
28 Published by the IEEE Computer Society 1089-7801/13/$31.00 © 2013 IEEE IEEE INTERNET COMPUTING

Vi
rt

ua
liz

at
io

n

A s part of the growing trend toward
commoditizing computing resources,
cloud computing is often com-

pared to other utility models, such as
electricity. Akin to power generators,
cloud providers offer massive amounts
of computing resources. However, unlike
today’s electr icity uti l ity model, in
which consumers are generally agnos-
tic as to where their power is generated,
cloud users (consumers) are tightly cou-
pled to providers’ infrastructures and
must adhere to those providers’ varying
specifications (such as the virtualiza-
tion stack and management APIs). As
it stands, today’s cloud delivery model
resembles the “War of the Currents”
from the late 1880s,1 in which direct
current (DC) power distribution was
tightly coupled to a local generator.

We’re interested in building cloud
infrastructures that are akin to West-
inghouse’s “universal system” — the
foundation of modern power generation,
distribution, and commoditization. In the

universal system, Westinghouse showed
how power — using Tesla’s transformer —
could be generated and consumed in
many different voltages.1 In such a
model, consumers care only about pow-
er’s availability because it can readily be
transformed into the correct voltage. In
this way, consumers can be completely
agnostic to where and how the electricity
is generated. The universal system thus
demonstrates how to decouple power
generation from consumption. This
decoupling was a corner piece to creating
power distribution networks and, ulti-
mately, commoditizing electricity.

To solve the tight coupling of today’s
clouds, we propose superclouds, cloud
distribution layers that aren’t bound to
any provider or physical resource. On the
surface, supercloud users see a collection
of computing resources, similar to today’s
clouds. Beneath the surface, a supercloud
“transforms” multiple underlying cloud
offerings into a universal cloud abstrac-
tion. The supercloud specifies and fully

Cloud computing is often compared to the power utility model, but today’s

cloud providers don’t simply supply raw computing resources as a commodity;

they also act as distributors, dictating cloud services that aren’t compatible

across providers. A supercloud is a cloud service distribution layer that’s

completely decoupled from the provider. Leveraging a nested paravirtualization

layer called the Xen-Blanket, the supercloud maintains the control necessary

to implement hypervisor-level services and management. Using the Xen-

Blanket to transform various cloud provider services into a unified offering,

the authors have deployed a supercloud across the Amazon Elastic Compute

Cloud, an enterprise cloud, and Cornell University.

Dan Williams
and Hani Jamjoom
IBM T.J. Watson Research Center

Hakim Weatherspoon
Cornell University

Plug into the Supercloud

IC-17-02-Will.indd 28 3/7/13 3:26 PM

Plug into the Supercloud

MARCh/APRIL 2013 29

controls the entire cloud stack, independent from
the provider infrastructure. A supercloud thus
decouples cloud providers and users.

At first glance, a supercloud might seem to
require radically redesigning today’s clouds;
it doesn’t. Here, we demonstrate how to create
superclouds on top of existing clouds by lever-
aging nested virtualization to perform a similar
function to the Tesla transformer in Westing-
house’s universal system. Toward this goal, we
present the design of a nested paravirtualiza-
tion hypervisor, called the Xen-Blanket, which
can run on different providers, thus enabling
superclouds to span clouds. Subsequently, a
supercloud can manage guest virtual machines
(VMs) across computing resources, irrespective
of the provider’s virtualization stack. For exam-
ple, a supercloud can live-migrate VMs between
cloud providers. It can also run any cloud man-
agement stack, including OpenStack (www
.openstack.org), Eucalyptus (www.eucalyptus
.com), or a completely custom stack.

We built a supercloud that spans several
diverse environments by deploying the Xen-
Blanket in each one. In particular, the Xen-
Blanket runs on hypervisors based on Xen or
the Linux Kernel-based Virtual Machine (KVM),
public and private infrastructures within the
Amazon Elastic Compute Cloud (EC2), an enter-
prise cloud, and Cornell University. Within the
supercloud, we’ve migrated VMs to and from
Amazon EC2 without needing to modify them;
the cloud user need not be aware of which pro-
vider is supplying the resources supporting the
VM. Furthermore, our supercloud exploits a
resource oversubscription model that no cloud
providers currently offer. Consequently, it can
host 40 CPU-intensive VMs on EC2 for 41 per-
cent of the price per hour of 40 small instances
with matching performance.

