
Design and Evaluation of Distributed Wide-Area On-line Archival Storage Systems

by

Hakim Weatherspoon

B.S. (University of Washington, Seattle) 1999

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor John Kubiatowicz, Chair

Professor Anthony Joseph
Professor John Chuang

Fall 2006

The dissertation of Hakim Weatherspoon is approved:

Chair Date

Date

Date

University of California, Berkeley

Fall 2006

Design and Evaluation of Distributed Wide-Area On-line Archival Storage Systems

Copyright 2006

by

Hakim Weatherspoon

1

Abstract

Design and Evaluation of Distributed Wide-Area On-line Archival Storage Systems

by

Hakim Weatherspoon

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor John Kubiatowicz, Chair

As the amount of digital assets increase, systems that ensure the durability, integrity, and

accessibility of digital data become increasingly important. Distributed on-line archival storage sys-

tems are designed for this very purpose. This thesis explores several important challenges pertaining

to fault tolerance, repair, and integrity that must be addressed to build such systems.

The first part of this thesis explores how to maintain durability via fault tolerance and

repair and presents many insights on how to do so efficiently.Fault tolerance ensures that data is

not lost due to server failure. Replication is the canonicalsolution for data fault tolerance. The

challenge is knowing how many replicas to create and where tostore them. Fault tolerance alone,

however, is not sufficient to prevent data loss as the last replica will eventually fail. Thus, repair is

required to replace replicas lost to failure. The system must monitor and detect server failure and

create replicas in response. The problem is that not all server failure results in loss of data and the

system can be tricked into creating replicas unnecessarily. The challenge is knowing when to create

replicas. Both fault tolerance and repair are required to prevent the last replica from being lost,

hence, maintain data durability.

The second part of this thesis explores how to ensure the integrity of data. Integrity

ensures that the state of data stored in the system always reflects changes made by the owner. It

includes non-repudiably binding owner to data and ensuringthat only the owner can modify data,

returned data is the same as stored, and the last write is returned in subsequent reads. The challenge

is efficiency since requiring cryptography and consistencyin the wide-area can easily be prohibitive.

Next, we exploit a secure log to efficiently ensure integrity. We demonstrate how the

narrow interface of a secure, append-only log simplifies thedesign of distributed wide-area storage

2

systems. The system inherits the security and integrity properties of the log. We describe how

to replicate the log for increased durability while ensuring consistency among the replicas. We

present a repair algorithm that maintains sufficient replication levels as machines fail. Finally, the

design uses aggregation to improve efficiency. Although simple, this interface is powerful enough

to implement a variety of interesting applications.

Finally, we apply the insights and architecture to a prototype called Antiquity. Antiquity

efficiently maintains the durability and integrity of data.It has been running in the wide area on 400+

PlanetLab servers where we maintain the consistency, durability, and integrity of nearly 20,000 logs

totaling more than 84 GB of data despite the constant churn ofservers (a quarter of the servers

experience a failure every hour).

Professor John Kubiatowicz
Dissertation Committee Chair

i

Contents

List of Figures vi

List of Tables xiv

I Defining Scope of Problem 1

1 Introduction 2
1.1 Overview . 3

1.1.1 Maintaining Durability 3
1.1.2 Maintaining Integrity 6
1.1.3 Putting It All Together .. . 9

1.2 Challenges .. 10
1.2.1 Assumptions . 10
1.2.2 The Fault Tolerance Problem 11
1.2.3 The Repair Problem . 12
1.2.4 The Integrity Problem .. 14

1.3 Architecture for a Solution: Antiquity Prototype 17
1.4 Historical Perspective 18
1.5 Lessons Learned .. 19
1.6 Contributions .. . 21
1.7 Summary . 22

2 Methodology 23
2.1 Failure Characteristics 24

2.1.1 Analyzing the Behavior of PlanetLab 25
2.1.2 PlanetLab First Interval: Insights into Correlated Failures 27
2.1.3 PlanetLab Second Interval: Insights into Matured System and Operation . . 29
2.1.4 Synthetic trace .30

2.2 Analyzing Algorithmic Solutions 31
2.2.1 Algorithmic Solution Representation 32
2.2.2 Metrics . 33
2.2.3 Statistics Gathering and Analysis 33
2.2.4 Algorithmic Solution Comparison Criteria 34

ii

2.2.5 Environments . 35
2.3 Discussion .. 36

II Maintaining Data Durability Through Fault Tolerance and Repair 38

3 Fault Tolerance and Repair Overview 39
3.1 System Model .41
3.2 Example . 41

4 Fault Tolerance 43
4.1 Choosing Redundancy Type 43

4.1.1 Erasure-coding versus Replication 45
4.1.2 Complexity of Erasure-Codes and Self-Verifying Data. 53

4.2 Choosing the Number of Replicas to Create 56
4.2.1 System Model . 56
4.2.2 Generating a Markov Model .. 60
4.2.3 Creation versus Failure Rate 61
4.2.4 ChoosingrL . 64

4.3 Choosing Where to Store Replicas 68
4.3.1 Increasing Durability Through Repair Parallelism with Scope 70
4.3.2 Placement Strategies, Failure Predictors, and Durability 74

4.4 Summary . 79

5 Repair 82
5.1 Reducing Transient Costs with Monitoring and Timeout-based Failure Detectors . . 83

5.1.1 Failure detectors .. 84
5.1.2 Evaluation of Timeout-based Failure Detectors 85

5.2 Reducing Transient Costs with Extra Replication 86
5.2.1 Estimator Algorithm .. 88
5.2.2 Evaluation of Extra Replication 92

5.3 Reducing Transient Costs with Reintegration 94
5.3.1 Carbonite details .. 95
5.3.2 Reintegration reduces maintenance 96
5.3.3 How many replicas? . 97
5.3.4 Create replicas as needed 99
5.3.5 Reintegration and Erasure-coding 101

5.4 Summary . 102

III Exploiting a Secure Log for Wide-Area Distributed Stora ge 103

6 Secure Log Overview 104
6.1 Overview . 106

6.1.1 Storage System Goals .106

iii

6.1.2 System Model . 107
6.1.3 Assumptions . 108

6.2 Secure Log Details .. . 109
6.3 Semantics of a Distributed Secure Log 112
6.4 Example uses of a Secure Log 114

6.4.1 File System Interface .. . 114
6.4.2 Database Example . 116
6.4.3 Tamper-resistant syslog 116

7 The Secure Log Interface 117
7.1 Background and Prior Work 118

7.1.1 Self-verifying Data .. . 118
7.1.2 Distributed hash table (DHT) storage systems 119
7.1.3 Prior Aggregation Systems 121

