
immutable hash-verified extent using the snapshot() in-
terface. Like create(), snapshot() must query the
set identification service; however, the service may return a
set containing some or all of the servers already hosting the
key-verified extent. If the sets do intersect, the system may
consume less network bandwidth in creating a hash-verified
version of the extent.

After saving data in an immutable format, the client can
reinitialize the key-verified extent with a truncate() op-
eration. The truncate() operation removes all blocks
from the extent, leaving a key-verified extent that is equiv-
alent to a newly created extent. While snapshot() and
truncate() are typically used together, we have elected
to make them separate operations for ease of implemen-
tation. Individually, each operation is idempotent, allow-
ing clients to retry until successful execution is assured.
In Section 4, we will show how the snapshot() and
truncate() operations can be used to facilitate storing
streams of data. Alternatively, an application could use
truncate() without snapshot() to overwrite data
stored in the system.

The append(), snapshot(), and truncate()
operations that transform key-verified extents are useful for
applications that periodically write small amounts of data,
allowing the system to aggregate data in a way that was
not possible previously. But in situations that applications
quickly write large amounts of data, using the sequence
of operations can be inefficient. Instead, applications may
write collections of blocks directly to hash-verified extents
using the put() operation. A client can have multiple
outstanding put() operations for a single key pair. The
put() operation also relies of the set identification service.

H(Dn)

N0

H(D0)

N1

H(D1)

Nn

H(PK)

Figure 4. To compute the verifier for an ex-
tent, the system uses the recurrence relation
Ni = H(Ni−1 + H(Di)). N−1 = H(PK) where
PK is a public key.

3.4 Block names, verifiers, and extent
names

Central to the API presented in Section 3.3 is the pro-
tocol used to name blocks and create extent verifiers. This
section describes the approach we use.

Blocks are named with a secure, one-way hash function.
The key advantage of this approach is simplicity. Recall that
to retrieve data from the network, a client must supply a tu-
ple containing both an extent name and a block name. Using
names derived from cryptographically secure one-way hash
functions allows clients to verify data locally with informa-
tion they already possess.

To create extent verifiers, we use a chaining method [7]
shown in Figure 4. Assume an extent containing a sequence
of data blocks, Di, with names H(Di). The verifier is
computed using the recurrence relation Ni = H(Ni−1 +
H(Di)), where + is the concatenation operator. We boot-
strap the process by defining N−1 to be a hash of the public
key that signs the extent’s certificate. This definition en-
sures that the names of extents signed by different principals
do not conflict.

Using chaining to create verifiers has several advantages.
It allows the system to compute the verifier incrementally;
when a block is added to an extent, the system must hash
only the new data, not all data in the extent, to compute the
running verifier. Also, chaining creates a verifiable, time-
ordered log recording data modifications. Finally, when
an extent is converted from a key-verified object to a hash-
verified object during the snapshot() operation, the ver-
ifier can be used as the new hash-verified name without
modification.

3.5 Other benefits

In addition to supporting incremental update and fine-
granularity access, extents and two-level naming also al-
low distributed CAS systems to amortize some management
costs. For example, two-level naming reduces the cost stor-
ing certificates by amortizing the storage overhead over a

6

proj1

budget

proj2

report reqs

docs

sched

Figure 5. A simple file system used as a run-
ning example.

whole extent, allowing systems to devote a greater percent-
age of their resources to storing user data. Similarly, two-
level naming reduces the query load on the system because
clients need to query the infrastructure only once per ex-
tent, not once per block. Finally, assuming data locality—
that clients tend to access multiple blocks from an extent—
systems can exploit the use of connections to manage con-
gestion in the network better.

4 Example application: versioning backup

To demonstrate how one might use the interface de-
scribed in Section 3, we now present a high-level design
of an application, namely a versioning filesystem back-up
application.

