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Abstract

Global cloud services have to respond to workloads that shift

geographically as a function of time-of-day or in response

to special events. While many such services have support

for adding nodes in one region and removing nodes in

another, we demonstrate that such mechanisms can lead

to significant performance degradation. Yet other services

do not support application-level migration at all. Live VM

migration between availability zones or even across cloud

providers would be ideal, but cloud providers do not support

this flexible mechanism.

This paper presents the Supercloud, a uniform cloud

service that supports live VM migration between data

centers of all major public cloud providers. The Supercloud

also provides a scheduler that automatically determines

when and where to move VMs for optimal performance.

We demonstrate that live VM migration can support shifting

workloads effectively, with low downtimes and transparently

to both services and their clients. The Supercloud also

addresses challenges for supporting cross-cloud storage and

networking.

Categories and Subject Descriptors D.4.7 [Organization

and Design]: Distributed systems

Keywords Supercloud, Follow the Sun, Application

Migration

1. Introduction

Live VM migration [22] is a technology that enables

application migration by transparently migrating a VM

to different physical locations. Cloud providers can use
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this to balance load among physical resources or to

offload hardware that needs to be replaced or upgraded.

Unfortunately, cloud providers have not exposed this

powerful capability to its users. Studies have demonstrated

that commercial applications have workloads that show both

temporal and spatial variability [19, 26, 51], and even a

tiny increase in the latency could cause significant revenue

drop [9]. For example, Google reported that a 500ms delay in

page load times caused a 20% drop in traffic and revenue [3].

Live migration within an availability zone would have little

value to users looking to optimize geographic load shifts

and would complicate the task of load balancing to cloud

providers. Cloud providers do not support migration across

availability zones because they provide only local storage in

availability zones, and network routing for migrating VMs

would add significant complexity. Supporting migrating

VMs between different cloud providers is contrary to

competitive concerns and also faces technical challenges

such as incompatible hypervisors, isolated networks, and

heterogeneous storage.

Many cloud services such as ZooKeeper [31] and

Cassandra [20] provide mechanisms to add and remove

nodes that can be used to support application-level

migration. We present experimental results that show

that such mechanisms can cause significant service

degradation during migration compared to straightforward

VM migration. Yet other cloud services such as MySQL

do not support application-level migration—VM migration

provides a simple solution.

In this paper, we present the Supercloud, a cloud

architecture that enables application migration as a service

across different availability zones or cloud providers. The

Supercloud provides interfaces to allocate, migrate, and

terminate resources such as virtual machines and storage

and presents a homogeneous network to tie these resources

together. Moreover, the Supercloud provides a scheduling

framework for automating placement and migration that

each application can customize to optimize metrics such

as client-perceived latency. While the Supercloud could be

deployed as a public cloud service, in its current form it is

intended to be used as a private cloud, and different users

create their own instantiations.



The Supercloud can span across all major public cloud

providers such as Amazon EC2, Microsoft Azure, Google

Compute Engine, and Rackspace etc., as well as private

clouds. Supercloud users have the freedom to re-locate VMs

to many data centers across the world, irrespective of owner

and without having to implement complex re-configuration

and state re-synchronization in their applications. Using

the Supercloud, an application can easily offload from an

overloaded data center to another one with a different

infrastructure. We have been working with the NSF Aristotle

Cloud Federation project [12] to integrate cloud resources in

different universities for supporting research scientists and

engineers.

In implementing support for live application-level

VM migration we had to address various challenges

relating to heterogeneity, networking, and storage. The

Supercloud leverages nested virtualization [48], eliminating

the need for VM management support from underlying

providers. We designed and implemented a new distributed

storage system optimized for wide-area cross-provider

VM migration. It decouples providing strong consistency

from update propagation, improving latency while reducing

overhead. We deploy a high performance Software-Defined

Network (SDN) built with Open-vSwitch and VXLAN

(Virtual Extended LAN) tunnels crossing cloud boundaries

and a Frenetic [25] controller. We also designed and

evaluated various solutions to deal with migrating services

that use public IP addresses. The Supercloud runs the

OpenStack platform and appears to users as a single private

OpenStack cloud. A new scheduler monitors workload and

automatically determines the optimal location for running

services.

In this paper we use migration to change VM placement

to reduce client-perceived latency. But the Supercloud

can also be used to optimize metrics such as price or

availability [33], or as a enabling technology for offloading

from a overloaded private data center to a public cloud [32].

This paper makes the following contributions:

• We propose Migration-as-a-Service to support

geographically shifting workloads (Section 2);

• We design a scheduling framework for handling

application migration automatically (Section 3);

• We provide storage and networking solutions for

supporting efficient VM migration (Section 4);

• We evaluate the performance of the Supercloud and

demonstrate the benefits of leveraging crosscloud VM

migration (Section 5).

2. Application Migration

For a service that has global users in different timezones,

it would be ideal if it could “follow the sun,” that is,

continuously shifting to a location where the majority of

users experience the lowest possible latency. This is a

challenging task even for distributed applications that can

migrate by adding and removing nodes, not to mention

legacy applications that cannot be easily scaled dynamically.

Distributed applications typically adopt a distributed

consensus or transaction protocol in order to support data

replication, distributed locking, distributed transactions, and

so on. These protocols are designed to be fault-tolerant.

However, adding and removing nodes while tolerating

failure is a fundamental and challenging problem—it

requires changing the “membership” of the system, thus

subsequent requests following the membership change must

be processed with a different configuration. In addition to the

complexity of reaching agreement on configuration, adding

and removing nodes triggers complicated internal state

transfer and synchronization protocols, and membership

reconfiguration is not transparent to clients. As a result,

tolerating failure while providing good performance during

reconfiguration is non-trivial.