7.2 How to use an Aggregation Interface to Construct a SecureLog 121
7.2.1 Constructing a Secure Log .. . 122
7.2.2 Reading data from a Secure Log .. . 124
7.2.3 Other benefits of Aggregation 125

7.3 A Distributed Secure Log and Error Handling 125
7.4 Discussion .. 126

8 Dynamic Byzantine Quorums for Consistency and Durability 128
8.1 Background and Prior Work 129
8.2 Protocol Requirements 131
8.3 Protocol Assumptions 132
8.4 Quorum Repair .133

8.4.1 Challenges . 133
8.4.2 Triggering repair .. 136
8.4.3 Initializing a configuration after repair 137
8.4.4 Certificates and Soundness Proofs 138
8.4.5 The Repair Audit Protocol .. . 139

8.5 Protocol Details 139
8.5.1 Base Write Protocol .140
8.5.2 Thecreate() Protocol . 141
8.5.3 Theappend() Protocol . 142
8.5.4 Therepair() Protocol . 144
8.5.5 Transient Server Failure Protocol 145

8.6 Protocol Correctness 146
8.6.1 Protocol Consistency .. . 146
8.6.2 Protocol Durability .. . 146
8.6.3 Protocol Liveness .. 147

8.7 Discussion .. 147

iv

9 Utilizing Distributed Hash Table (DHT) Technology for Data Maintenance 149
9.1 Publishing and Locating Extent Replicas 150
9.2 Monitoring Server Availability and Triggering Repair Audits 151
9.3 Discussion and Limitations 153

IV Antiquity: Prototype Implementation and Evaluation 155

10 Antiquity 156
10.1 Architecture Overview 157
10.2 Gateways, Coordinators, Distributed Hash Tables, andProtocol Details 159

10.2.1 Path of acreate(), append(), andrepair() 160
10.2.2 Breakdown of latencies for all operations 162

10.3 Summary and Discussion 164

11 Evaluation 165
11.1 Experimental Environment 165
11.2 Cluster Deployment 166
11.3 PlanetLab Deployment 170

11.3.1 Quorum Consistency and Availability 172
11.3.2 Quorum Repair . 173

11.4 A Versioning Back-up Application 174
11.5 Experience and Discussion 174

V Related and Future Work 178

12 Related Work 179
12.1 Logs . 179
12.2 Byzantine Fault-Tolerant Services 179
12.3 Wide-area Distributed Storage Systems 180
12.4 Replicated Systems 180
12.5 Replication analysis 181
12.6 Replicated systems 182
12.7 Digital Libraries 183

13 Future Work 184
13.1 Proactive Replication for Data Durability 184
13.2 Closed-loop, Proactive Repair, for Data Durability 186
13.3 Administrator Discussion 187
13.4 OceanStore as an Application 187
13.5 Summary . 188

14 Concluding Remarks 189

Bibliography 191

v

A Durability Derivation 202

B Glossary of Terms 204

vi

List of Figures

1.1 Example Maintaining Durability in a Distributed Wide-area On-line Archival Stor-
age System. (a) fault tolerance defines the system’s abilityto tolerate server failure
without loss of data. It includes choosing the type of redundancy (e.g. replication
or erasure-coding), number of replicas, and where to store replicas. (b) Repair is the
process of replacing replicas lost to server failure (such as Louisiana). It includes
detecting server failure and creating new replicas (such asGeorgia). 4

1.2 Example Maintaining Integrity in a Distributed Wide-area On-line Archival Stor-
age System. (a) A data object with the valueA is replicated onto four servers via a
request by a workstation. In (b), the same workstation attempts to add valueB, pred-
icated onA already being stored. The request succeeds since it reachesa threshold
of servers (Illinois, Louisiana, and New York). The requestdid not reach the Geor-
gia server, however, possibly due to network transmission error or transient failure.
In (c), a laptop, which possesses the same private key as the workstation, attempts
to add valueC, predicated onA already being stored. The request fails since the
predicate fails on a threshold of servers. Note that the server in Georgia appliesC
since the predicate matches local state. However, the system should return valueB
in any subsequent reads. .. 7

1.3 Example Maintaining Durability and Integrity Togetherin a Distributed Wide-area
On-line Archival Storage System. In (a) and (b), a server storing a replica in
Louisiana permanently fails. In (c), during repair, the system should initialize the
new configuration to the state reflecting the latest successful write, A B. 9

2.1 Example Server Failure Trace. 24
2.2 Server Attrition of All-pairs Ping Data Set. 26
2.3 PlanetLab first Interval Characteristics (All-pairs Ping). Sessiontime, downtimes,

and availability distributions. 28
2.4 PlanetLab First Interval Trace Characteristics (All-pairs Ping). Permanent server

failure interarrival distribution. 29
2.5 PlanetLab Second Interval Trace Characteristics (CoMon+PLC). Sessiontime, down-

time, and availability distributions. 30
2.6 PlanetLab Second Interval Trace Characteristics (CoMon+PLC). Permanent server

failure interarrival distribution. 31

vii

3.1 Example of Maintaining Data in a Wide Area Storage System. 42

4.1 Fraction of Blocks Lost Per Year (FBLPY) for a rate1
4 erasure-encoded block.

Disks fail after five years and a repair process reconstructsdata regularly. The
four-fragment case (top line) is equivalent to simple replication on four servers.
Increasing the number of fragments increases the durability of a block while total
storage overhead remains constant. Notice, for example, that for a repair interval of
6 months the four-way replication (top line) loses 0.03 (3%)blocks per year while
the 64 fragments, any 16 of which are sufficient to reconstruct (bottom line) loses
10−35 blocks per year. 44

4.2 Disk Mortality Distribution [PH02]. 46
4.3 Hybrid Update Architecture: Updates are sent to a central “Archiver”, which pro-

duces archival fragments at the same time that it updates live replicas. Clients can
achieve low-latency read access by utilizing replicas directly. 52

4.4 (a) Verification Tree: is a hierarchical hash over the fragments and data of a block.
The top-most hash is the block’sGUID. (b) Verification Fragments: hashes required
to verify the integrity of a particular fragment. 55

4.5 Example repair process. The replica location and repairservice coordinates repair
process: new servers prioritize downloading new replicas.Initially, there are four
servers and four objects (A thru D) withrL = 3 for each object. (a) Server 1 fails.
The replica location and repair service selects a new server, server 5, to download
lost replicas. (b) Before any repair completes, server 2 fails. The replica location
and repair service selects server 6 to download lost replicas and communicates new
download priority to server 5 (A,D,C instead of A,C,D since Dhas less replicas that
exist than C). (c) All repair completes. Notice that object replica C on server 5 and
B on server 6 waited for an entire servers worth of repairs to complete before they
completed. 57

