
28 Published by the IEEE Computer Society 1089-7801/13/$31.00 © 2013 IEEE IEEE INTERNET COMPUTING

Vi
rt

ua
liz

at
io

n

A s part of the growing trend toward  
commoditizing computing resources, 
cloud computing is often com-

pared to other utility models, such as  
electricity. Akin to power generators,  
cloud providers offer massive amounts 
of computing resources. However, unlike 
today’s electr icity uti l ity model, in 
which consumers are generally agnos-
tic as to where their power is generated, 
cloud users (consumers) are tightly cou-
pled to providers’ infrastructures and 
must adhere to those providers’ varying 
specifications (such as the virtualiza-
tion stack and management APIs). As 
it stands, today’s cloud delivery model 
resembles the “War of the Currents” 
from the late 1880s,1 in which direct 
current (DC) power distribution was 
tightly coupled to a local generator.

We’re interested in building cloud 
infrastructures that are akin to West-
inghouse’s “universal system” — the 
foundation of modern power generation, 
distribution, and commoditization. In the 

universal system, Westinghouse showed 
how power — using Tesla’s transformer —  
could be generated and consumed in  
many different voltages.1 In such a 
model, consumers care only about pow-
er’s availability because it can readily be 
transformed into the correct voltage. In 
this way, consumers can be completely 
agnostic to where and how the electricity 
is generated. The universal system thus 
demonstrates how to decouple power 
generation from consumption. This 
decoupling was a corner piece to creating 
power distribution networks and, ulti-
mately, commoditizing electricity.

To solve the tight coupling of today’s 
clouds, we propose superclouds, cloud 
distribution layers that aren’t bound to 
any provider or physical resource. On the 
surface, supercloud users see a collection 
of computing resources, similar to today’s 
clouds. Beneath the surface, a supercloud 
“transforms” multiple underlying cloud 
offerings into a universal cloud abstrac-
tion. The supercloud specifies and fully 

Cloud computing is often compared to the power utility model, but today’s 

cloud providers don’t simply supply raw computing resources as a commodity; 

they also act as distributors, dictating cloud services that aren’t compatible 

across providers. A supercloud is a cloud service distribution layer that’s 

completely decoupled from the provider. Leveraging a nested paravirtualization 

layer called the Xen-Blanket, the supercloud maintains the control necessary 

to implement hypervisor-level services and management. Using the Xen-

Blanket to transform various cloud provider services into a unified offering, 

the authors have deployed a supercloud across the Amazon Elastic Compute 

Cloud, an enterprise cloud, and Cornell University.
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controls the entire cloud stack, independent from 
the provider infrastructure. A supercloud thus 
decouples cloud providers and users.

At first glance, a supercloud might seem to 
require radically redesigning today’s clouds; 
it doesn’t. Here, we demonstrate how to create 
superclouds on top of existing clouds by lever-
aging nested virtualization to perform a similar 
function to the Tesla transformer in Westing-
house’s universal system. Toward this goal, we 
present the design of a nested paravirtualiza-
tion hypervisor, called the Xen-Blanket, which 
can run on different providers, thus enabling 
superclouds to span clouds. Subsequently, a 
supercloud can manage guest virtual machines 
(VMs) across computing resources, irrespective 
of the provider’s virtualization stack. For exam-
ple, a supercloud can live-migrate VMs between 
cloud providers. It can also run any cloud man-
agement stack, including OpenStack (www 
.openstack.org), Eucalyptus (www.eucalyptus 
.com), or a completely custom stack.

We built a supercloud that spans several 
diverse environments by deploying the Xen-
Blanket in each one. In particular, the Xen-
Blanket runs on hypervisors based on Xen or 
the Linux Kernel-based Virtual Machine (KVM), 
public and private infrastructures within the 
Amazon Elastic Compute Cloud (EC2), an enter-
prise cloud, and Cornell University. Within the 
supercloud, we’ve migrated VMs to and from 
Amazon EC2 without needing to modify them; 
the cloud user need not be aware of which pro-
vider is supplying the resources supporting the 
VM. Furthermore, our supercloud exploits a 
resource oversubscription model that no cloud 
providers currently offer. Consequently, it can 
host 40 CPU-intensive VMs on EC2 for 41 per-
cent of the price per hour of 40 small instances 
with matching performance.

Supercloud
A supercloud provides a uniform cloud ser-
vice comprising resources obtained from sev-
eral diverse infrastructure-as-a-service (IaaS)2 
cloud resource providers (see Figure 1). Here, 
we examine the role superclouds play in a util-
ity model and the challenges we faced when 
designing and implementing them.