Because membership reconfiguration is generally

considered a rare event, applications use ad hoc mechanisms

to achieve it with unpredictable performance. For example,

MongoDB does not allow changing the sharding key on

the fly, and the whole database must be exported and then

imported again to change key distribution. As another

example, re-configuring a cluster running an old version

of ZooKeeper (without the new dynamic reconfiguration

feature) requires a “rolling restart”—a procedure whereby

servers are shutdown and restarted in a particular order so

that any quorum of currently running servers includes at

least one server with the latest state [41]. If not performed

correctly, one server with outdated state might be elected

as the new leader and the whole cluster might enter an

inconsistent state. While ZooKeeper recently added support

for dynamic reconfiguration, it is inefficient for geographic

migration (see Section 5.2.2). A key-value store such as

Cassandra can easily add and remove a node and adjust

token distribution, but doing these for geographic server

migration triggers unnecessary data replication and load

re-balancing, and can affect service availability if a failure

occurs at the same time (see Section 5.2.1).

In order to “follow the sun”, applications must be

migrated several times a day, and, as we have discussed,

implementing migration by adding and removing nodes

is suboptimal. An alternative approach is to use live VM

migration since it can be performed transparently to the

application and even to clients. For example, if live VM

migration were supported, we can migrate the ZooKeeper

leader and servers to locations where the leader and a

majority of servers are geographically close to most active

users, without the need of changing a single line of source

code in ZooKeeper. Often this only involves migrating the

leader: If the majority of clients reside in two different

regions like the US and Asia, and there are 2 f + 1 servers,

including one leader, then with f servers running in one



location, the US, and f servers running in another, Asia, only

the leader needs to migrate back and forth once a day. The

downtime due to live migration of a VM between the U.S.

and Asia is less than one second, while the total migration

time for 1GB memory (which proceeds in the background) is

about 100 seconds. The downtime is small enough such that

TCP connections do not break nor cause broken sessions or

leader re-election.

3. Scheduling Framework

Applications in the Supercloud can make migration

decisions by themselves and issue migration commands

through the OpenStack API. To facilitate the process of

deciding optimal placement, the Supercloud provides a

scheduling framework for the user. Users can customize

the scheduling policy for different applications by

implementing some interfaces. The Supercloud scheduler

periodically evaluates current placement of the application

and automatically adjusts it when a better placement is

found.

Suppose the Supercloud is deployed to N different data

centers: d1,d2, ...,dN . We denote a placement plan for an

application with k nodes as P = {p1, p2, ..., pk}, where pi

is the location of the ith node. Periodically, the Supercloud

measures end-to-end latency between all different data

centers and stores the results in a latency matrix L, where

L(i, j) is the round-trip-time (RTT) from di to d j. The

workload of the application is also captured periodically in

a workload statistics report S. S is application-specific, so it

should be monitored in the application-level and passed to

the scheduling framework.

In order to evaluate a placement plan, the application has

to provide 1) an evaluation function f (P,S,L) that evaluates

a placement plan under a certain workload and returns

a score, and 2) a threshold T that specifies the minimal

score change that can trigger VM migration. Using f , the

scheduler iterates through all possible placement plans and

gets a set of candidate placement plans D that maximize the

score and outperform the current placement plan Pcurrent by

at least T , that is:

D = argmax
P

{ f (P,S,L)| f (P,S,L)≥ f (Pcurrent ,S,L)+T}

To choose a placement plan in D, the scheduler compares

each placement plan with the current placement Pcurrent and

selects the one that requires the fewest migrations.

Below we present case studies to demonstrate policies for

two different types of applications.

3.1 Non-Distributed Applications

For a single VM running a non-distributed application such

as a MySQL database, a placement plan is simply the

location of the VM: P = {p}. We can deploy a set of service

front-ends located in different data centers to collect user

requests and forward them to the VM. This architecture

makes the location of the VM transparent to clients and

can help with simplifying placement evaluation. We will

describe the networking architecture in Section 4.2.

The goal of placement is to minimize average latency for

all front-ends. Here we only consider latency in the network

and ignore processing time for different types of requests. S

is defined as:

S = {(s1,ds1
),(s2,ds2

), ...,(sn,dsn)}

where n is the number of front-ends, si is the number of

active clients of the ith front-end, and dsi
is its location.

Each front-end is assigned a weight, which equals the

number of requests it receives. The score of a placement plan

is the weighted average latency of all front-ends (negated so

lower latencies result in higher scores), that is,

f (P,S,L) =−
n

∑
i=1

si ·L(dsi
, p)

3.2 Distributed Applications with Replicated State

Distributed applications typically maintain replicated state

using some consensus protocol. Below we use ZooKeeper as

an example. ZooKeeper is implemented using a replicated

ensemble of servers kept consistent using Zab (ZooKeeper

Atomic Broadcast) [34]. In Zab, one server acts as a leader

that communicates with a majority of servers to agree on

a total order of updates. Read requests are handled by

any node in the ensemble, while write requests must be

broadcast by the leader and agreed upon by the majority of

the ensemble.

For a ZooKeeper ensemble with m nodes, a placement

plan is the location of all nodes: P = {p1, p2, ..., pm}, where

pl is the location of the leader. Again we assume that there

are n front-ends in different data centers to collect and

forward client requests. To evaluate a placement plan, we

need to consider read and write requests separately. So:

S = {(r1,w1,ds1
),(r2,w2,ds2

), ...,(rn,wn,dsn)}

ri and wi are the number of read and write requests received

by the ith front-end and dsi
is its location.

The goal of placement is again to minimize average

network latency for all front-ends, ignoring request

processing time and only considering network delay. For the

purpose of load balancing, ZooKeeper clients are typically

connected randomly to one node in the ensemble. Read

requests can return immediately. For the ith front-end, the

expected read latency is

Ri = avg
j=1...m

L(dsi
, p j)

Write requests are processed in three steps:

• Step 1: a write request from the ith front-end goes

randomly to one of the ZooKeeper nodes. The average

latency is:

W
(1)
i = avg

j=1...m
L(dsi

, p j)
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Figure 1. Example deployment of the Supercloud.