4.6 Example number of replicas that exist over time. Initially, rL = 8 replicas of an
object are inserted into the system. At time 3, a server storing a replica fails. The
failure is detected at time 4 and repaired by time 6. The repair lag is due to con-
strained resources such as access link bandwidth that restrict the number of objects
that a server can repair in a given time period. Furthermore,the newly triggered re-
pair would have to wait for previously triggered repairs to complete. Later, another
server fails at time 9. But before repair can complete, another server fails at time 11
bringing the number of replicas that exist down to 6. The lostreplicas are replaced
by time 14. The lowest number of replicas that exist is 5 at time 21. 58

4.7 A continuous time Markov model for the process of replicafailure and repair for
a system that maintains three replicas (rL = 5). Numbered states correspond to the
number of replicas of each object that exist. Transitions tothe left occur at the rate
at which replicas are lost; right-moving transitions happen at the replica creation
rate. 60

viii

4.8 Average number of replicas at the end of a two year synthetic trace for varying
values ofθ. This Figures represents a set of simulations where we reduced the
bandwidth per server (x-axis) effectively reducing the replica creation rateµ (and
θ). The input to the simulator was a synthetic failure trace with a 632 servers and
a server failure rate ofλ f = 1 per year. The storage load maintained was 1TB of
unique data (50,000 20MB objects). As a result, the total replicated data was 2TB,
4TB, 6TB, and 8TB forrL = 2, 4, 6, 8, respectively. Finally, each experiment was
run with a specific available bandwidth per server that ranged from 100 B/s to 1,200
B/s. 63

4.9 Frequency of “simultaneous” failures in the PlanetLab trace. These counts are de-
rived from breaking the trace into non-overlapping 24 and 72hour periods and not-
ing the number of permanent failures that occur in each period. If there arex replicas
of an object, there werey chances in the trace for the object to be lost; this would
happen if the remaining replicas were not able to respond quickly enough to create
new replicas of the object. .. . 65

4.10 Analytic results for the probability of data loss over time. These curves are the
solution to the system of differential equations governinga continuous time Markov
process that models a replication system running on PlanetLab storing 500GB. At
time zero, the system is in state 3 (three replicas) with probability 1.0 (dot-dash line
is at 1.0). As time progresses, the system is overwhelminglylikely to be in state
0 which corresponds to object loss (that probability is shown as a bold line in the
above plot). 67

4.11 Analytic prediction for object durability after four years on PlanetLab. Thex-axis
shows the initial number of replicas for each object: as the number of replicas is
increased, object durability also increases. Each curve plots a different per-server
storage load; as load increases, it takes longer to copy objects after a failure and it
is more likely that objects will be lost due to simultaneous failures. 68

4.12 Scope. Each unique serveri has a unique set of servers it monitors and can poten-
tially hold copies of the objects thati is responsible for (server seti 6⊂ storage server
setj , ∀i 6= j). Thesizeof that set is the server’sscope. (a) scope=3 and (b) scope=5.
In terms of placement choices, assuming thatrL =3 and object replicas are stored on
serveri’s server set, then there is no choice for (a) and

(scope
rL

)

=
(5

3

)

choices in (b). . 70
4.13 Example parallel repair with a large scope. Scope is 7 and rL = 3. Only servers

within scope are monitored and there are
(7

3

)

possible replica sets. The replica
location and repair service coordinates the repair processutilizing as many source
and destination server pairs as possible. Initially, thereare seven servers and seven
objects (A thru G) withrL = 3 for each object. (a) Server 1 fails. The replica
location and repair service selects as many source and destination server pairs to
reduce the repair time. Server 2 downloads replica A from server 3. Similarly,
server 5 downloads replica D from server 4 and server 6 downloads replica B from
server 7. (b) All repair completes. 72

ix

4.14 Durability for different scopes. Assuming random placement. We vary the target
replication levelrL and scope (x-axis). To reduceθ, we limit the bandwidth per
server to 1000 B/s in this experiment. Durability is measured via simulation using
a two year synthetic trace. Increasing the scope from 5 to 25 servers reduces the
fraction of lost objects by an order of magnitude, independent of rL. 73

4.15 Temporally Correlated Failures. We use a two-dimensional space of conditional
downtime probabilities, both p(x is down| y is down) and p(y is down| x is down).
Serversx and y are temporally correlated ifboth probabilities are greater than a
threshold such as 0.5 or 0.8. (a) upper right quadrant of 2D Correlation. (b) Fraction
of Correlated Servers. 22% of the time that a server goes down, there is at least a
50% chance another server in the same site will go down as well. Alternatively, the
servers in different sites were not temporally correlated.. 75

4.16 Per Server Total Downtime (log scale). 76
4.17 Temporally Correlated Failures with servers with total downtimes longer then 1000

hours removed from consideration. (a) 2D Correlation and (b) Fraction of Corre-
lated Servers (servers w/ total downtime≤ 1000 hours). 33% of the time that a
server goes down, who’s total downtime is less than 1000 hours, there is at least a
50% chance another server in the same site will go down. The temporally corre-
lated probability increased when we removed the long downtime servers because
the number of servers temporally correlated remained relatively unchanged from
Figure 4.15 while the total number of servers was reduced by 188. Alternatively,
the servers in different sites were not temporally correlated. 77

5.1 The impact of timeouts on bandwidth and durability on a synthetic trace. Fig-
ure 5.1(a) shows the number of copies created for various timeout values; (b) shows
the corresponding object durability. In this trace, the expected downtime is about
29 hours. Longer timeouts allow the system to mask more transient failures and
thus reduce maintenance cost; however, they also reduce durability. 85

5.2 Transient and Permanent Failures over Time. 86
5.3 Example. Cost per Server of Maintaining Data in a Wide Area Storage System. . . 87
5.4 Extra Replication Estimator for Storage Systems on PlanetLab. 92
5.5 Extra Replication. Figures (a), (b), and (c) use the DHT-based storage system like

Dhash and Figures (d), (e), and (f) use a directory-based storage system with a
Random placement. Figures (a) and (d) shows the number of repairs triggered per
week over the course of the trace. Figures (b) and (e) show theaverage bandwidth
per server (averaged over a week) over the course of the trace. Finally, Figures
(c) and (f) show the average bandwidth per server as we vary the number of extra
replicas and timeout values. 93

5.6 Cost Breakdown for Maintaining Minimum Data Availability for 2 TB of unique
data. (a) and (b) Cost breakdown with a unique write rate of 1Kbps and 10 Kbps
per server, respectively. Both (a) and (b) fix the data placement strategy toRandom
and timeoutτ = 1hr. The cost due to heartbeats is not shown since it was less than
1Kbps. 94

x

5.7 Each server maintains a list of objects for which it is responsible and monitors the
replication level of each object using some synchronization mechanism. In this
code, this state is stored in the replicas hash table though an implementation may
choose to store it on disk. This code is called periodically to enqueue repairs on
those objects that have too few replicas available; the application can issue these
requests at its convenience. 95