A Universal System for the Cloud
Utility models for resources in a universal sys-
tem, such as electricity, include three distinct 

roles: generators, distributors, and consumers. 
At the back end, generators offer resources. A 
distributor consumes the raw resources as a  
commodity from various generators and builds 
a service around them. Then, consumers inter-
act with the distributor service to use the 
resources.

The common model used for IaaS clouds has 
only two entities: a cloud provider and a cloud 
user. Viewing the cloud as a utility, the cloud 
provider (such as Amazon EC2, Rackspace, or 
Google Compute Engine) acts as a generator by 
supplying computing resources as VMs. The 
cloud user acts as a consumer by instantiating 
VMs to run application workloads.

In today’s clouds, the distributor role is  
assumed by either the cloud provider or a third 
party, but it’s limited in either case. Some 
cloud providers act as both the generator and 
distributor. They fully control the physical 
resources and can thus implement rich features 
as services to users. However, these features 
are intrinsically bound to that single provider, 
preventing distribution services that span pro-
viders, such as tolerance against provider fail-
ure.3 Alternatively, third-party vendors, such as 
RightScale (www.rightscale.com), might act as 
distributors. By interacting with multiple cloud 
providers, they offer cloud service and man-
agement features. However, these vendors lack 

Figure 1. Supercloud overview. A supercloud creates a distribution 
layer between the cloud generator and consumers.
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control over the cloud provider’s platform and 
ultimately can’t add features such as live VM 
migration, CPU bursting, or transparent VM 
fault tolerance.

Today’s cloud model thus lacks a robust way 
to create cloud distributors. Such distributors 
should be able to consume resources from multi-
ple cloud providers (generators) while maintain-
ing control over those resources. Put another 
way, what’s missing is a distributor layer that 
decouples cloud generators from cloud con-
sumers. The supercloud fills this role, treating 
cloud providers as interchangeable generators 
from which users can consume raw resources. 
A supercloud can exploit pricing strategies and 
spot markets for compute resources between 
cloud providers, replicate VMs between provid-
ers, and simplify management.

Challenges and Requirements
IaaS cloud providers are diverse and hetero-
geneous, with services tightly coupled to their  
physical resources. To act as an indepen-
dent distributor, a supercloud must contain a 
transformer or a mechanism that completely 
decouples resources — including computation, 
network, and storage — from the physical infra-
structure. As a first step, we focus on decoupling 
computation from the physical infrastructure. 
In IaaS clouds, computation (embodied by VMs) 

is tied to a cloud provider in two aspects, neces-
sitating a transformer.

First, VM images that run on one cloud pro-
vider can’t be easily instantiated on different 
clouds. For example, EC2 and Rackspace use dif-
ferent image formats: Amazon’s EC2 Machine 
Instance (AMI) format and the Open Virtualiza-
tion Format (OVF),4 respectively. Paravirtual-
ized device interfaces that VMs use are similarly 
diverse; VMs on EC2 and Rackspace use Xen 
and virtio, respectively. A supercloud must use 
computing resources from various cloud provid-
ers as a commodity; thus, it must decouple the 
VM image format from the provider.

Second, IaaS clouds are diverse in terms of 
the services they provide to VMs. For example, 
Amazon EC2 provides CloudWatch (integrated 
monitoring), AutoScaling, and Elastic Load Bal-
ancing, whereas Rackspace supports VM migra-
tion to combat server host degradation, and CPU 
bursting to borrow cycles from other instances. 
Moreover, resource management opportunities —  
in particular, tools that operate at the hyper-
visor level — aren’t consistently available between 
providers. For example, no unified set of tools 
exists with which users can specify VM colo-
cation on physical machines, page sharing 
between VMs, or resource oversubscription. A 
supercloud must enhance cloud provider ser-
vices with the set of features they lack, such 
that services can function seamlessly regardless 
of where the cloud resources are obtained.

Our approach toward superclouds enables a 
universal system for a cloud utility by creating 
a distinct, feature-rich distributor that’s com-
pletely separate from the generator.

Enabling a Supercloud
At its core, a supercloud leverages the Xen-
Blanket, a nested virtualization system that can 
transform any provider-specific VM instance 
into a unif ied, distributor-specif ied one. As 
Figure 2 shows, nested virtualization consists of  
a second-layer hypervisor inside a VM instance, 
which is running on top of a (first-layer) hyper-
visor. In this model, the provider (the generator) 
continues to own first-layer hypervisors, while 
a supercloud (the distributor) owns second-layer 
ones. Also, in this model, different superclouds 
(that is, different distributors) can coexist.