Supercloud
A supercloud provides a uniform cloud ser-
vice comprising resources obtained from sev-
eral diverse infrastructure-as-a-service (IaaS)2
cloud resource providers (see Figure 1). Here,
we examine the role superclouds play in a util-
ity model and the challenges we faced when
designing and implementing them.

A Universal System for the Cloud
Utility models for resources in a universal sys-
tem, such as electricity, include three distinct

roles: generators, distributors, and consumers.
At the back end, generators offer resources. A
distributor consumes the raw resources as a
commodity from various generators and builds
a service around them. Then, consumers inter-
act with the distributor service to use the
resources.

The common model used for IaaS clouds has
only two entities: a cloud provider and a cloud
user. Viewing the cloud as a utility, the cloud
provider (such as Amazon EC2, Rackspace, or
Google Compute Engine) acts as a generator by
supplying computing resources as VMs. The
cloud user acts as a consumer by instantiating
VMs to run application workloads.

In today’s clouds, the distributor role is
assumed by either the cloud provider or a third
party, but it’s limited in either case. Some
cloud providers act as both the generator and
distributor. They fully control the physical
resources and can thus implement rich features
as services to users. However, these features
are intrinsically bound to that single provider,
preventing distribution services that span pro-
viders, such as tolerance against provider fail-
ure.3 Alternatively, third-party vendors, such as
RightScale (www.rightscale.com), might act as
distributors. By interacting with multiple cloud
providers, they offer cloud service and man-
agement features. However, these vendors lack

Figure 1. Supercloud overview. A supercloud creates a distribution
layer between the cloud generator and consumers.

Cloud consumers

VMs are agnostic to the
generators’ cloud stack.

Cloud generators

Cloud providers are
treated as generators of
raw computing resources.

Cloud
distribution layer

Supercloud

Blanket (transformer) layer

Cloud A Cloud B

VM
1

VM
2

VM
3

VM
4

A supercloud transforms
the generators’ cloud
stack to match the
consumers’ needs.

Hypervisor 1 Hypervisor 2

IC-17-02-Will.indd 29 3/7/13 3:26 PM

Virtualization

30 www.computer.org/internet/ IEEE INTERNET COMPUTING

control over the cloud provider’s platform and
ultimately can’t add features such as live VM
migration, CPU bursting, or transparent VM
fault tolerance.

Today’s cloud model thus lacks a robust way
to create cloud distributors. Such distributors
should be able to consume resources from multi-
ple cloud providers (generators) while maintain-
ing control over those resources. Put another
way, what’s missing is a distributor layer that
decouples cloud generators from cloud con-
sumers. The supercloud fills this role, treating
cloud providers as interchangeable generators
from which users can consume raw resources.
A supercloud can exploit pricing strategies and
spot markets for compute resources between
cloud providers, replicate VMs between provid-
ers, and simplify management.

Challenges and Requirements
IaaS cloud providers are diverse and hetero-
geneous, with services tightly coupled to their
physical resources. To act as an indepen-
dent distributor, a supercloud must contain a
transformer or a mechanism that completely
decouples resources — including computation,
network, and storage — from the physical infra-
structure. As a first step, we focus on decoupling
computation from the physical infrastructure.
In IaaS clouds, computation (embodied by VMs)

is tied to a cloud provider in two aspects, neces-
sitating a transformer.

First, VM images that run on one cloud pro-
vider can’t be easily instantiated on different
clouds. For example, EC2 and Rackspace use dif-
ferent image formats: Amazon’s EC2 Machine
Instance (AMI) format and the Open Virtualiza-
tion Format (OVF),4 respectively. Paravirtual-
ized device interfaces that VMs use are similarly
diverse; VMs on EC2 and Rackspace use Xen
and virtio, respectively. A supercloud must use
computing resources from various cloud provid-
ers as a commodity; thus, it must decouple the
VM image format from the provider.