5.8 A comparison of the total amount of work done by differentmaintenance algorithms
with rL = 3 using a PlanetLab trace (left) and a synthetic trace (right). In all cases,
no objects are lost. However,rL = 2 is insufficient: for the PlanetLab trace, even a
system that could distinguish permanent from transient failures would lose several
objects. 96

5.9 Additional redundancy must be created when the amount oflive redundancy drops
below the desired amount (3 replicas in this example). The probability of this hap-
pening depends solely on the average server availabilitya and the amount of durable
redundancy. This graph shows the probability of a repair action as a function of the
amount of durable redundancy, witha = 0.5, a = 0.7 anda = 0.9 for a replication
system. 98

5.10 Total repair cost with extra replicas, and with and without reintegration after repair.
Without reintegration, extra replicas reduce the rate at which repair is triggered
and thus reduce maintenance cost; there is an optimal setting (heree = 8). With
reintegration, the cost is lowest if no extra replicas are used. 100

5.11 Total repair cost with a rater = m
n = 7

14 erasure-coding scheme, reintegration, ex-
tra fragments, and with and without replica caching after reconstruction and re-
pair. Without caching, extra fragments reduce the rate at which repair is triggered
and thus reduce maintenance cost; there is an optimal setting (heree= 12). With
caching, the cost is lowest if few extra fragments are used (e= 0 to 2). 101

6.1 A log-structured storage infrastructure can provide storage for end-user clients,
client-server systems, or replicated services. Each log isidentified by a key pair. . . 107

6.2 To compute the verifier for a log, the system uses the recurrence relationVi =
H(Vi−1 +H(Di)). V−1 = H(PK) wherePK is a public key. 109

6.3 Semantics of a Distributed Secure Log. (a) A secure log with the valueA is initially
replicated onto seven servers. In (b), a workstation attempts toappend() the value
B, predicated onA already being stored. The result of the request is sound since it
reaches a threshold of servers (servers 3-7). In (c), a laptop, which possesses the
same private key as the workstation, simultaneously attempts toappend() valueC,
predicated onA already being stored. The result of the request is unsound since the
predicate fails on a threshold of servers. Note that the two servers (server 1-2) apply
C since the predicate matches local state. However, the system should return value
B in any subsequent reads. .113

6.4 (a) An abstract representation of a versioning file system with two versions. A
version can reference newly created data and data in previous versions. (V = version,
R = root directory,I = file inode,B = data block) (b) An application can write the
file system to a log by traversing the tree in a depth-first manner. 115

6.5 A simple file system used as a running example. Map symbolsto concrete file system.116

xi

7.1 Clients divide data into small blocks that are combined into Merkle trees. A key-
verified block points to the root of the structure. To update an object, a client over-
writes the key-verified block to point to the new root. (V = version,R = version
root, I = indirect node,B = data block) . 120

7.2 This example illustrates how the client library uses theextended API to write the
first version of the file system shown in Figure 6.4. The shadedextent is the mutable
log head; immutable extents are shown in white. 124

8.1 Examplecreate() request using a Byzantine fault-tolerant quorum. (a) A client
attempts to create a secure log with a configuration that includes seven servers and
can tolerate two faulty servers (f = 2 andn = 7 > 3 f). After an administrator
selects a configuration, the client submits thecreate() request to all the servers
in the configuration. (b) Thecreate() request succeeds after the client receives
positive acknowledgment from a quorum of servers (q = 7−2 = 5). 130

8.2 Examplecreate() request using a Byzantine fault-tolerant agreement. (a) and
(c) are similar to the Byzantine quorumcreate() request and acknowledgment
in Figure 8.1.(a) and (b), respectively. However, Figure (b) above illustrates that
Byzantine agreement protocols useO(n2) messages over multiple rounds, whereas
Byzantine quorums useO(n) over two rounds where the second round is often pig-
gybacked onto subsequent operations [AGG+05]. 131

8.3 A write is successful after a client receives positive acknowledgment from a quorum
of q storage servers. Two clients simultaneously submit conflicting writes. During
repair, the system should initialize the new configuration to the state reflecting the
latest successful write. In these two examples, the server state that can be observed
from the clients at timet = 3 is the same, but the latest successful write differs. In
(a), the client that wrotec received a quorum of positive server acknowledgments
and, thus, is successful. In (b), the client that wrotec did not receive a quorum
of positive server acknowledgments so the write failed, thus, the new configuration
must be initialized toa. 134

8.4 Example total order of sound operations. 137
8.5 Latest soundness proof. From Figure 8.3(a), at timet = 2, the latest sound write

wasc. Assume a quorum of servers (servers 1-7) acknowledged receiving the latest
soundness proof (configuration parametersn = 9, q = 7, r = 5, and f = 2). This
figure shows the administrator’s view of the storage system at time t = 3 after re-
ceiving replies from five servers (servers 1, 2, 5, 8, 9). Assume servers 1 and 2
are malevolent and can either send the latest or old proof andservers 8 and 9 are
out-of-date and did not receive the last proof. At least one server response out of
five (server 5) contains the latest soundness proof (c). 138

xii

8.6 Local server state for log head and hash-verified extents. It includes proven state
(with soundness proof) and pending state (without soundness proof). Proven state
includes the latest soundness proof, blocknames, and data. Mapping is used to
connect extents into a secure log. Proven state is null when an extent is first created,
whencreate(), snapshot(), orput() are pending; otherwise, it is not null. Pend-
ing data includes a pending soundness proof (certificate andconfiguration without
server signatures), blocknames and data. Pendingmap is used bytruncate(),
pendingmap points to the extent created duringsnapshot(). Pending state is null
if no requests are pending. When a pending request gathers proof of soundness
the pendingproof field replaces the proof.create(), snapshot(), andput() re-
place blocknames, datablocks, and mapping with the associated pending fields.
append() adds the pendingblock names and pendingdatablocks to blocknames
and datablocks fields, respectively.truncate(), however, removes blocknames
and datablocks fields; additionally, it replaces the mapping field with the pend-
ing map field. 140

8.7 (a) To complete acreate() request, a client must first request a new configura-
tion from the administrator. The client then sends the configuration along with the
signed certificate to storage servers listed in the configuration. (b) To complete an
append() request, the client must only send a message to each storage server in the
configuration. 141

8.8 When a storage server believes that repair is needed, it sends a request to the admin-
istrator. After the administrator receives 2f +1 requests from servers in the current
configuration, it creates a new configuration and sends message to servers in the
set. The message describes the current state of the log; storage servers fetch the log
from members of the previous configuration. 144