• Step 2: the write request is then forwarded to the leader

of the ensemble. The average latency for this step is:

W
(2)
i = avg

j=1...m
L(p j, pl)

• Step 3: the leader broadcasts the request twice in a

protocol similar to two-phase commit, and for each

broadcast it must wait until at least half of the ensemble

replies. The average latency for this step is:

W
(3)
i = 2× median

j=1...m, j 6=l
L(pl , p j)

So the expected network latency for a write request from

the ith front-end is: Wi =W
(1)
i +W

(2)
i +W

(3)
i . The evaluation

function for ZooKeeper is calculating the weighted average

network latency of all requests, assuming that we give read

and write requests a weight α and β respectively:

f (P,S,L) =−
n

∑
i=1

(α ·Ri · ri +β ·Wi ·wi)

4. Supercloud Architecture

We have implemented support for live migration within the

context of the Supercloud. The Supercloud can span multiple

availability zones of the same provider as well as availability

zones of multiple cloud providers and private clusters (see

Figure 1). To accomplish this, there are two layers of

hardware virtualization. The bottom layer, called first-layer,

is the infrastructure managed by a Infrastructure as a Service

(IaaS) cloud provider such as Amazon EC2 or Rackspace,

or managed privately. It provides VMs, cloud storage, and

networking. Another layer of virtualization on top of this,

called second-layer, is the IaaS infrastructure managed

by the Supercloud. It leverages resources from the first-

layer and provides a single uniform virtual cloud interface.

Importantly, the second-layer is completely controlled by

users.

In case of compute resources, the first-layer has a

hypervisor managed by the underlying cloud provider and

a collection of hardware virtual machines (HVMs). We refer

to these as first-layer hypervisors and first-layer VMs.

The second layer, exposed to Supercloud users, is

similarly separated into a hypervisor and some number

of guest VMs that we call the second-layer hypervisor

and VMs1. We use Xen-Blanket [48] for the second-

layer hypervisor. Xen-Blanket provides a consistent Xen-

based para-virtualized (PV) interface. In Xen, one VM is

called Domain-0 (aka Dom0) and manages the other VMs,

called Domain-Us (aka DomUs). A second-layer Dom0

multiplexes resources such as I/O amongst the DomUs.

We use OpenStack [5] to manage user VMs and

provide compatibility to existing applications. In particular,

a XenServer runs within the second-layer Dom0 and allows

OpenStack to manage all second-layer DomU VMs.

A common practice in VM migration is using shared

storage to serve VM images, so that a VM migration only

needs to transfer the memory. This is essential to good

performance because migrating a VM with the disk image

takes a long time. XenServer offers two options for sharing

storage: an NFS-based solution and an iSCSI-based solution.

Both these approaches use a centralized storage repository.

While simple, this can lead to significant latencies, low

bandwidth, and high Internet cost for VMs that access the

disk through a wide area network when migrated to another

region or cloud. Previous works have proposed different

mechanisms and optimization for wide-area VM migration

with disk images [17, 36, 40]. However, migrating the

whole image file incurs significant Internet traffic, which is

typically charged by cloud providers. To support efficient

VM migration in the wide area network, we developed a

geo-replicated image file storage that seeks a good balance

between performance and cost.

To provide the illusion of a single virtual cloud, the

control services (including XenServer and OpenStack) and

user VMs need to communicate in a consistent manner no

matter where the end-point VMs reside. A migrated user VM

expects its IP address to remain unchanged. To accomplish

this, the Supercloud network layer is built using a Software-

Defined Network (SDN) overlay based on Open vSwitch,

VXLAN tunnels, and the Frenetic SDN controller [25]. Such

an overlay network gives control over routing for the second-

layer and enables compatibility with heterogeneous first-

layer networks.

We support all major hypervisors including Xen, KVM,

Hyper-V, and VMWare, so a Supercloud instance can

span all major cloud providers including Amazon EC2,

Rackspace, Windows Azure, Google Compute Engine, and

VMWare vCloud Air.

Below we describe storage and networking in more detail.

4.1 Storage

4.1.1 Consistency and Data Propagation

Geo-replicated storage solutions sometimes adopt a weaker

consistency model, such as eventual consistency, in which

applications reading different replicas may see stale results.

1 User VMs, user VM instances, second-layer VMs, and second-layer

DomU VMs are used interchangeably.
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This is not suitable for an image storage on which a

migrated VM expects up-to-date data. Using a strongly

consistent geo-replicated storage requires synchronous data

propagation, resulting in low write throughput. A key

observation is that a running application typically does not

require all data in the image. Our storage system thus

decouples consistency from data propagation.

As shown in Figure 2, the storage service consists of two

layers: a data view layer provides a required consistency

guarantee, and a data store layer stores and propagates data.

Images are divided into blocks with a constant size (4KB).

The global meta-data in the data view layer includes a

version number for each block. When a VM is reading a

block, the version number is compared to the version number

in the local meta-data in the local data store. If the latest

version of the block is available locally, data is returned

immediately. Otherwise, the data store checks the location

of the block in the global meta-data and fetches the data

remotely. Updating a block increases its version number by

one, and the updated global meta-data is then propagated to

other replicas.

The consistency model seen by applications is completely

determined by the data view layer. Since we only have

global meta-data in this layer, it is relatively cheap to

implement strong consistency. Since the data store layer is

decoupled, data propagation can be optimized separately

without concern about consistency.

Our current design optimizes performance and minimizes

traffic cost. The Back-End Storage can tolerate failures

within a single cloud. However, after several migrations

the image may have the latest version of blocks scattered

in different clouds, and a cloud-level failure before an

updated block is propagated may affect the availability

of the whole image. If an image is really critical and

would like to tolerate cloud failures, it is possible to pass

a hint to the propagation manager so that each write is

synchronously propagated to different clouds, at significant

cost to application performance.