The goal of this application is to convert the tree-based
directory structure of the filesystem into a form that can
be stored using the two-level API of Table 2. This design
writes filesystem data into a sequence, or chain, of extents.
In this simple design, each directory is stored as a single,
variable-sized block containing the directory entries and a
verifiable reference to each child; each file is stored as a
single, variable-sized block containing the file metadata and
data. (A more complete implementation could use the same
techniques described in this section to divide large direc-
tories and files into blocks.) The application appends file
and directory blocks to a key-verified extent until the ex-
tent reaches a specified maximum capacity. The application
then snapshots the extent to convert it to hash-verified im-
mutable data. To prepare the key-verified extent for more
data, the application truncates the extent. The application
inserts a small block of metadata as the first block into each
extent. This metadata block serves to link the many extents
into a single chain.

We will assume that the user associates a unique key
pair with each filesystem that she wishes to backup. To
archive a filesystem—for example, the simple filesystem
shown in Figure 5—the back-up application first translates
the filesystem into a self-verifying Merkle tree. The form of
the resulting Merkle tree for the sample filesystem is shown
in Figure 6(a). (We will explain the derivation of the veri-

fiable pointers below.) The translation process is analogous
to that used in CFS [2]. Note the similarity between Fig-
ure 6(a) and the first version of the object shown in Figure 1.

The key challenge when creating the Merkle tree is in de-
termining the self-verifying names to embed in the tree. Re-
call that to retrieve a block from a system that implements
two-level naming, one must provide the extent name and the
block name. If, however, we wish to use the snapshot()
functionality to convert key-verified extents to hash-verified
extents, we cannot know the eventual hash-verified name of
an extent as long as it is mutable. So, without knowing the
eventual hash-verified name of an extent, how do we refer
to a block when building the Merkle tree?

To create unique, unforgeable references for blocks
stored in key-verified extents, the application assigns a se-
quence number, s, to each extent. New key-verified ex-
tents are initialized with s = 0. After executing the
snapshot() and truncate() operations on an extent,
the application clones the metadata block from the previ-
ous extent, increments the sequence number, and inserts the
block in the otherwise empty extent. When creating or up-
dating the Merkle tree, the application embeds block refer-
ences of the form (s, H(Di)) where H(Di) is the hash of
the data block.

The references embedded in the hash tree cannot be used
to retrieve data directly because the storage system does not
identify extents by application-defined sequence numbers.
To enable clients to retrieve data using the references em-
bedded in the tree, the application also maintains a map-
ping that resolves the sequence number to the permanent,
hash-verified extent name. This mapping is placed along
with the sequence number in the metadata block in each ex-
tent. Each time the mutable extent is made hash-verified
and then truncated, the application records the mapping
sj−1 → (Ej−1, Mj−1) where Ej−1 is the hash-verifiable
extent name of the previous extent and Mj−1 is the block
name of the metadata block in the previous extent.

Putting all of these mechanisms together, Figure 6(b)
shows the contents of the chain of extents after archiving
the first version of the filesystem. The first block in each
extent contains the metadata information for the application
including the sequence number of the extent and the map-
pings between previous sequence numbers and the corre-
sponding hash-verified names of their extent. In storing the
initial version of the filesystem, the application completely
filled one extent and partially filled another. The filled ex-
tent, E0, has been converted to a hash-verified extent and
is immutable. The partially filled extent H(PK) is a key-
verified extent and can store more data at a later time. The
first block in H(PK), its metadata block includes the map-
ping for the previous extent E0. By observing the organiza-
tion of data in the extents in Figure 6(b), the reader should
now understand the derivation of the verifiable pointers in

7

proj2: (s=0, H(report)) (s=0, H(reqs))proj1: (s=0, H(budget)) (s=0, H(sched))

docs: (s=0, H(proj1)) (s=1, H(proj2))

reqsreportbudget sched

(a)

s=−1−>
s=−1−> s=0−>(E0,M0)

budget

sched

proj1

report

reqs

proj2

docs

M0: s=0 M1: s=1

Hash−Verified
Extent E0

Key−Verified
Extent H(PK)