9.1 Distributed Directory System Architecture. 150
9.2 The above query states that for a given object identifier select the location-pointers

where the remaining number of replicas are less than the lowwatermark, thus trig-
gering a repair audit .. 151

9.3 Directory Data Recovery. a) Using its location-pointers and storage server avail-
ability database, the root monitoring server (MIT) knows that there are two replicas
remaining. If the low watermark is three, then the root triggers a repair audit. b) The
storage servers containing the remaining replicas (Harvard and Texas) cooperate to
refresh lost data replicas. 152

9.4 Expanding Radius Heartbeat. Heartbeats initiated by a storage server (e.g. middle
server) reach a greater number of additional servers as the heartbeat radius expands.
Heartbeats are a form of multicast and reach all servers in the system when the
radius is logN. 154

10.1 The path of an (a)create()/put()/snapshot()/renew() and (b)append()/truncate().
159

10.2 The path of an (a)repair() . 160

xiii

11.1 Aggregation increases system throughput by reducing computation at the data source
and in the infrastructure. The base case shows the throughput of a client that stores
4 KB blocks (and a certificate) usingput() operation, as in a traditional DHT. . . . 166

11.2 The throughput of the system scales with the number of users until resources at the
storage servers are saturated. Performing bulk writes using theput() interface, the
cluster deployment becomes saturated with 48 data sources.Using theappend()
interface, the sustained throughput is much lower because each quorum operation
adds only a small amount of data to the log. 167

11.3 Different operations have widely varying latency. Thelatency is dependent on the
amount of data that must be transferred across the network and the amount of com-
munication with the administrator required. The latency CDF of all operations (even
thenull() RPC operation) exhibits a long tail due to load from other, unrelated jobs
running on the shared cluster. 168

11.4 Increasing the deployment’s tolerance to faults reduces the system throughput since
the system must transfer more data with each write operation. 170

11.5 The latency of operations on PlanetLab varies widely depending on the membership
and load of a configuration. As an example, this graphs plots the CDF of the latency
for appending 32 KB to logs stored in the system. The table highlights key points
in the curves. 171

11.6 Quorum Consistency and Availability. (a) Periodic reads show that 94% of quorums
were reachable and in a consistent state. Up to 90% of failed checks are due to net-
work errors and timeouts. (b) Server availability trace shows that 97% of quorums
were reachable and in a consistent state. This illustrates the increase in performance
over (a) where timeouts reduced the percent of measured available quorums. 176

11.7 Number of servers with their Antiquity application available per hour. Additionally,
number of failures per hour. Most failures are due to restarting the unresponsive
Antiquity instances. As a result, a single server may restart its Antiquity application
multiple times per hour if the instance is unresponsive. 177

11.8 Number of replicas created over time due to storing new data and in response to
failure. 177

13.1 Design Space for Repair Algorithms. 186

xiv

List of Tables

2.1 PlanetLab First Interval Trace Characteristics (All-pairs Ping). Permanent and tran-
sient server failure distributions. 29

2.2 PlanetLab Second Interval Trace Characteristics (CoMon+PLC). Permanent and
transient server failure distributions. 30

2.3 Storage System Algorithm Parameterization 32
2.4 Existing Storage System Parameterization 32

4.1 Comparison of Replica Placement Strategies.rL = 5 andn = 11. 79

5.1 Notation . 89

6.1 The certificate present with each operation and stored with each log. It includes
fields to bind the log to its owner and other metadata fields. 110

6.2 Operations tocreate(), append(), and retrieve data viaget blocks() from a
secure log. A log is identified by the hash of a public key (H(PK)). Thecreate()
andappend() operations include a certificate. Further,append() requires a verifier
of the previous state of the log as a predicate. Theget blocks() operation requires
two arguments because the system breaks logs into extents and requires both the
extentname and blockname. Theget map() retrieves the mappings of a previous
extentcounter to previous extentname. 111

7.1 First-generation distributed hash table (DHT) storagesystems use a simpleput()/get()
interface. Theput hash() andput key() functions are often combined into a sin-
gle put() function. H() is a secure, one-way hash function;h is a secure hash, as
output fromH(). 119

7.2 To support aggregation of log data, we use an extended API. A log is identified by
the hash of a public key (H(PK)). Each mutating operation must include a certifi-
cate. Thesnapshot() andtruncate() operations manage the extent chain; the
renew() operation extends an extent’s expiration time. Theget blocks() opera-
tion requires two arguments because the system implements two-level naming. The
extent name is either H(PK) for the log head or verifier for hash-verified extents. . 123

8.1 A configuration defines a set of storage servers that maintain a replicated log. . . . 129

xv

8.2 A soundness proof can be presented by any machine to any other machine in the
network to prove that a write was sound. To provide this guarantee, the proof con-
tains a set ofq storage server signatures over an append’s certificate (Table 6.1) and
the storage configuration (Table 8.1). 137

10.1 Breakdown of latencies for all operations. Unless an operation is stated explic-
itly, create() represents all operations that interact with the administrator such as
put()/snapshot()/renew(), andappend() represents all operations that donot
such astruncate(). Total operation latency isTreq+ Tcreateconfig+ Tquorum+ Tresp

for create() and Treq+ Tquorum+ Tresp for append(). For all time breakdowns
N (X)a b = (αnet + Xβnet) and D(X) = (αdisk + Xβdisk) are the network (froma
to b) and disk delays, respectively, whereα is the latency,β is the inverse of the
bandwidth (bytes per second), andX is the number of bytes. Next,cl =client
(or app),gw = gateway,co = coordinator,ad = administrator, andss= storage
server. Finally,s, v, L, and P are the times to sign, verify, DHTlookup(), and
DHT publish(), respectively. Notice thatcreate() requires three signatures and
append() requires two. 161

11.1 Measured breakdown of the median latency times for all operations. For all opera-
tions, the client resides in the test cluster and the administrator and storage servers
reside in the storage cluster. The average network latency and bandwidth between
applications on the test cluster and storage cluster is 1.7 ms and 12.5 MB/s (100
Mbs), respectively. The average latency and bandwidth between applications within
the storage cluster is 1.6 ms and 45.0 MB/s (360 Mbs). All datais stored to disk
on the storage cluster using BerkeleyDB which has an averagelatency and band-
width of 4.1 ms and 17.3 MB/s, respectively. Signature creation/verification takes
an average of 6.0/0.6 ms on the test cluster and 3.2/0.6 ms on the storage cluster.
Bandwidth of the SHA-1 routine on the storage cluster is 80.0MB/s. Finally, DHT
lookup() and DHTpublish() take an average of 4.2 ms and 7.2 ms, respectively. 169

12.1 System Comparison 180

xvi

Acknowledgments

I thank the Lord for blessing me with the opportunity to pursue and finish a doctorate in

computer science. Everything I have accomplished has been possible through Him.