Second, IaaS clouds are diverse in terms of
the services they provide to VMs. For example,
Amazon EC2 provides CloudWatch (integrated
monitoring), AutoScaling, and Elastic Load Bal-
ancing, whereas Rackspace supports VM migra-
tion to combat server host degradation, and CPU
bursting to borrow cycles from other instances.
Moreover, resource management opportunities —
in particular, tools that operate at the hyper-
visor level — aren’t consistently available between
providers. For example, no unified set of tools
exists with which users can specify VM colo-
cation on physical machines, page sharing
between VMs, or resource oversubscription. A
supercloud must enhance cloud provider ser-
vices with the set of features they lack, such
that services can function seamlessly regardless
of where the cloud resources are obtained.

Our approach toward superclouds enables a
universal system for a cloud utility by creating
a distinct, feature-rich distributor that’s com-
pletely separate from the generator.

Enabling a Supercloud
At its core, a supercloud leverages the Xen-
Blanket, a nested virtualization system that can
transform any provider-specific VM instance
into a unif ied, distributor-specif ied one. As
Figure 2 shows, nested virtualization consists of
a second-layer hypervisor inside a VM instance,
which is running on top of a (first-layer) hyper-
visor. In this model, the provider (the generator)
continues to own first-layer hypervisors, while
a supercloud (the distributor) owns second-layer
ones. Also, in this model, different superclouds
(that is, different distributors) can coexist.

A supercloud user (the consumer) runs VM
instances and the cloud management stack on
top of the second-layer Xen-Blanket hypervisor.

Figure 2. The Xen-Blanket. Controlled by the supercloud, the Xen-
Blanket provides a distribution layer across heterogeneous clouds
without requiring any additional support from providers.

Hardware

VM

Supercloud 2

Xen-Blanket

Xen Kernel-based Virtual Machine

Provider-controlled VMM Provider-controlled VMM

Xen-Blanket

Supercloud-controlled VMM

Supercloud 1

VMVM

IC-17-02-Will.indd 30 3/7/13 3:26 PM

Plug into the Supercloud

MARCh/APRIL 2013 31

We refer to the second virtualization layer as
the Blanket layer. By running the Xen-Blanket
on top of different providers, the supercloud
can consume resources from multiple cloud
generators, offer them to its consumers, and
seamlessly switch providers. More details of the
Xen-Blanket design and implementation appear
elsewhere.5

The Xen-Blanket Transformer
The Xen-Blanket encompasses two primary
concepts. First, the top half exposes a single,
supercloud-controlled VM interface and ser-
vice suite to supercloud users such that a guest
VM image can run on any provider infrastruc-
ture without modifications. Second, its bottom
half communicates with the underlying hyper-
visor interface, which could vary depending on
the provider. No modifications to the underly-
ing hypervisor are expected or required.

Transformer top half. The top half of the Xen-
Blanket exposes a consistent VM interface to
supercloud users. A supercloud can thus place
VMs on any provider that can run the Blanket
layer without modifications. To maximize the
number of clouds on which the Blanket layer
can run, this layer doesn’t need the provider to
expose state-of-the-art nested virtualization
interfaces (as with the Turtles Project6). Instead,
it relies on other x86 virtualization techniques,
such as paravirtualization or binary transla-
tion. For our prototype implementation, we
adopted the popular open source Xen hypervi-
sor, which uses paravirtualization techniques
when virtualization hardware isn’t available.
The Xen-Blanket subsequently inherits para-
virtualization’s limits, most notably its inabil-
ity to run unmodified operating systems such
as Microsoft Windows. However, this limitation
isn’t fundamental. We can construct a Blanket
layer using binary translation (for example, a
VMWare-Blanket7), on which unmodified oper-
ating systems would be able to run. We can also
create Blanket layers with other interfaces or
even customized hypervisors developed from
scratch.