(b)

Figure 6. (a) The back-up application translates the filesystem into a Merkle tree. The verifiable
pointers are of the form (extent sequence number, block name). Verifiable pointers refer to extent by
sequence number because the permanent, hash-verifiable name is not known until later in the archiv-
ing process. (b) The Merkle tree is stored in two extents. The first extent, E0, is filled and has been
converted to a hash-verified extent. The second extent, H(PK), is a partially filled key-verified ex-
tent. Notice that the first block in extent H(PK) contains metadata including a reference to the
metadata block, M0 of the previous extent.

(s=0, H(proj1)) (s=1, H(proj2’))docs’:

(s=1, H(report’)) (s=1, H(reqs’))proj2’:

reqs’report’

(a)

s=−1 −>
s=−1−>

s=−1−>

s=0−>(E0,M0) s=1−>(E1,M1)
s=0−>(E0,M0)

budget

sched

proj1

report

reqs

proj2

docs

report’

reqs’

proj2’

docs’

Extent H(PK)Extent E1
Hash−Verified

Extent E0
Hash−Verified Key−Verified

M1: s=1 M2: s=2M0: s=0

(b)

Figure 7. (a) The Merkle tree resulting from translating the updated file system. The dashed pointer
indicates a reference to a block from the previous version. (b) The contents of the extent chain after
storing blocks of the updated filesystem.

the Merkle tree of Figure 6(a).

Figure 7 shows how the application handles modifica-
tions to the filesystem. Assume the user edits the files in
the proj2 directory. Figure 7(a) shows the Merkle tree re-
sulting from these changes. The dashed pointer indicates
a reference to a block from the previous version, namely
block (s = 0, H(proj1)). Figure 7(b) shows the contents
of the extent chain after recording the changes. The appli-
cation again filled the key-verified extent which has been
converted to the immutable hash-verified extent E1. It then
re-initialized the key-verified extent, filled it with a meta-
data block recording the hash-verified names of previous
extents and the name of the metadata block in those extents,
and appended the remainder of the filesystem data.

To recover the name of an extent corresponding to a se-

quence number, the application must consult the mappings
that are stored in the extent. The mapping can always be
found as the first data block of the key-verified extent cor-
responding to the object. An application can trade storage
for lookup latency by storing more or fewer mappings in
each extent. A client may also keep a local cache of these
immutable mappings to accelerate future translations.

5 Prototype implementation and evaluation

To evaluate the API for content-addressable storage pre-
sented in this paper, we have built two prototype systems.
In this section, we discuss the prototypes and present eval-
uation results from each.

8

5.1 Experimental environment

We use several different shared test-beds to run our ex-
periments. The storage cluster is a 64-node cluster; each
machine has two 3.0 GHz Pentium 4 Xeon CPUs with 3.0
GB of memory, and two 147 GB disks. Nodes are con-
nected via a gigabit ethernet switch. Signature creation and
verification routines take an average of 7.8 and 0.5 ms, re-
spectively.

The test cluster is a 42-node cluster; each machine has
two 1.0 GHz Pentium III CPUs with 1.0 GB of memory, and
two 36 GB disks. Signature creation and verification takes
an average of 24.9 and 1.4 ms, respectively. The cluster
shares a 100 Mbps link to the external network.

Finally, PlanetLab is a distributed test-bed for research.
We use 300 heterogeneous machines spread across most
continents in the network. While the hardware configura-
tion of the PlanetLab nodes varies, the minimum hardware
requirements are 1.5 GHz Pentium III class CPUs with 1
GB of memory and a total disk size of 160 GB; bandwidth
is limited to 10 Mbps bursts and 16 GB per day. Signature
creation and verification take an average of 19.0 and 1.0 ms,
respectively.