John Kubiatowciz, my advisor, has been instrumental in developing my research ca-

reer. He inspired my research in wide-area fault tolerant storage systems with his OceanStore

proposal [K+00]. In that proposal he posed the question: how do we build a system that stores

everyone’s data, for at least their lifetime, and without losing any information? The question (which

seemed obscure at first) is relevant given our increasing dependency on digital data. This thesis is

a product of answering that question. More importantly, Kubi has taught me how to ask a research

question and how to develop a methodology to answer it.

Anthony Joseph has advised me on research topics and career directions. His endless

input and advice was vital to the architecture of OceanStoreand Antiquity. He has always been

available to refine both oral and written presentations including this thesis. His support has helped

define my path.

David Culler has given me excellent advice. He helped develop early OceanStore research

ideas while working together at the Berkeley Intel ResearchLab. Later, his insights on the cost of

storage due to transient failures were vital to this thesis.Furthermore, his letters of recommendation

helped with many awards such as the Intel Foundation PhD Fellowship and other opportunities.

John Chuang has taken an active interest in my research and career. He has helped guide

me through my qualifying exam, dissertation, and career vialetters of recommendation. I am grate-

ful for his commitment.

My office mates, Byung-Gon Chun, Patrick Eaton, Dennis Geels, and Sean Rhea have

been great friends. Our relationship in and out of the office has positively affected me. Their

influence, feedback, and collaboration can be seen throughout this thesis. Discussions with my

office mates along with Emil Ong, (Kelvin) Chiu Wah So, JeremyStribling, and Ben Zhao resulted

in publications as well.

This thesis is also the product of collaboration with colleagues at other universities. Frank

Dabek, Andreas Haeberlen, Emil Sit, Frans Kaashoek, and Robert Morris helped develop many of

the fault tolerance and repair techniques presented in PartII. Some of the material resulted in the

Carbonite algorithm and was published in NSDI [CDH+06]. Ken Birman and Robbert van Renesse

helped clarify some of the ideas about secure logs and dynamic Byzantine quorums in Chapters 7

and 8.

xvii

While at Berkeley, many people and organizations have helped shape my career and me

as a person. My friend Greg Lawrence has helped me with moral and technical support on a number

of occasions. Sheila Humphreys has been my advocate since arriving at Berkeley. Michele de

Coteau, Beatriz Lopes-Flores, and Carla Trujillo, have exposed me to many opportunities. Mary

Byrnes, Ruth Gjerde, Mary Kelleher-Jones, Peggy Lau, and LaShana Porlaris have helped with

many administrative tasks. The Black Graduate Engineeringand Science Students (BGESS) has

helped keep my life balanced.

As an undergraduate at the University of Washington many people and organizations

helped prepare me for graduate school. Debra Friedman, LoriColliander, and Edward Lazowska

saw the potential in me and helped develop my goals. Professors Gaetano Borriello, Carl Ebeling,

Hank Levy, and Larry Snyder taught me the excitement of computer science and engineering. Scott

Minnix and Lisa Peterson via the Minority in Science and Engineering Program (MSEP) helped

prepare me to compete in college. National Society of Black Engineers (NSBE) equipped me with

the appropriate tools and insights for my professional career. Finally, the University of Washington

football team through Coaches Randy Hart, Jim Lambright, Ron Milus, and Scott Pelluer taught me

discipline, integrity, patience, and perseverance.

In High School, my academic drive became apparent during a turning point when I com-

peted for, and won, an internship at the R.S. Dow Neurological Sciences Institute, where I studied

with Dr. Neal Barmack. I also learned other vital lessons during this time period. Coach John Eagle

taught me how to handle the “sudden changes” in life. Coach Dan Kielty showed me how to be a

“student of the game”. Furthermore, friends and their families such as the Leifheit’s, Dicklich’s,

and Van Ness’s enriched my life.

Throughout this entire process, Makda Weatherspoon, has been my best friend. She has

encouraged, loved, and supported me through the ups and downs of undergraduate and graduate

school. She has read and edited this thesis multiple times. Together we have two of the most

beautiful children in the world. Makda, Menelik, and Saba are the sun in my sky!

My family has provided the foundation and framework that defines who I am. My parents,

Anthony and Sophie Weatherspoon, have been the force behindme. They shaped my character and

taught me to be honest, forthright, and conduct myself with the highest integrity. My older brother

and sister, Sultan Weatherspoon and Elnora Jimerson, pavedthe way for me. I hope to provide

the same inspiration for my younger brother and sister AmeenWeatherspoon and Megan Rogers.

Finally, our family who has been reuniting every year for 105years has helped me comprehend the

value and importance of family.

xviii

Portions of this thesis were published in shortened form in the proceedings of USENIX

NSDI Conference [CDH+06], USENIX File and Storage Technologies (FAST) Conference [REG+03],

IEEE Security in Storage Workshop [EWK05], International Workshop on Peer-To-Peer Systems

(IPTPS) [WK02], International Workshop on Future Directions of Distributed Systems (FuDiCo)

[WWK02], and International Workshop on Reliable Peer-to-Peer Distributed Systems [WMK02].

My research was supported in part by an Intel Masters Apprenticeship Program (IMAP) scholarship

and Intel Foundation PhD Fellowship, as well as summer internships with Intel and IBM.

1

Part I

Defining Scope of Problem

2

Chapter 1

Introduction

The preservation of digital data over long periods of time isa challenging endeavor. The

amount of such data is increasing as everything from business and legal documents, to medical

records, to news and literature, to photos, music and videosare transitioning to digital formats.

Systems that store digital assets must ensure durability and integrity of potentially irreplaceable

data, and allow users to retrieve data quickly when it is needed.

A variety of approaches for archival storage have been proposed. One recent trend is clear:

disks have begun to replace tape as the medium of choice for long-term data preservation [Cor,

GSK03, GGL03, GCB+02]. Not only is the cost per bit of storage decreasing fasterwith disk than

with tape, but also the on-line nature of disk-based archival storage leads to greater availability

and ease of automatic replication as media fails and hardware changes. However, cheap on-line

disk-based storage is not a sufficient solution if disks are colocated in the same machine room,

data center, or geographic area. Such a solution cannot tolerate disaster without loss of data. For

example, consider a solution that replicates data in physically separated data centers but all located

in the same city. If a disaster were to occur (e.g. flood causedby Hurricane Katrina) then data would

be lost. Replicating data across the wide-area would help prevent data loss for long-term storage.