4.1.2 Global Meta-Data Propagation

Due to the long latency in the wide area network, meta-data

transfer affects application performance significantly if this

propagation is in the read/write critical path. We make two

key observations:

• If an image file is open for writing, it can only be accessed

by a single VM. This happens when the image is private

to a VM.

• If an image file is shared by multiple VMs, it is read-

only. This happens when the image is a snapshot or a

base image file.

These observations indicate that, although a migrated VM is

expecting strong consistency of the image storage, multiple

replicas of the same image file do not need to be identical all

the time. It suffices to provide VMs with a “close-to-open”

consistency: after a file is closed, reads after subsequent

opens will see the latest version. We remove the global

meta-data propagation from the read/write critical path by

committing the meta-data update locally, and only flushing

the global meta-data to a centralized controller when closing

the image file. Subsequent opens of the file need to sync

the global meta-data with the controller first. Note that the

controller is involved only when opening or closing the

image file.

4.1.3 Data Propagation Policies

By decoupling the data view and data store layer, a VM can

see a consistent disk image no matter where it is migrated.

However, fetching each block on-demand through the wide

area network significantly degrades read performance. It is

useful to proactively propagate a block before migration if

we can predict that it is going to be accessed in another

place. Intuitively, a block that is read frequently and updated

rarely should be aggressively propagated. On the other hand,

propagating a block that is updated frequently is a waste

of network resources. Because Internet traffic is typically

charged to the user, we need to be careful about proactive

propagation.

The data store layer monitors the access pattern of the

VM and selectively propagates those blocks that are most

likely to be accessed after migration and least likely to

be updated after propagation. To this end, we maintain a

priority queue of updated blocks for each image file. The

priority of each block is updated on each read or write. We

use the read/write ratio F = fr/ fw to calculate the priority

of propagating a block, where fr and fw are the read and

write frequency of a block respectively. When two blocks

have the same value of F , we first propagate the block with

a higher read frequency. So the formula of calculating the

propagation priority Pb for a block b is:

Pb =

{

K · f b
r / f b

w + f b
r if f b

r / f b
w ≥ S

−1 if f b
w = 0 or f b

r / f b
w < S

The value K determines how much we want to favor the

read/write ratio. In our prototype we use K = 1000. The

constant S determines the aggressiveness of the propagation.

The lower S is, the more data will be propagated. When

f b
w = 0, which means the block has never been updated, or
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when f b
r / f b

w < S, we set the priority to −1 to indicate that

this block is not to be propagated proactively. In our current

prototype, S is set to 1. The parameters K and S can be

tuned separately for each VM, and adjusted on the fly if the

workload changes.

After deciding which block to propagate, the next

question is where to propagate the block. Since the

Supercloud can be deployed to many places even across

clouds, propagating each block to all destinations wastes

Internet traffic and money. To further optimize data

propagation, a transition probability table is added into the

image file’s meta-data, indicating the probability that a VM

is moved from one place to another. Each data block is

randomly propagated according to the probability in the

transition table, so that the destination to which the VM

is most likely to be migrated will receive most propagated

blocks. Note that the transition table is a hint given by the

user when creating the image file. It is also possible to train

the table on the fly if the VM is migrated many times.

4.2 Networking

4.2.1 High-Performance VPN

To enable communication between control services

(including XenServer and OpenStack services) and VMs,

we place them into a virtual private network (VPN).

Good performance requires minimizing the number of

hops. Existing VPN solutions such as OpenVPN [6]

use a centralized server to forward traffic, which causes

high latency and poor throughput. The tinc VPN [44]

implements an automatic full mesh peer-to-peer routing

protocol, minimizing the number of hops traversed between

endpoints. However, we found that tinc imposes high

performance overhead, mostly caused by extra data-copy

and kernel/user mode switching.

To build a high-performance VPN solution for the

Supercloud, we use Open vSwitch [4], VXLAN tunnels, and

the Frenetic SDN controller [25]. Open vSwitch implements

data-paths in kernel mode and supports an OpenFlow-based

control plane. Each virtual switch uses an uplink to connect

to the VMs running on the same first-layer VM and a

set of VXLAN tunnels to connect to all other switches,

as illustrated in Figure 3. We create a full mesh network

here because we want to always forward packets directly

to their destinations. We use VXLAN over GRE (Generic

Routing Encapsulation) tunnels because this approach is

based on UDP instead of a proprietary protocol, and thus

better supported by different firewalls.

In a hierarchical topology, switches running in a private

network cannot set up VXLAN tunnels directly with other

switches outside the network. A gateway switch is required

to forward packets in this case (see Figure 3). The node

running the gateway switch is in more than one network.

To implement the gateway switch, we create one switch

for each of the networks, inter-connected with an in-kernel

patch port. Each switch builds full mesh connections with

other switches in its own network as before and treats the

patch port as an uplink.

Switches connected in a full mesh form loops. Ordinarily

one would run a spanning tree protocol, but with a network

topology demonstrated in Figure 3, a spanning tree cannot

minimize the number of hops for every pair of nodes. To

route packets efficiently, switches in the Supercloud VPN

are connected to a centralized SDN controller implemented

with Frenetic [25]. The controller learns the topology of

the network by instructing the switches to send a “spoof

packet.” On receiving the spoof packet, switches report

to the controller on which port the packet is received, so

that the controller can record how switches are connected.

The controller implements a MAC-learning functionality for

each switch. The MAC address, IP address, and location of

a VM is learned when it sends out packets.

ARP (Address Resolution Protocol) are forwarded

directly to the destination instead of broadcast. When routing

a packet, the controller calculates the shortest path on the

network and installs OpenFlow rules along the path to enable

the communication. This is done only once for each flow and

subsequent data transportation does not need to involve the

controller anymore.

4.2.2 Supporting VM Live-Migration

Supporting VM live migration is another challenge. To keep

the IP address of a migrated VM unchanged, the underlying

VPN needs to adjust the routing path and re-direct traffic.