A supercloud user (the consumer) runs VM 
instances and the cloud management stack on 
top of the second-layer Xen-Blanket hypervisor. 

Figure 2. The Xen-Blanket. Controlled by the supercloud, the Xen-
Blanket provides a distribution layer across heterogeneous clouds 
without requiring any additional support from providers.

Hardware

VM

Supercloud 2

Xen-Blanket

Xen Kernel-based Virtual Machine

Provider-controlled VMM Provider-controlled VMM

Xen-Blanket

Supercloud-controlled VMM

Supercloud 1

VMVM

IC-17-02-Will.indd   30 3/7/13   3:26 PM



Plug into the Supercloud

MARCh/APRIL 2013 31

We refer to the second virtualization layer as 
the Blanket layer. By running the Xen-Blanket 
on top of different providers, the supercloud 
can consume resources from multiple cloud 
generators, offer them to its consumers, and 
seamlessly switch providers. More details of the 
Xen-Blanket design and implementation appear 
elsewhere.5

The Xen-Blanket Transformer
The Xen-Blanket encompasses two primary 
concepts. First, the top half exposes a single, 
supercloud-controlled VM interface and ser-
vice suite to supercloud users such that a guest 
VM image can run on any provider infrastruc-
ture without modifications. Second, its bottom 
half communicates with the underlying hyper-
visor interface, which could vary depending on 
the provider. No modifications to the underly-
ing hypervisor are expected or required.

Transformer top half. The top half of the Xen-
Blanket exposes a consistent VM interface to 
supercloud users. A supercloud can thus place 
VMs on any provider that can run the Blanket 
layer without modifications. To maximize the 
number of clouds on which the Blanket layer 
can run, this layer doesn’t need the provider to 
expose state-of-the-art nested virtualization 
interfaces (as with the Turtles Project6). Instead, 
it relies on other x86 virtualization techniques, 
such as paravirtualization or binary transla-
tion. For our prototype implementation, we 
adopted the popular open source Xen hypervi-
sor, which uses paravirtualization techniques 
when virtualization hardware isn’t available. 
The Xen-Blanket subsequently inherits para-
virtualization’s limits, most notably its inabil-
ity to run unmodified operating systems such 
as Microsoft Windows. However, this limitation 
isn’t fundamental. We can construct a Blanket 
layer using binary translation (for example, a 
VMWare-Blanket7), on which unmodified oper-
ating systems would be able to run. We can also 
create Blanket layers with other interfaces or 
even customized hypervisors developed from 
scratch.

Transformer bottom half. The Xen-Blanket’s 
bottom half ensures that a supercloud can 
span several different clouds without requir-
ing changes to the underlying cloud system or 
hypervisor. We assume that hardware-assisted 

full virtualization for the x86 (called a hard-
ware virtual machine, or HVM, in Xen ter-
minology) is available from cloud providers. 
However, we don’t assume that device I/O is 
emulated, so the Blanket hypervisor must be 
aware of the underlying hypervisor’s paravir-
tualized I/O interfaces. The Xen-Blanket inter-
faces with various underlying paravirtualized  
device I/O implementations. Paravirtualized device  
I/O has proven essential for performance, and 
some clouds require it, such as Amazon EC2. 
However, no standard paravirtualized device 
I/O interface currently exists. For example, 
older Xen-based clouds, including Amazon EC2, 
require device drivers to communicate with 
Xen-specific subsystems, such as the XenBus 
and XenStore, whereas KVM-based systems 
expect device drivers to interact with the hyper-
visor via virtio interfaces. The Xen-Blanket 
supports such nonstandard interfaces by modi-
fying the bottom half to contain cloud-specific 
Blanket drivers.

Discussion
The Xen-Blanket transforms provider-specific 
VM image formats and hypervisor environments 
into a common distributor-defined format. How-
ever, for a supercloud to completely decouple 
cloud generators from consumers, it must also 
decouple the supporting provider infrastructure. 
In particular, a supercloud must provide a uni-
form mechanism for locating VMs on the net-
work and interacting with storage.