5.2 Single-server prototype

The first prototype is a single-server implementation that
“stores” data in memory. The prototype implements the full
API presented in Table 2. We used this prototype to test the
completeness of the API by building several small applica-
tions, including the back-up application of Section 4.

We also use this prototype to measure the effects of the
API on the client. Because the server does not communicate
with other servers (or even the local disk), clients receive
responses with very low latency. This allows us to isolate
the behavior of the client.

The prototype is written in Java. We use the Java imple-
mentation of 1024-bit RSA cryptography. The client and
server communicate using RPC. In the measurements be-
low, the server is hosted on the storage cluster, and the client
is hosted on the test cluster.

The proposed API should improve client write through-
put. When storing multiple blocks, the client needs to pro-
vide only a single signed certificate to authorize all of the
changes. Because computing the signature for a certificate
is a relatively expensive operation, this change should result
in a significant improvement.

We measure this effect using a simple throughput mi-
crobenchmark. In this test, a single client write data
as quickly as possible using the append() operation.
When an extent contains 1 MB of data, the client calls the
snapshot() and truncate() sequence. Each update
contains one or more 4 KB application-level blocks; we

 100

 200

 300

 400

 500

 600

 700

 800

 900

 4 8 16 32 64 128 256

T
hr

ou
gh

pu
t (

K
B

/s
)

Update Size (KB)

Client Throughput

Traditional Interface
Proposed Interface

Figure 8. The proposed interface allows
clients to amortize the cost of signature cre-
ation over several blocks of data. This allows
applications to service writes with higher
throughput than the traditional interface that
must sign every block individually regardless
of the size of the update.

measure the throughput of the client as we vary the size of
the update. Each test lasts 60 seconds; each data point is the
average of 5 tests. Figure 8 shows that clients using the pro-
posed interface can achieve a near-linear improvement in
write throughput by amortizing the cost of computing signa-
tures over larger updates. The graph also shows the through-
put of a clients using the traditional put()/get() inter-
face which requires a separate signed certificate for each
block.

5.3 Antiquity: a distributed prototype

We have begun work on a second prototype called An-
tiquity. With this prototype, we are exploring how to im-
plement the two-level naming interface efficiently in a dis-
tributed system. At this stage of development, we can pro-
vide a high-level overview of the distributed prototype and
present a preliminary performance evaluation.

Figure 9 illustrates the main components of the proto-
type. The primary role for most machines participating in
the system is that of storage server. Storage servers are re-
sponsible for long-term storage of extents; they also handle
requests to append data to existing extents, to convert key-
verified data to hash-verified form, and to read data from the
system. To ensure availability and durability in the presence
of Byzantine failures, the storage servers implement repli-
cated state machines. Storage servers rely on distributed
hashtable (DHT) [3] to index and locate data.

To access the system, a client communicates with a
nearby gateway using RPC. The gateway uses the under-

9

Client Gateway

Storage Servers

Set ID Service

Figure 9. The components and interaction of
the Antiquity distributed prototype.

lying DHT to locate the appropriate storage servers to ex-
ecute the request. For operations that update the state of
the storage servers, the gateway forwards the message to
each replica. If a client cannot obtain a satisfactory result
through a given gateway, it can retry the operation through
an alternative gateway.

We described the role of the storage set identification
service in Section 3.3. Briefly, it identifies sets of storage
servers to participate in the management of an extent. The
prototype implements this service as a single machine that
creates storage sets based on the neighbor lists from the un-
derlying DHT. Design of a more robust and fault-tolerant
storage set identifier service is planned.

This prototype is also written in Java. It uses the Java
implementation of 1024-bit RSA cryptography and makes
extensive use of RPC. It uses the Bamboo DHT [14]. The
prototype has been running semi-continuously in two sep-
arate installations since early July. We run a small test in-
stallation on the storage cluster and a larger installation on
PlanetLab. Both installation are configured to replicate each
extent on four storage servers.