However, the adjustment cannot be done immediately when

the migration is triggered, because at this point the VM is

still running in the original location and existing network

flows should not be affected.

In order to know at which point the routing path should be

adjusted without adding a hook into the hypervisor, before

triggering the migration, the controller is notified with the

source and destination of the migrated VM. The controller

then injects a preparation rule in the destination switch so

that it can get an immediate report when a packet with the

migrated VM’s MAC address is received. When migration is

finished, the migrated VM will send out an ARP notification.



This is captured by the controller so that it knows that

the migration has finished. The controller then updates all

switches that have the migrated VM’s MAC address in the

MAC table, avoiding the usual ARP broadcast.

4.2.3 Supporting Public IP Addresses

A public IP address is required to expose a service to the

public network. We currently support addressing a second-

layer VM from the public network by allocating a public IP

address to a first-layer VM in the Supercloud network (i.e.,

a public IP front-end), and then applying port forwarding

to map certain ports to the second-layer VM. This solution

has good performance because packets can be routed in the

public network to the VM directly.

A challenge arises when this VM is migrated to a

different cloud provider. Without specific support from

Internet Service Providers (ISPs) such as anycast, mobile IP,

or multihoming, traffic sent to the public IP address needs to

be re-directed by the same first-layer VM, no matter where

the second-layer VM currently resides. While this works, it

can lead to high latency.

To address this issue, we adopt an idea from Content

Distribution Networks (CDN): instead of giving the same

public IP address to clients all over the world, we give each

client the public IP address of a front-end server in a nearby

data center. Taking this extra but short hop, the routing from

the front-end to the second-layer VM is always optimized in

the public network, performing much better for most clients

than a centralized public IP solution.

For applications that do not want to pay the additional

cost of the front-end servers, multiple public IP addresses,

and an additional hop, the Supercloud has its own dynamic

DNS service and can update the DNS mapping after

migration. Note that clients might see an out-of-date public

IP address before the DNS cache is expired. For services that

use protocols such as HTTP, SOAP, and REST, we deploy an

HTTP redirection service on the original public IP front-end

and respond to clients with an HTTP redirection response.

4.3 Discussion

The benefits of the Supercloud do not come without costs.

For example, nested virtualization imposes performance

overhead including CPU scheduling delay and I/O

overhead. Users can evaluate this tradeoff based on

migration frequency and performance requirements, and it

is application-dependent. We are currently in the process

of building support for containers into the Supercloud.

Container technology [42] provides another way to

homogenize different cloud platforms. However, compared

to live VM migration, which is mature and widely used,

container migration [38] technology is preliminary and

involves a checkpointing/resume mechanism that might

cause a relatively large performance hiccup. Even with

mature container migration, the challenges of building a

well-performing Supercloud remain essentially the same.

5. Evaluation

The Supercloud represents a new and unique capability:

A distributed service can migrate live, and incrementally

or whole, between availability zones and heterogeneous

cloud providers. In this section, we investigate three research

questions enabled by and enabling this capability:

1. How effective is the scheduler in enabling applications to

follow-the-sun?

2. Is VM migration a viable approach to follow-the-sun?

3. What is the efficacy of Supercloud storage and

networking in supporting live VM migration?

5.1 Follow the Sun

In this set of experiments, we use a distributed application,

ZooKeeper, to investigate application performance benefits

due to following the sun. Results demonstrate that the

Supercloud scheduler was able to automatically follow

the sun and migrate resources geographically and across

heterogeneous clouds, enabling high performance to be

maintained. For brevity, we have omitted experiments with

a MySQL database, but we have similarly good results for

those experiments as well.

ZooKeeper writes require a majority of ZooKeeper

servers (aka, the ensemble) and a ZooKeeper leader to

coordinate and order all writes. High network latency

between ZooKeeper servers or between clients and the

ZooKeeper leader causes high end-to-end service latencies.

For good performance, the majority of ZooKeeper servers

have to be located where most active clients are, and the

ZooKeeper leader must be part of that majority.

Experiment setup: To evaluate the efficacy of following

the sun using the scheduler described in Section 3, we used

a ZooKeeper distributed application and measured its ability

to respond to clients in two different regions, Virginia and

Taiwan. The clients used a workload corresponding to a

weeklong trace of active MSN connections [21, Figure 5a].

The trace does not specify the start time of the MSN

workload—we made an educated guess based on the diurnal

pattern in the data and assumed that the workload started

at 12am at the beginning of a Monday. Nor does the trace

specify the absolute workload—we scaled the workload so

that the peak workload can be served by our ZooKeeper

cluster when latency is low. We varied load based on location

and time: We circularly shifted the start of the trace by 12

hours ahead to produce an identical workload where the start

of the trace from Virginia was 12 hours before starting in

Taiwan. The ZooKeeper clients randomly connected to one

ZooKeeper server and submitted blocking read and write

requests in a ratio of 9:1. Each read operation obtained a

64-byte ZooKeeper znode; each write operation overwrote a
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Figure 4. ZooKeeper throughput (vertical dashed lines

indicate the end of the migrations).

64-byte znode. The clients ran on first-layer VMs in Virginia

on Amazon VMs and in Taiwan on Google VMs.

For the ZooKeeper ensemble, we deployed the servers

in the Supercloud simultaneously spread across Amazon

Virginia and Google Taiwan regions. The type of first layer

VMs used in our experiments was m3.xlarge in Amazon

and n1-standard-4 in Google, both of which had 4

vCPUs and 15GB memory. The ZooKeeper ensemble ran

on three second-layer VMs, denoted as zk1, zk2 and zk3.

Each VM had 1GB RAM and 1 CPU core. We used one first

layer VM in each region to serve as the Supercloud storage

server. The data of the ZooKeeper nodes was stored on disk

and propagated automatically by the storage servers.