Another trend that has appeared in literature but is not universally accepted is durabil-

ity through geographic-scale replica distribution [CDH+06, DKK+01, HMD05, MMGC02, DR01,

REG+03]. By “geographic scale”, we mean the spreading of replicas across multiple states or conti-

nents. Advantages of this approach appear to include scalability and resilience to correlated failures

such as local disasters. For example, a simulation of the Carbonite algorithm [CDH+06] is able to

maintain 100% durability over the course of a year on PlanetLab [BBC+04] despite losing over a

third of the servers due to permanent server failure such as disk failure and permanent removal from

3

the network. Unfortunately, such widely distributed systems suffer from new challenges of security

(including malicious components) and automatic management (reliable adaptation to failure in the

presence of many individual components).

A geographically spread archival storage system needs to beadaptive and tolerant of the

wide-area environment: long latencies, limited access link bandwidth, increased transient failures

where data is intact on disk but not immediately available, and malicious agents that attempt to

compromise servers and data. In particular, designing suchan archival storage system that aggre-

gates disks of a large number of servers spread across the wide-area, for long periods of time, is a

challenging pursuit, but a necessary one.

This thesis represents a step towards outlining and addressing the challenges of a dis-

tributed wide-area on-line archival storage infrastructure. We assume that such an infrastructure is

an essential layer for a variety of applications. We proceedto address two questions: First, how can

an archival infrastructure be constructed to provide durability, integrity, and efficiency? Second,

what is an appropriateinterfacebetween applications and an archival infrastructure? Finally, we

build such a system called Antiquity to verify the constructions and interface.

1.1 Overview

The task of a distributed wide-area on-line archival storage system is to ensure the dura-

bility and integrity of digital data.Durability means data stored in the system is not lost due to

permanent server failure such as disk failure.Integrity means that the state of data stored in the

system always reflects changes made by the owner. We discuss the components of durability and

integrity further in Sections 1.1.1 and 1.1.2.

1.1.1 Maintaining Durability

In order to maintain durability, the following components need to be addressed:fault

toleranceandrepair.

Fault tolerance represents a data object’s ability to tolerate permanent server failure with-

out being permanently lost. It is characterized by an object’s configuration, which defines the type

of redundancy (replication or erasure-codes), number of appropriate replicas, and location of those

replicas. Both replication and erasure-codes duplicate data in order to reduce the risk of data loss

and are considered redundancy. The difference is that replication refers to the process of creating

4

New York

���
���
���

���
���
���

Illinois

Louisiana

���
���
���

���
���
���

���
���
���

���
���
���

(a) Fault Tolerance

���
���
���

���
���
���

Illinois
New York

���
���
���

���
���
���

Georgia

���
���
���

���
���
���

���
���
���

���
���
���

(b) Repair

Figure 1.1: Example Maintaining Durability in a Distributed Wide-area On-line Archival Storage
System. (a) fault tolerance defines the system’s ability to tolerate server failure without loss of data.
It includes choosing the type of redundancy (e.g. replication or erasure-coding), number of replicas,
and where to store replicas. (b) Repair is the process of replacing replicas lost to server failure (such
as Louisiana). It includes detecting server failure and creating new replicas (such as Georgia).

whole, identical, copies of data. Erasure-coding maps a data object broken intomoriginal fragments

(pieces) onto a larger set ofn fragments (n > m) such that the original fragments can be recovered

from a subset of alln fragments. The fraction of the fragments required is calledthe rate, denoted

r1. Data loss occurs when all replicas or a sufficient fraction of fragments for erasure-codes are lost

due to permanent server failure. In addition to the type of redundancy, the number and location of

replicas or fragments are critical to an object’s ability totolerate failure. A fault tolerance algorithm

is a set of procedures used to parameterize the components ofan object’s configuration. Once se-

lected, an object’s configuration is static and does not respond to permanent server failure; rather, it

tolerates them without data loss.

Repair is the process of replacing replicas lost to permanent server failure. It includes

the monitoring of servers and the creation of new replicas when failure occurs. Each time repair is

invoked, aconfiguration changeoccurs since a new set of servers is assigned the responsibility of

1Optimal erasure codes such as Reed-Solomon [BKK+95, Pla97, RV97] codes producen = m/r (r < 1) fragments
where anym fragments are sufficient to recover the original data object. Unfortunately optimal codes are costly (in terms
of memory usage, CPU time or both) whenm is large, so near optimal erasure codes such as Tornado codes[LMS+97,
LMS+98] are often used. These require (1+ε)m fragments to recover the data object. Reducingε can be done at the
cost of CPU time. Alternatively, rateless erasure codes such as LT [Lub02], Online [May02], or Raptor [Sho03], codes
transform a data object ofm fragments into a practically infinite encoded form.

5

storing replicas. The set of servers in the old and new configuration may overlap or could be com-

pletely disjoint. In particular, repair invokes a fault tolerance algorithm to select a new configuration

for the object. It then creates and stores replicas on new servers.

Fault tolerance and repair are two different sides of the same coin. Fault tolerance algo-

rithms select a configuration to tolerate failure and are invoked in two situations: when the object is

initially inserted into the system and during repair.

Consider the following example to understand the interaction between fault tolerance and

repair. Initially, a fault tolerance algorithm selects a configuration that uses a replication redundancy

scheme to produce three total replicas for some object. Furthermore, the fault tolerance algorithm

selects three servers distributed throughout the wide-area to store replicas. Over time, if a server

storing a replica in Louisiana permanently fails, the replica would be lost (Figure 1.1(a)). As a result

of the failure, a repair process is triggered to create a new replica, which it then stores on a server in

Georgia (Figure 1.1(b)). Repair uses a fault tolerance algorithm to select a new configuration and

chooses a new server to host the new replica.

Threats to Durability

There are many threats to durability that complicate the construction of a distributed wide-

area on-line archival storage system. The main threat is losing the last copy of an object due to

permanent server failure such as disk failure. Bursts of permanent server failure such as those

observed on PlanetLab [CDH+06, BBC+04] can leave a data object without any replicas. Efficiently

countering this threat to durability involves understanding the parameters of fault tolerance and

repair discussed in more depth in Part II.

Another threat to durability is the increase of costs due totransient server failuresuch

as server reboot, network and power outage, and software crash. Transient server failure is when a

server returns from failure with data intact. For example, PlanetLab experienced 21,255 transient

server failures in one year, but only 219 permanent failures. Transient server failure increases costs

unnecessarily if the system creates replicas in response tothem. Avoiding this cost is difficult

because it is not possible to distinguish transient from permanent server failure since they both have

the same characteristic. In particular, objects can be durably stored during a transient failure even

though the object is not immediately available. For instance, if the only copy of an object is on the

disk of a server that is currently powered off, but will someday re-join the system with disk contents

intact, then the object is durable but not currently available. As a result, an object is unavailable

6

during both permanent and transient failure. Since transient server failure does not decrease data

durability, creating replicas in response is not necessary. The dilemma is determining when to create

replicas without perfect knowledge of which failures are permanent or transient.