5.3.1 Performance results

Though the prototype is still under development, we can
present preliminary performance results from latency and
throughput microbenchmarks. Note that we have not yet
optimized this implementation for performance.

The throughput microbenchmark: First, we study the
throughput of the system using the microbenchmark de-
scribed in Section 5.2.

First, consider the throughput for a single client. Fig-
ure 10 shows the throughput of a client as the update size
varies; this graph is the analog to Figure 8 for the distributed
prototype and shows the same trends. The throughput of a
single client increases by allowing the client to amortize the

 0

 50

 100

 150

 200

 250

 300

 4 8 16 32 64 128 256

T
hr

ou
gh

pu
t (

K
B

/s
)

Update Size (KB)

Client Throughput

Traditional Interface
Proposed Interface

Figure 10. With the distributed prototype, as
with the centralized server, client throughput
increases with update size by allowing the
clients to amortize the cost of producing cer-
tificates over multiple blocks of data.

cost of producing certificates over multiple blocks of data.
Next, consider the scalability of a single gateway. In the

distributed prototype, the gateway is responsible for accept-
ing client requests and forwarding those requests to appro-
priate components in the system. For most operations, the
gateway must forward the message to the four replicas that
store an extent. Figure 11 plots the write throughput of a
single gateway as the number of clients varies. The duration
of each test was 6 minutes; we configure the system to use
1 MB extents, 32 KB updates, and 4 KB blocks. For small
numbers of clients, the aggregate throughput increases with
the number of clients. The aggregate throughput through
the single gateway peaks at 1.6 MB/s for 16 clients perform-
ing 32 KB appends. With even more clients, the aggregate
throughput starts to fall due to processing load and network
contention.

The latency microbenchmark: The second microbench-
mark measures the latency of individual operations. For
each operation, we measure the latency as the time a client
begins sending a request to the gateway until the client re-
ceives the response. In Figure 12, we report the cumulative
distribution function (CDF) of the latency of each type of
operation assuming 1 MB extents, 32 KB updates, and 4
KB blocks. Figure 12(a) reports on the system hosted on
the cluster; Figure 12(b) reports on the system hosted on
PlanetLab.

First, consider the performance on the cluster (Fig-
ure 12(a)). In general, the latency of an operation depends
on how much data the operation must transfer and whether
the operation requires the use of the storage set identifier
service. The append() and truncate() operations are
the fastest. These operations transfer little or no data and

10

 100

 1000

 1 2 4 8 16 32

T
hr

ou
gh

pu
t (

K
B

/s
)

Number of Clients

Throughput vs. Number of Clients (Incremental)

Append/Snapshot/Truncate Throughput (KB/s)

Figure 11. The throughput of update opera-
tions through a single storage cluster gate-
way as a function of number of clients. Ex-
tent size = 1 MB, Update Size = 32KB, Block
Size = 4 KB, Test Duration = 6 minutes.

do not require the use of the set identifier service. The
append() operation (median latency of 78 ms) is faster
than the truncate() operation (median latency of 132
ms) because the former requires one sequential write to the
local disk whereas the latter requires several writes to delete
data that is scattered across the disk, and, in the local cluster,
disk latency dominates network latency. The create()
operation is the next fastest operation. While it does not
transfer any data, it must query the set identification server
for a set of servers to host the new extent. Finally, the
snapshot() and put() operations are the slowest. Not
only must they query the set identification service, but they
must also transfer a full 1 MB extent to multiple storage
servers. The snapshot() operation copies data to a new
set of storage servers because the set identification service
determines storage sets based on extent name.