We implemented the scheduling evaluation functions

for ZooKeeper discussed in Section 3. ZooKeeper server

VMs reported VM load to the scheduler. The scheduler

placement evaluation was triggered every minute. Once a

VM migration was started, the scheduler waited until it

finished before considering a new placement. Migrations

were performed in parallel, so going from one placement

plan to another was fast.

We evaluated ZooKeeper in three scenarios:

1. US Ensemble: all three ZooKeeper nodes, zk1, zk2,

and zk3, were in Amazon Virginia;

2. Global Ensemble: zk1 and zk2 were in Amazon

Virginia, and zk3 was in Google Taiwan;

3. Dynamic Ensemble: the Supercloud scheduler

automatically placed VMs according to the workload.
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Figure 5. ZooKeeper latency CDF.

To simplify experimentation and save cost, we sped up

the trace by a factor of 30 so that the one week trace could

be replayed in less than six hours. The performance of

the US Ensemble and Global Ensemble was not affected

by the speed-up, while the performance of the Supercloud

was slightly degraded since migration was not sped up

correspondingly.

Experimental results: Figure 4 shows the throughput (in

operations per second) for the three scenarios, US, Global,

and Dynamic Ensembles. Each scenario displays throughput

measured for the United States (US) clients in Virginia

(“Observed US”), throughput measured for Asian clients in

Taiwan (“Observed Asia”), and throughput if latency were

negligible (“Expected Aggregate”). The throughput results

observed by US and Asian clients are stacked on top of

one another (with US below Asia), so that the top of the

throughput results for the clients in Asia show the total

aggregate throughput that was observed by all clients. For

the US Ensemble scenario, Figure 4a, US clients were able

to reach their maximum throughput, but clients in Asia

suffered from high latencies, and, as a result, experienced

poor throughput. For the Global Ensemble, Figure 4b,

by placing one node in Taiwan, 1/3rd of Asian clients

experienced increased read throughput and total throughput

was improved. However, 2/3rd of the read requests and

all write requests from Asian clients still experienced poor

throughput. Moreover, US clients were not able to reach

their maximum throughput during peak times because 1/3rd

of clients were connected to the ZooKeeper server in Taiwan.



Finally, Figure 4c, shows the result for the Supercloud case

where throughput remained high and matched the expected

performance as the scheduler was able to automatically

migrate ZooKeeper servers to the region where load was

high.

Figure 5 shows the cumulative latency distributions for

read and write operations. We can see that for the US

Ensemble, Figure 5a, 90% of US clients observed less than

15ms latency for read and write operations, while client

latencies in Asia were close to 200ms. (We repeated the

experiments with an Asia Ensemble and observed symmetric

results.) In the Global Ensemble, Figure 5b, the ZooKeeper

quorum was in the US. The server in Taiwan helped Asian

clients gain better read throughput, though write latency did

not improve: 37% reads from Asian clients completed in

15ms because they were handled by the server in Taiwan.

The high tail latency of US read/write performance was

because some requests went to the server in Taiwan. (A

symmetric experiment with the quorum in Asia observed the

same results.)

Finally, in the Dynamic Ensemble, Figure 5c, the

scheduler automatically figured out that placing all three

nodes in one location was the best placement for the

workload. This is because clients connect to servers

randomly and the read/write ratio is fixed. For example,

leaving one node in Asia can only improve performance

of one third of read requests from Asia, but also make

one third of read requests from the US suffer from long

latency. This was not beneficial when the US workload was

higher than the Asia workload. Therefore, it always migrated

the whole ensemble together: The scheduler migrated the

ensemble every 12 hours between Amazon Virginia and

Google Taiwan to make the ZooKeeper cluster close to most

clients. The scheduler placement resulted in low latency:

61% of writes and 69% of reads were less than 15ms. The

tail latency was caused by some requests going to a remote

server.

5.2 Comparing Migration Approaches

In this second set of experiments, we use two popular

distributed applications, Cassandra and ZooKeeper, to

investigate the viability of relying on live VM migration

via the Supercloud to enable distributed applications to

follow-the-sun. The results demonstrate that not only can

distributed applications benefit from the Supercloud, but

they can also do so without any change to the application

and can outperform other approaches that require application

modification.

5.2.1 Cassandra Migration

Cassandra [20] supports adding and removing nodes and

automatically handles data replication and load distribution.

When following the sun, it makes little sense to move

only some of the Cassandra nodes. Migrating an entire

Cassandra cluster can be implemented by adding nodes in

the destination location and removing nodes in the source

location.

Experiment setup: To compare migration approaches,

“application” and “Supercloud”, we started a 3-node

Cassandra cluster in the Amazon Virginia region, then

migrated the whole cluster to the Google Taiwan region. As

a result, the migration was across geographically separated

clouds. We deployed a 3-node Cassandra cluster with

replication factor of 2 in second-layer VMs with 1vCPU

and 2GB memory. For the first-layer VMs, we used

m3.xlarge instances in the Amazon Virginia region and

n1-standard-4 instances in the Google Taiwan region.

For the application migration approach, a Cassandra

cluster was initially running in Virginia. To move all nodes to

Taiwan, we followed the process specified in the Cassandra

documentation for replacing running nodes in the cluster.

Three new nodes in Taiwan joined the cluster with a

configuration file pointing to a seed node and automatically

propagated their information through Cassandra’s gossip

protocol. The key space then spread evenly across all

six nodes and the data associated with the key moved

automatically. After the three new nodes joined the cluster,

we performed “node decommissioning” in each of the three

original nodes. As a result, the Virginia nodes copied their

data to the Taiwan nodes. The gossip protocol automatically

updated each node with the cluster information transparently

to the clients.

For the Supercloud migration, we set up a Supercloud

across the Amazon Virginia and Google Taiwan regions

using the same first- and second-layer VM configurations

described above.