Cloud providers offer virtual network abstrac-
tions that decouple network addresses from the 
cloud infrastructure. For example, Amazon’s Vir-
tual Private Cloud (VPC) lets users extend their 
private networks into the cloud. After eliminat-
ing technical addressing challenges, a supercloud 
might need to implement a policy to ensure that, 
even as VMs migrate between providers, heav-
ily communicating VMs remain colocated on the 
same cloud provider.8

Solving network addressing issues lets VMs  
access storage across the network from any-
where within the supercloud. However, access-
ing storage that resides on another cloud 
provider will result in poor performance. A 
supercloud can employ caching and replication 
techniques and balance performance at the cost 
of storing and transferring data between pro-
viders. It could even use RAID-like techniques 
across providers.3
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Evaluation and Experience
We built a supercloud using the Xen-Blanket 
across three clouds; our extensive evaluation 
appears elsewhere.5 In short, the Xen-Blanket  
introduces some overhead due to the second 
layer of virtualization. Microbenchmarks show 
that it introduces 3 percent overhead for sim-
ple operations and up to 12.5 percent for con-
text switch microbenchmarks. In the worst 
case, overheads can rise to 68 percent due to 
advanced programmable interrupt control-
ler (APIC) emulation for guest VMs with many 
virtual CPUs. However, Blanket drivers ensure 
that I/O performance is good: network drivers  
can receive packets at line speed on a 1-Gbps link, 
while disk I/O throughput is within 12 percent 
of single-level paravirtualized disk perfor-
mance. Furthermore, the Xen-Blanket’s perfor-
mance is sufficient for common applications 
such as Web servers (demonstrated with the 
SPECweb2009 benchmark). Given Xen-Blanket’s 
performance, our evaluation here focuses on 
two supercloud features: resource oversubscrip-
tion and cross-provider live VM migration.

Oversubscription
We evaluated oversubscription in a Xen-Blanket- 
based supercloud on Amazon EC2 and showed 
that the supercloud can host CPU-intensive 
VMs at 41 percent of the cost of native EC2. 
The supercloud exploits the pricing per hour on 
Amazon EC2 to rent a small instance versus a 
quadruple extra-large cluster compute instance 
(cluster 4XL). In particular, as of July 2012, 
although the cluster 4XL instance is almost a  

factor of 16.5 times more expensive than a 
small instance ($0.08 versus $1.30 per hour), 
some resources are greater than 16.5 t imes 
more abundant (for example, 33.5 times more 
for CPU); others are less than 16.5 times more 
abundant (10.5 times more for disk). This suggests 
that if a cloud user has several CPU-intensive 
VMs normally serviced as small instances, it 
might be more cost-effective to rent a cluster 
4XL instance and oversubscribe the memory 
and disk. This isn’t an option that Amazon pro-
vides. However, a supercloud (using the Xen-
Blanket) can implement such a configuration.

To illustrate this point, we ran a CPU-intensive  
macrobenchmark, kernbench, simultaneously in 
varying numbers of VMs running on a super-
cloud comprising a single cluster 4XL instance 
running the Xen-Blanket. We also ran the 
benchmark inside a small EC2 instance for a 
comparison point. Figure 3 shows the elapsed 
time to run the benchmark in each scenario. 
Each number of VMs on the supercloud corre-
sponds to a different monetary cost. For exam-
ple, to run a single VM, the cost is $1.30 per 
hour, while running 40 VMs reduces the cost 
per VM to $0.0325 per hour. Running a single 
VM, the benchmark completes in 89 seconds on 
the supercloud, compared to 286 seconds for a 
small instance. This is expected, because the 
cluster 4XL instance is significantly more pow-
erful than a small instance. Furthermore, the 
average benchmark completion time for even 
40 VMs remains 33 seconds faster than for a  
small instance, although the variance of the 
benchmark performance significantly increases 
for large numbers of VMs on the same instance. 
Because a small instance costs $.08 per VM per 
hour, this translates to roughly 41 percent of 
the price per VM per hour.

Cross-Provider Live Migration
Although migrating VMs between multiple 
clouds is possible, the process is cloud-specific 
and fundamentally limited. To the best of our 
knowledge, our supercloud, using the Xen-Blanket, 
is the first implementation that can perform live 
VM migration between arbitrary cloud provid-
ers (including Amazon EC2). As such, we don’t 
have a comparison point to present.

Live migration typically relies on memory 
tracing: a hypervisor-level technique that the 
Xen-Blanket inherits from Xen. Additionally, 
the supercloud must provide a uniform network 

Figure 3. Average elapsed time to run simultaneous kernbench 
benchmarks. The Xen-Blanket lets a supercloud oversubscribe 
cloud resources such that each of the 40 virtual machines (VMs) 
on a quadruple extra-large cluster compute (4XL) instance can 
simultaneously complete compilation tasks in the same amount  
of time as a small instance.
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and storage environment (as we discussed ear-
lier) to perform live multicloud migration.