Transformer bottom half. The Xen-Blanket’s
bottom half ensures that a supercloud can
span several different clouds without requir-
ing changes to the underlying cloud system or
hypervisor. We assume that hardware-assisted

full virtualization for the x86 (called a hard-
ware virtual machine, or HVM, in Xen ter-
minology) is available from cloud providers.
However, we don’t assume that device I/O is
emulated, so the Blanket hypervisor must be
aware of the underlying hypervisor’s paravir-
tualized I/O interfaces. The Xen-Blanket inter-
faces with various underlying paravirtualized
device I/O implementations. Paravirtualized device
I/O has proven essential for performance, and
some clouds require it, such as Amazon EC2.
However, no standard paravirtualized device
I/O interface currently exists. For example,
older Xen-based clouds, including Amazon EC2,
require device drivers to communicate with
Xen-specific subsystems, such as the XenBus
and XenStore, whereas KVM-based systems
expect device drivers to interact with the hyper-
visor via virtio interfaces. The Xen-Blanket
supports such nonstandard interfaces by modi-
fying the bottom half to contain cloud-specific
Blanket drivers.

Discussion
The Xen-Blanket transforms provider-specific
VM image formats and hypervisor environments
into a common distributor-defined format. How-
ever, for a supercloud to completely decouple
cloud generators from consumers, it must also
decouple the supporting provider infrastructure.
In particular, a supercloud must provide a uni-
form mechanism for locating VMs on the net-
work and interacting with storage.

Cloud providers offer virtual network abstrac-
tions that decouple network addresses from the
cloud infrastructure. For example, Amazon’s Vir-
tual Private Cloud (VPC) lets users extend their
private networks into the cloud. After eliminat-
ing technical addressing challenges, a supercloud
might need to implement a policy to ensure that,
even as VMs migrate between providers, heav-
ily communicating VMs remain colocated on the
same cloud provider.8

Solving network addressing issues lets VMs
access storage across the network from any-
where within the supercloud. However, access-
ing storage that resides on another cloud
provider will result in poor performance. A
supercloud can employ caching and replication
techniques and balance performance at the cost
of storing and transferring data between pro-
viders. It could even use RAID-like techniques
across providers.3

IC-17-02-Will.indd 31 3/7/13 3:26 PM

Virtualization

32 www.computer.org/internet/ IEEE INTERNET COMPUTING

Evaluation and Experience
We built a supercloud using the Xen-Blanket
across three clouds; our extensive evaluation
appears elsewhere.5 In short, the Xen-Blanket
introduces some overhead due to the second
layer of virtualization. Microbenchmarks show
that it introduces 3 percent overhead for sim-
ple operations and up to 12.5 percent for con-
text switch microbenchmarks. In the worst
case, overheads can rise to 68 percent due to
advanced programmable interrupt control-
ler (APIC) emulation for guest VMs with many
virtual CPUs. However, Blanket drivers ensure
that I/O performance is good: network drivers
can receive packets at line speed on a 1-Gbps link,
while disk I/O throughput is within 12 percent
of single-level paravirtualized disk perfor-
mance. Furthermore, the Xen-Blanket’s perfor-
mance is sufficient for common applications
such as Web servers (demonstrated with the
SPECweb2009 benchmark). Given Xen-Blanket’s
performance, our evaluation here focuses on
two supercloud features: resource oversubscrip-
tion and cross-provider live VM migration.

Oversubscription
We evaluated oversubscription in a Xen-Blanket-
based supercloud on Amazon EC2 and showed
that the supercloud can host CPU-intensive
VMs at 41 percent of the cost of native EC2.
The supercloud exploits the pricing per hour on
Amazon EC2 to rent a small instance versus a
quadruple extra-large cluster compute instance
(cluster 4XL). In particular, as of July 2012,
although the cluster 4XL instance is almost a

factor of 16.5 times more expensive than a
small instance ($0.08 versus $1.30 per hour),
some resources are greater than 16.5 t imes
more abundant (for example, 33.5 times more
for CPU); others are less than 16.5 times more
abundant (10.5 times more for disk). This suggests
that if a cloud user has several CPU-intensive
VMs normally serviced as small instances, it
might be more cost-effective to rent a cluster
4XL instance and oversubscribe the memory
and disk. This isn’t an option that Amazon pro-
vides. However, a supercloud (using the Xen-
Blanket) can implement such a configuration.