For the workload, data was stored in memory and moved

explicitly with the application approach or migrated with

the VM with the Supercloud approach. We populated the

database with 30,000 key/value pairs, each of which had a

size of 1KB. We started one client in each region. The clients

read and wrote to the database continuously with a ratio of

4:1; each read operation obtained the value of a random key,

and each write request updated the value of a random key.

The consistency level was set to ONE (default), indicating

eventual consistency.

Experimental results: Figure 6(a) shows the throughput

of application migration (in operations per second) for both

Amazon Virginia and Google Taiwan clients. Although not

easy to see in this case, the throughput results for both

types of clients are again stacked on top of one another,

with the throughput of the Asia clients below that of the

throughput of the US clients. The top of the graph therefore

shows the total aggregate throughput. During migration,

the throughput dropped dramatically and remained low for

about 200 seconds. Even after the migration completed,

it took another 200 seconds to restore performance to the

original throughput due to the overhead of data replication.
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Figure 6. Comparison of different migration mechanisms

for moving a Cassandra cluster.

With the VM migration mechanism in the Supercloud,

we migrated the three Cassandra VMs from Amazon

Virginia to Google Taiwan in parallel. Figure 6(b) shows

that performance impact was small with a downtime of

around 5 seconds. (Downtime could be reduced further by

synchronizing the migration finishing time—a project we

plan for future work.) The Supercloud maintained the same

IP addresses and network topology, without triggering any

unnecessary data replication or key shuffling.

5.2.2 ZooKeeper Migration

Experiment setup: To evaluate different follow-the-sun

approaches for ZooKeeper, we set up a Supercloud using

Amazon EC2 m3.xlarge instances (4 vCPUs, 15GB

memory) in the Virginia and Tokyo regions. We deployed

a ZooKeeper ensemble in three second-layer VMs with

1 vCPU and 1GB memory. The leader was initially in

Virginia, with one follower in Virginia and another in Tokyo.

We started one client in each region generating a constant

workload with read/write ratio 9:1. Each read operation

obtained a 1KB ZooKeeper znode; each write operation

overwrote a 1KB znode.

We compared three approaches.

1. A “2-step reconfiguration” moved a majority of the

servers from one region to another: We first added a

new node in Tokyo, then removed the original leader in

Virginia.

Unfortunately, the 2-step reconfiguration does not

guarantee that a node in Tokyo will be elected as the

leader. Instead, it was more likely that one of the Virginia

nodes would become the leader, which was not desirable

since the majority of the ensemble is in Tokyo.

2. A “3-step reconfiguration” ensured that the leader ended

up in Tokyo while maintaining the same level of fault

tolerance: We added two nodes in Tokyo first, then

removed both nodes from Virginia. After the new leader

was elected in Tokyo, we added a new node in Virginia

and removed one of the nodes from Tokyo.

3. Using the Supercloud we transparently migrated a

second-layer VM running the leader from Virginia to
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Figure 7. Comparison of different migration mechanisms

for moving the ZooKeeper leader.

Tokyo. Neither ZooKeeper nor clients required any

modification.

Experimental results: Figure 7 shows the stacked

throughput (in operations per second) of clients in both

Virginia and Tokyo regions before and after leader migration

using the three migration approaches discussed above. After

the 2-step reconfiguration shown in Figure 7(a), the leader

role was switched to a Virginia node while the two followers

were in Tokyo, which was inefficient and, as a result, the

throughput dropped significantly for both clients. Using

the 3-step reconfiguration in Figure 7(b), the leader was

successfully moved to Tokyo so good throughput for the

Tokyo clients were achieved. Unfortunately, the 3-step

reconfiguration took 20 seconds during which performance

was inconsistent and low. Finally, Figure 7(c) shows the

performance of the Supercloud: the drop in performance

was less than a second and transparent to the ZooKeeper

application and its clients.

5.3 Storage Evaluation

Experiment setup: To evaluate storage performance under

migration, we deployed a Supercloud setup with two

m3.xlarge instances in Amazon Virginia and Northern

California regions. The ping latency between two VMs

in these regions was 75ms. We started a user VM with

1 virtual CPU core and 512MB memory and ran the

DBENCH [23] benchmark in it, which simulated four clients

generating 500,000 operations each on the filesystem based

on the standard NetBench benchmark. We configured the

DBENCH clients so that they ran at the fastest possible

speed. Without migration, a VM using local storage finished

the benchmark in two minutes.

In the following experiments, immediately after starting

the benchmark, we triggered a VM migration from Virginia

to Northern California. The full migration took 40 to 50

seconds (most of which was in the background while the

VM kept running). During most of the full migration, in
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Figure 8. Average throughput per second of the DBENCH

benchmark in the migrated VM. For clarity, the x-axes are

on different scales.

particular during the pre-copy phase, the benchmark kept

running at the old location. In fact, before the VM was

actually moved to Northern California, one third of the

workload had finished.

We compared the performance of the benchmark with

four different underlying storage systems:

• NFS: A traditional NFS server deployed in Amazon

Virginia.

• Sync-on-Write: A strongly consistent geo-replicated

store that synchronously propagates each write.

• On-demand: Supercloud storage with proactive

propagation turned off.

• Supercloud: Supercloud storage with proactive

propagation in the background.

Except for NFS, all schemes were implemented in the

Supercloud’s propagation manager for fair comparison.

Experiment result: Figure 8 shows the results: The

average throughput in each second of the DBENCH

benchmark. The vertically dashed lines indicate when

migration was finished. Figure 8a, NFS, shows that

throughput dropped significantly after the clients were

migrated. Low performance resulted from remote disk

accesses that incurred high latency. Figure 8b, sync-on-

write, shows that a strongly consistent geo-replicated storage

incurs high performance overhead both before and after

migration because each write needs to be propagated

through the wide area network. Figure 8c, Supercloud
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Figure 9. Average throughput and total WAN traffic of the

DBENCH benchmark in the migrated VM.

on-demand, eventually achieved good average throughput

after migration since all writes could be committed locally.