Within the Xen-Blanket, we implement a 
proof-of-concept virtual network and shared 
storage abstraction, shown in Figure 4. Each 
Xen-Blanket instance within the supercloud 
runs a virtual switch in Domain 0 to which we 
attach the virtual network interfaces belong-
ing to Blanket guest VMs. A layer-2 tun-
nel connects the virtual switches across the 
Internet. The result is that VMs on either of the 
two Xen-Blanket instances appear to be shar-
ing a private LAN. We introduce a few basic 
network services onto the virtual network. We 
run a gateway server VM with two virtual 
network interfaces: one attached to the virtual 
switch and the virtual network, and the other 
attached to the Xen-Blanket instance’s exter-
nally visible interface. The gateway server VM 
runs dnsmasq as a lightweight Dynamic Host 
Configuration Protocol and DNS server. It also 
runs an NFS server that exports files onto 
the virtual network and is mounted by each 
Xen-Blanket instance’s Domain 0. Both Xen-
Blanket instances mount the NFS share at the  
same location. So, during VM migration, the  
VM root f i le-system image can always be 
located at the same file-system location, regard-
less of the physical machine.

With VMs anywhere in the supercloud 
able to communicate, maintain their network 
addresses, and access storage within either 
cloud, live VM migration proceeds by follow-
ing the typical procedure in the Blanket hyper-
visor. However, although we’ve successfully 
live-migrated a VM from an enterprise cloud to 
Amazon EC2 and back, relying on an NFS disk 
image potentially residing on another cloud  

Figure 4. Live migration. Xen-Blanket instances are connected with 
a layer-2 tunnel, while a gateway server virtual machine provides 
DNS, Dynamic Host Configuration Protocol, and NFS servers to 
the virtual network, eliminating the communication and storage 
barriers to multicloud live migration.
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Related Work toward Decoupling Cloud Services

Several techniques exist for deploying applications on mul-
tiple clouds. Although they’re positive steps toward creat-

ing superclouds, none afford the user the flexibility or level of 
decoupling of the Xen-Blanket on today’s public clouds.

Using tools from RightScale (www.rightscale.com), users 
can create ServerTemplates, deploy them on various clouds, 
and use clouds’ unique features without sacrificing portability. 
however, RightScale can’t perform hypervisor-level services 
across providers, such as live virtual machine (VM) migration. 
The Reservoir project is a multicloud agenda to federate two 
or more independent cloud providers.1 however, standard-
ization is necessary before federation can extend beyond the 
testbed. Like a supercloud, fos aims to expose a coherent envi-
ronment that spans cloud resources and is deployed on the 
Amazon Elastic Compute Cloud (EC2).2 however, fos exposes 
a single system image, forgoing the familiar VM interface and 
legacy applications contained within.

Through the Xen-Blanket, superclouds leverage nested 
virtualization. The Turtles Project enables nested virtual-
ization with one or more levels of full virtualization on Intel 
hardware.3 Olivier Berghmans describes the performance of 

several nested virtualization environments.4 VMworld hands-
On Labs (hOLs) use VMware ESX in nested mode to produce 
a private lab environment for each participant.5 The Xen- 
Blanket sacrifices full nested virtualization for immediate deploy-
ment of a supercloud on a variety of existing clouds.
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instead of a local disk is clearly inefficient. 
Moreover, the layer-2 tunnel only connects two 
machines. As future work, we can augment the 
supercloud with more sophisticated network vir-
tualization, storage, and wide-area live migration 
techniques.

T hrough the Xen-Blanket, superclouds main-
tain the hypervisor-level control necessary 

to implement rich cloud services. Moreover, the 
Xen-Blanket requires no modifications to exist-
ing cloud provider infrastructures, enabling 
superclouds to be deployed today.

Using the Xen-Blanket, we’ve experimented 
with developing supercloud services that over-
subscribe resources to provide low-cost VMs for 
CPU-intensive jobs and migrate VMs between 
cloud providers without requiring downtime or 
modifications. However, we’ve just scratched 
the surface in terms of the applications and 
functionality that we can implement in a super-
cloud. In the future, superclouds will offer com-
plete cloud management stacks, innovative or 
experimental cloud services, or custom features 
for a specific class of application, all spanning 
multiple providers.

The Xen-Blanket project website is located 
at http://xcloud.cs.cornell.edu, and the code is 
publicly available at http://code.google.com/p/
xen-blanket. 
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