To illustrate this point, we ran a CPU-intensive
macrobenchmark, kernbench, simultaneously in
varying numbers of VMs running on a super-
cloud comprising a single cluster 4XL instance
running the Xen-Blanket. We also ran the
benchmark inside a small EC2 instance for a
comparison point. Figure 3 shows the elapsed
time to run the benchmark in each scenario.
Each number of VMs on the supercloud corre-
sponds to a different monetary cost. For exam-
ple, to run a single VM, the cost is $1.30 per
hour, while running 40 VMs reduces the cost
per VM to $0.0325 per hour. Running a single
VM, the benchmark completes in 89 seconds on
the supercloud, compared to 286 seconds for a
small instance. This is expected, because the
cluster 4XL instance is significantly more pow-
erful than a small instance. Furthermore, the
average benchmark completion time for even
40 VMs remains 33 seconds faster than for a
small instance, although the variance of the
benchmark performance significantly increases
for large numbers of VMs on the same instance.
Because a small instance costs $.08 per VM per
hour, this translates to roughly 41 percent of
the price per VM per hour.

Cross-Provider Live Migration
Although migrating VMs between multiple
clouds is possible, the process is cloud-specific
and fundamentally limited. To the best of our
knowledge, our supercloud, using the Xen-Blanket,
is the first implementation that can perform live
VM migration between arbitrary cloud provid-
ers (including Amazon EC2). As such, we don’t
have a comparison point to present.

Live migration typically relies on memory
tracing: a hypervisor-level technique that the
Xen-Blanket inherits from Xen. Additionally,
the supercloud must provide a uniform network

Figure 3. Average elapsed time to run simultaneous kernbench
benchmarks. The Xen-Blanket lets a supercloud oversubscribe
cloud resources such that each of the 40 virtual machines (VMs)
on a quadruple extra-large cluster compute (4XL) instance can
simultaneously complete compilation tasks in the same amount
of time as a small instance.

0
50

100
150
200
250
300
350
400
450

A
ve

ra
ge

 e
la

ps
ed

 t
im

e
(s

ec
)

1 VM 10 VMs 20 VMs 30 VMs 40 VMs Small instance

Supercloud instance
Small instance

IC-17-02-Will.indd 32 3/7/13 3:26 PM

Plug into the Supercloud

MARCh/APRIL 2013 33

and storage environment (as we discussed ear-
lier) to perform live multicloud migration.

Within the Xen-Blanket, we implement a
proof-of-concept virtual network and shared
storage abstraction, shown in Figure 4. Each
Xen-Blanket instance within the supercloud
runs a virtual switch in Domain 0 to which we
attach the virtual network interfaces belong-
ing to Blanket guest VMs. A layer-2 tun-
nel connects the virtual switches across the
Internet. The result is that VMs on either of the
two Xen-Blanket instances appear to be shar-
ing a private LAN. We introduce a few basic
network services onto the virtual network. We
run a gateway server VM with two virtual
network interfaces: one attached to the virtual
switch and the virtual network, and the other
attached to the Xen-Blanket instance’s exter-
nally visible interface. The gateway server VM
runs dnsmasq as a lightweight Dynamic Host
Configuration Protocol and DNS server. It also
runs an NFS server that exports files onto
the virtual network and is mounted by each
Xen-Blanket instance’s Domain 0. Both Xen-
Blanket instances mount the NFS share at the
same location. So, during VM migration, the
VM root f i le-system image can always be
located at the same file-system location, regard-
less of the physical machine.