The performance trends on the PlanetLab deploy-
ment mirror those on the cluster. The append() and
truncate() operations are the fastest. On PlanetLab,
however, the truncate() operation (median latency of
1293 ms) is faster than the append() operation (me-
dian latency of 2466 ms) because network latency dom-
inates disk latency. Because of the cost of transferring
large extents across the wide area, snapshot() and
put() are very high latency operations; the median la-
tency for put() operations is 13,462 ms and the median
latency for snapshot() is 23,332 ms. We believe that
snapshot() takes longer than put() because the disk
is a highly-contended resource in PlanetLab and reading the
key-verified extent from disk before transfer can take a sig-
nificant time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000

Fr
ac

tio
n

of
 E

ve
nt

s

Latency (ms)

CDF of Operation Latency

Append
Truncate
Create
Snapshot
Put

(a) Cluster

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000

Fr
ac

tio
n

of
 E

ve
nt

s

Latency (ms)

CDF of Operation Latency

Truncate
Append
Create
Put
Snapshot

(b) PlanetLab

Figure 12. The CDF of operation latency for a
single client through a single gateway on (a)
the cluster and (b) PlanetLab. (Block Size = 4
KB, Update Size = 32 KB, Extent Size = 1 MB)

6 Conclusion

In this paper, we have examined the problem of enabling
machines in distributed CAS systems to identify the owners
of the data that they store. The basic solution, attaching a
certificate to each block, has been proposed before. We have
shown how a novel use of aggregation can reduce the costs
of creating and managing the certificates and presented an
API to support that technique. We are currently building
a prototype implementation of this interface. We hope to
report on lessons learned from this system soon.

Acknowledgments

The authors would like to thank Dennis Geels, Emil Ong,
and the anonymous reviewers for comments that greatly im-
proved the presentation of this paper.

11

References

[1] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G. M.
Voelker. Total recall: System support for automated avail-
ability management. In Proc. of NSDI, pages 337–350, Mar.
2004.

[2] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Sto-
ica. Wide-area cooperative storage with CFS. In Proc. of
ACM SOSP, pages 202–215, Oct. 2001.

[3] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Sto-
ica. Towards a common API for structured peer-to-peer
overlays. In Proc. of International Workshop on Peer-to-
Peer Systems, Feb. 2003.

[4] K. Fu, M. F. Kaashoek, and D. Mazieres. Fast and secure
distributed read-only file system. In Proc. of OSDI, Oct.
2000.

[5] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file
system. In Proc. of ACM SOSP, pages 96–108, Oct. 2003.

[6] A. Haeberlen, A. Mislove, and P. Druschel. Glacier: Highly
durable, decentralized storage despite massive correlated
failures. In Proc. of NSDI, May 2005.

[7] J. Li, M. Krohn, D. Mazires, and D. Shasha. Secure un-
trusted data repository (sundr). In Proc. of OSDI, pages
121–136, Dec. 2004.

[8] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A
fast file system for UNIX. Computer Systems, 2(3):181–197,
1984.

[9] R. C. Merkle. A digital signature based on a conventional
encryption function. In Proc. of CRYPTO, pages 369–378,
1988.

[10] S. J. Mullender and A. S. Tanenbaum. A distributed file
service based on optimistic concurrency control. In Proc. of
ACM SOSP, pages 51–62, Dec. 1985.

[11] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. Ivy:
A read/write peer-to-peer file system. In Proc. of OSDI, Dec.
2002.

[12] S. Quinlan and S. Dorward. Venti: a new approach to
archival storage. In Proc. of USENIX FAST, Jan. 2002.

[13] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and
J. Kubiatowicz. Pond: the OceanStore prototype. In Proc.
of USENIX FAST, pages 1–14, Mar. 2003.

[14] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling
churn in a DHT. In Proc. of USENIX Technical Conference,
June 2004.

[15] A. Rowstron and P. Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer stor-
age utility. In Proc. of ACM SOSP, pages 188–201, Oct.
2001.

[16] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishi-
moto, and G. Peck. Scalability in the XFS file system. In
Proc. of USENIX Technical Conference, pages 1–14, Jan.
1996.

12