However, read throughput was low right after migration

since no blocks had been copied ahead of time. Finally,

Figure 8d, Supercloud proactive propagation, shows that

most read and write requests could be served locally.

Consequently, the corresponding benchmark took the least

time.

Figure 9a shows the average throughput for each case.

We repeated the same experiment three times and report

the average number with standard deviation. The Supercloud

proactive propagation achieved the highest throughput.

Figure 9b shows the total WAN traffic measured at the

migration destination (Northern California). The migration

caused 850MB of WAN traffic for NFS, On-demand, and

Supercloud, but only 570MB of traffic for Sync-on-Write.

In particular, the migration traffic depended on the page

dirty rate of the VM. A benchmark running at a higher

speed caused more dirty memory pages to be copied during

migration. Sync-on-Write storage results in low throughput

in the benchmark, thus lowering the page dirty rate of the

whole VM. Both NFS and Sync-on-Write incur a lot of

outgoing traffic when accessing storage because each disk

write needed to go through the WAN. Sync-on-Write also

had higher incoming traffic, which was generated when the

benchmark was running in Virginia. On-demand achieved

the lowest WAN traffic since it fetched data remotely only

when necessary, and no update propagation was needed. The

Supercloud incurred more incoming traffic than On-demand

because it pushed some data that was not needed, but it

achieved higher throughput and predictable performance.

5.4 Network Evaluation

To evaluate the network performance of the Supercloud,

we deployed the Supercloud in two m3.xlarge instances

in the Amazon Virginia region and measured UDP latency

(using UDP ping) and TCP throughput (using netperf)

between second-layer Domain-0 VMs and Domain-U VMs

respectively. For comparison, we ran the same benchmark

using the following settings:



Non-nested OpenVPN tinc Supercloud
0

1

2

L
a
te

n
c
y
 (

m
s
)

 Dom0/Host

 DomU

(a) UDP latency

Non-nested OpenVPN tinc Supercloud
0

400

800

1200

T
h
ro

u
g
h
p
u
t 

(M
b
p
s
)

 Dom0/Host

 DomU

(b) TCP throughput

Figure 10. Network performance evaluations.

• Non-nested: a setup where we ran the benchmark directly

in the first-layer VMs for baseline purposes.

• OpenVPN: a VPN solution using a centralized controller,

also running in Amazon Virginia.

• tinc: a P2P VPN solution, which implements full-mesh

routing.

• Supercloud: the Supercloud implementation based on

Open vSwitch.

For the latency test, we ran 50 UDP pings (1 ping per

second). Figure 10a shows the average latency and standard

deviation across all runs. Although our Open vSwitch-

based virtual network slightly increases the UDP latency,

the overhead was much smaller than either OpenVPN or

tinc. The latency for dom0 was smaller than domU because

network packets to DomU go through Dom0 first. OpenVPN

had the highest latency because all packets travel through the

centralized controller.

To measure TCP throughput, we enabled jumbo frames in

all setups and repeated a netperf TCP stream benchmark

with default options 10 times for each setup. As shown in

Figure 10b, the throughput of non-nested instances, Dom0,

and DomU in the Supercloud all achieved 1Gbps with small

variance. In contrast, tinc and openVPN could only achieve

300Mbps. Because both tinc and OpenVPN use a tap device

connected to a user-level process, the extra memory copy

and kernel-user mode context switching incurred significant

overhead.

6. Related Work

Multi-cloud deployment is attractive to users because of

its high availability and cost-effectiveness. SafeStore [35],

DepSky [13], HAIL [16], RACS [10], SPANStore [50],

Hybris [24] and SCFS [14] have demonstrated benefits of

multi-cloud storage, but they do not support computational

resources. Docker [2] deploys applications encapsulated

in Linux containers (LXC) to multiple clouds. Although

light-weight, LXC is not as flexible as a VM because all

containers must share the same kernel, and it has poor

migration support. Ravello [7] leverages a nested hypervisor

to provide an encapsulated environment for debugging

and development distributed applications, but it does not

addresses the challenges of providing storage and network

support for wide-area application migration. Platforms like

fos [46], Rightscale [8], AppScale [1], TCloud [45], IBM

Altocumulus [37], and Conductor [47] enable multi-cloud

application deployment, but none of them provides the

generality and flexibility of a multi-cloud IaaS.

VM live migration [22, 29] has been widely used for

resource consolidation and workload burst handling [18, 28,

39]. However, VM live migration is not exposed to end users

of public clouds. Migrating a VM in the wide-area network

faces long latency in accessing a shared disk image. Previous

studies [11, 15, 17, 27, 30, 36, 40, 49, 52] proposed various

solutions for optimizing the migration of the whole VM

disk image, while our Supercloud image storage attempts to

only transfer data that is necessary. FVD [43] is a new VM

image format that supports copy-on-write, copy-on-read,

and adaptive prefetching that can be used for optimizing

the performance of migrating a VM with the disk image.

However, FVD can prefetch data only after the VM resumes

on the destination. In contrast, the Supercloud image storage

proactively propagates data before migration is triggered.

7. Conclusion

In this paper, we have demonstrated that it is important

for global cloud services to be able to “follow the sun,”

dealing with diurnal workloads by migrating key servers

to remain close to active users. We show that existing

reconfiguration options in distributed services are not well-

suited to support such migration, resulting in high overheads

and long performance hiccups.

The Supercloud presents a complete cloud software

stack under the user’s full control that can seamlessly span

multiple availability zones and cloud providers, including

private clouds. It features live migration, as well as shared

storage, virtual networking, and automated scheduling

of workloads, placing and migrating VM resources as

needed. Spanning availability zones and cloud providers,

the Supercloud provides maximal flexibility for placement.

Using our automated schedulers, we demonstrate continuous

low latency for diurnal workloads.

Availability

The code of the Supercloud project is publicly available at

http://supercloud.cs.cornell.edu.
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