With VMs anywhere in the supercloud
able to communicate, maintain their network
addresses, and access storage within either
cloud, live VM migration proceeds by follow-
ing the typical procedure in the Blanket hyper-
visor. However, although we’ve successfully
live-migrated a VM from an enterprise cloud to
Amazon EC2 and back, relying on an NFS disk
image potentially residing on another cloud

Figure 4. Live migration. Xen-Blanket instances are connected with
a layer-2 tunnel, while a gateway server virtual machine provides
DNS, Dynamic Host Configuration Protocol, and NFS servers to
the virtual network, eliminating the communication and storage
barriers to multicloud live migration.

VM

VM

VM.img

Xen-Blanket

Xen-Blanket

Amazon EC2

Private cloud

SS
H

SS
H Domain

U

Domain U
Gateway server
DNS, DHCP, NFS

Domain
U

Domain
0

Domain
0

Firewall

Related Work toward Decoupling Cloud Services

Several techniques exist for deploying applications on mul-
tiple clouds. Although they’re positive steps toward creat-

ing superclouds, none afford the user the flexibility or level of
decoupling of the Xen-Blanket on today’s public clouds.

Using tools from RightScale (www.rightscale.com), users
can create ServerTemplates, deploy them on various clouds,
and use clouds’ unique features without sacrificing portability.
however, RightScale can’t perform hypervisor-level services
across providers, such as live virtual machine (VM) migration.
The Reservoir project is a multicloud agenda to federate two
or more independent cloud providers.1 however, standard-
ization is necessary before federation can extend beyond the
testbed. Like a supercloud, fos aims to expose a coherent envi-
ronment that spans cloud resources and is deployed on the
Amazon Elastic Compute Cloud (EC2).2 however, fos exposes
a single system image, forgoing the familiar VM interface and
legacy applications contained within.

Through the Xen-Blanket, superclouds leverage nested
virtualization. The Turtles Project enables nested virtual-
ization with one or more levels of full virtualization on Intel
hardware.3 Olivier Berghmans describes the performance of

several nested virtualization environments.4 VMworld hands-
On Labs (hOLs) use VMware ESX in nested mode to produce
a private lab environment for each participant.5 The Xen-
Blanket sacrifices full nested virtualization for immediate deploy-
ment of a supercloud on a variety of existing clouds.

References
1. B. Rochwerger et al., “Reservoir — When One Cloud Is Not Enough,” Com-

puter, vol. 44, no. 3, 2011, pp. 44–51.

2. D. Wentzlaff et al., “An Operating System for Multicore and Clouds: Mecha-

nisms and Implementation,” Proc. ACM Symp. Cloud Computing, ACM, 2010,

pp. 3–14.

3. M. Ben-Yehuda et al., “The Turtles Project: Design and Implementation of

Nested Virtualization,” Proc. Usenix Operating Systems Design and Implemen-

tation Conf., Usenix Assoc., 2010, article no. 1–6.

4. O. Berghmans, “Nesting Virtual Machines in Virtualization Test Frame-

works,” master’s thesis, Dept. of Mathematics and Computer Science, Univ.

of Antwerp, May 2010.

5. A. Zimman, C. Roberts, and M.V.D. Walt, “VMworld 2011 hands-On Labs:

Implementation and Workflow,” VMware Technical J., vol. 1, no. 1, 2012,

pp. 70–76.

IC-17-02-Will.indd 33 3/7/13 3:26 PM

Virtualization

34 www.computer.org/internet/ IEEE INTERNET COMPUTING

instead of a local disk is clearly inefficient.
Moreover, the layer-2 tunnel only connects two
machines. As future work, we can augment the
supercloud with more sophisticated network vir-
tualization, storage, and wide-area live migration
techniques.

T hrough the Xen-Blanket, superclouds main-
tain the hypervisor-level control necessary

to implement rich cloud services. Moreover, the
Xen-Blanket requires no modifications to exist-
ing cloud provider infrastructures, enabling
superclouds to be deployed today.

Using the Xen-Blanket, we’ve experimented
with developing supercloud services that over-
subscribe resources to provide low-cost VMs for
CPU-intensive jobs and migrate VMs between
cloud providers without requiring downtime or
modifications. However, we’ve just scratched
the surface in terms of the applications and
functionality that we can implement in a super-
cloud. In the future, superclouds will offer com-
plete cloud management stacks, innovative or
experimental cloud services, or custom features
for a specific class of application, all spanning
multiple providers.

The Xen-Blanket project website is located
at http://xcloud.cs.cornell.edu, and the code is
publicly available at http://code.google.com/p/
xen-blanket.

Acknowledgments
This work was partially funded and supported by an IBM

Faculty Award received by Hakim Weatherspoon, DARPA

(number D11AP00266), US National Science Foundation

CAREER (number 1053757), NSF TRUST (number 0424422),

NSF FIA (number 1040689), NSF EAGER (number. 1151268),

and NSF CiC (number. 1047540). We thank the anonymous

reviewers for their comments.

References
1. J. Jones, Empires of Light: Edison, Tesla, Westinghouse,

and the Race to Electrify the World, Random House,

2004.

2. P. Mell and T. Grance, The NIST Definition of Cloud

Computing, Special Publication 800-145, US Nat’l Inst.

Standards and Technology, Sept. 2011.

3. H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon,

“RACS: A Case for Cloud Storage Diversity,” Proc. ACM

Symp. Cloud Computing, ACM, 2010, pp. 229–240.

4. “Open Virtualization Format,” white paper version

1.00, Distributed Management Task Force, Feb. 2009;

www.dmtf.org/sites/default/files/standards/documents/

DSP2017_1.0.0.pdf.

5. D. Williams, H. Jamjoom, and H. Weatherspoon, “The

Xen-Blanket: Virtualize Once, Run Everywhere,” Proc.

ACM EuroSys, ACM, 2012, pp. 113–126.

6. M. Ben-Yehuda et al., “The Turtles Project: Design and

Implementation of Nested Virtualization,” Proc. Usenix

Operating Systems Design and Implementation Conf.,

Usenix Assoc., 2010, article no. 1–6.

7. J. Sugerman, G. Venkitachalam, and B.-H. Lim, “Vir-

tualizing I/O Devices on VMware Workstation’s Hosted

Virtual Machine Monitor,” Proc. Usenix Ann. Technical

Conf., Usenix Assoc., 2001, pp. 1–14.

8. V. Shrivastava et al., “Application-Aware Vir tual

Machine Migration in Data Centers,” Proc. IEEE Com-

puter Communications Mini-Conf. (INFOCOM), IEEE,

2011, pp. 66–70.

Dan Williams is a research staff member in the Cloud Plat-

forms and Transformation group at the IBM T.J. Watson

Research Center. His research interests span cloud

computing, virtualization, networking, and operat-

ing systems. Williams has a PhD in computer science

from Cornell University. Contact him at djwillia@

us.ibm.com.

Hani Jamjoom is a research manager for the Cloud Plat-

forms and Transformation group at the IBM T.J. Watson

Research Center. His research interests include hybrid

clouds, network and nested virtualization, and work-

load migration across cloud platforms, looking at vari-

ous levels of the application and system stack. Jamjoom

has a PhD in computer science from the University

of Michigan. He’s received two Outstanding Techni-

cal Achievement awards, an Outstanding Innovation

award, and two Research Division awards among others

for his technical contributions to IBM’s products and

services. Contact him at jamjoom@us.ibm.com.

Hakim Weatherspoon is an assistant professor in the

Department of Computer Science at Cornell Univer-

sity. His research interests cover various aspects of

fault-tolerance, reliability, security, and performance

of large Internet-scale systems such as cloud comput-

ing and distributed systems. Weatherspoon has a PhD

in computer science from the University of California,

Berkeley. He’s an Alfred P. Sloan Fellow and recipient

of a US National Science Foundation (NSF) CAREER

award, DARPA Computer Science Study Panel (CSSP),

IBM Faculty Award, the NetApp Faculty Fellowship,

Intel Early Career Faculty Honor, and NSF Future Inter-

net Architecture award. Contact him at hweather@

cs.cornell.edu.

IC-17-02-Will.indd 34 3/7/13 3:26 PM