1.1.2 Maintaining Integrity

We say that the integrity of data is maintained if the state ofdata stored in the system

always reflects changes made by the owner and cannot be altered by error or malicious agents. We

assume each data object is owned by a single principle, whichis represented by a public/private key

pair. Multiple devices such as a workstation and laptop may possess both keys.

We address three properties of integrity:non-repudiation, data integrity, andorder in-

tegrity. These properties ensure that only the owner can modify data, returned data is the same as

stored, and the last write is returned in subsequent reads, respectively.

Non-repudiably binding data to owner ensures that only an entity possessing the owner’s

private key can modify data. It includes identifying the owner of each data object and binding

owner to the data object and modifications. It ensures servers do not store and cannot present data

and changes made by any entity other than the owner. It is necessary since servers that initially

store replicas of a data object may not be the same servers that later store the data object and receive

modifications.

Data integrity is achieved when returned data is the same as stored data. Mechanics for

ensuring data integrity include associating a cryptographically secure hash [NIS94] with each data

object. A cryptographically secure hash is a digest (aka checksum, summary, or fingerprint) repre-

sentation of a data object that makes it difficult for error during network transmission, in storage, or

via a malicious attacker to corrupt or alter data without detection.

Order integrity refers to the property by which the last write is returned in subsequent

reads. It defines a total order over all modifications to a particular data object. As a result, each

server has the ability to accept or reject a modification thatcannot be applied. For example, if

each modification is assigned a monotonically increasing sequence number, then a server can reject

modifications assigned a lower sequence number than the latest modification accepted.

Consider the following usage scenario to understand the properties of integrity. First, as-

sume that an owner’s workstation batches updates and periodically (e.g. once an hour) stores data

into a distributed wide-area on-line archival storage system. Additionally, the owner occasionally

uses a laptop to store modifications directly to the storage system without synchronizing with the

7

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Illinois

Georgia

New York

Louisiana

A

A

A

A ���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Louisiana

New York

Georgia

���
���
���

���
���
���

Illinois

A B

A B
A B

A

Illinois

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Louisiana

New York

Georgia

���
���
���

���
���
���

A C

A B

A B

A B

state
new

state
predicate

add

A

A

state
new

state
predicate

add

A B

A

B

state

add

new

state
predicate A

A C

C

(a) Request Succeeds (b) Request Succeeds (c) Request Fails

Figure 1.2: Example Maintaining Integrity in a DistributedWide-area On-line Archival Storage
System. (a) A data object with the valueA is replicated onto four servers via a request by a worksta-
tion. In (b), the same workstation attempts to add valueB, predicated onA already being stored. The
request succeeds since it reaches a threshold of servers (Illinois, Louisiana, and New York). The
request did not reach the Georgia server, however, possiblydue to network transmission error or
transient failure. In (c), a laptop, which possesses the same private key as the workstation, attempts
to add valueC, predicated onA already being stored. The request fails since the predicatefails on
a threshold of servers. Note that the server in Georgia appliesC since the predicate matches local
state. However, the system should return valueB in any subsequent reads.

workstation. The owner and data object are non-repudiably bound via a public/private key pair;

storage servers identify data objects via a public key and only accept requests signed by the associ-

ated private key. As a result, both workstation and laptop are identified as the same owner and are

the only entities allowed to modify the data object. With this scenario, the storage system should

be capable of maintaining data and order integrity while only accepting modifications signed by the

owner despite arbitrary failures such as network error, server failure, or simultaneously submitted

and conflicting requests.

Challenges to Integrity from Replication

A distributed wide-area on-line archival storage system replicates data on multiple servers

to provide durability. However, maintaining the properties of integrity over replicated data is chal-

8

lenging. Servers may store inconsistent data object replica state. Cause of inconsistencies could be

due to server failure or network transmission error such as dropped, reordered, or delayed messages.

It is even more challenging to maintain order integrity across data object replicas. It

requires maintaining consistent state over a threshold of the servers storing a data object replica.

As a result, each storage server obeys a consistency protocol and has the ability to accept or reject

modifications that cannot be applied to locally stored state. For example, a predicate might be

associated with each modification and the predicate must match a secure hash of the currently stored

state of the data object before applying modification.

Consider the following illustration to understand the complexity of maintaining integrity

over replicated data. In Figure 1.2.(a), a new, empty, data object which only includes a public key is

replicated on four storage servers. The owner’s workstation uses its private key to sign a request that

adds the valueA to the data object. The request includes a secure hash of the new server state (A)

to ensure the data integrity. Additionally, the request includes a predicate indicating the previous

stored state is empty. The request succeeds and is applied toall four storage servers.

Later, in Figure 1.2.(b), the workstation attempts to add value B to the data object, pred-

icated onA already being stored. The workstation creates a secure hashof the new server state (A

andB) to ensure the data integrity, cryptographically signs therequest to non-repudiably bind it to

the owner, and submits it to the storage servers. The requestsucceeds since it reaches a threshold of

servers (Illinois, Louisiana, and New York). The request did not reach the Georgia server, however,

possibly due to network transmission error or transient failure.

In Figure 1.2.(c), a different instance of the owner, the laptop, attempts to add valueC,

predicated onA already being stored. This request fails on most of the servers, the predicate fails

sinceA is not the latest state. As a result, the request fails since athreshold did not apply the request.

Note, however, that the server in Georgia applies the request since its state is out-of-date.

Finally, if reads are also performed on a threshold of servers, then the value of the latest

write, B, will be returned in subsequent reads ensuring order integrity.

Threats to Integrity

The threat to integrity is data corruption on disk or during network transmission and ma-

licious agents that attempt to subvert the system. Moreover, when a system replicates data, it must

ensure that replicas are kept consistent and queries are answered in a manner that reflects the true

state of the data. Effectively countering these threats to integrity involve many techniques. Cryp-

9

New York

Georgia

���
���
���

���
���
���

Illinois

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Louisiana

A B

A B

A C

A B

(a) Permanent Server Failure

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Illinois

Georgia

New York

A C

A B
A B

(b) Permanent Server Failure

���
���
���

���
���
���

���
���
���

���
���
���

Missouri

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Illinois

Georgia

New York

A B

A B

A B
A B

(c) Repair

Figure 1.3: Example Maintaining Durability and Integrity Together in a Distributed Wide-area On-
line Archival Storage System. In (a) and (b), a server storing a replica in Louisiana permanently
fails. In (c), during repair, the system should initialize the new configuration to the state reflecting
the latest successful write,A B.

tographic signatures bind data to owner preventing any entity other than the owner from modify-

ing data. Cryptographically secure hashes ensure bits are not corrupted and that data returned is

the same as data stored. Finally, consistency protocols such as Byzantine agreement and quorum

maintain consistency ensuring that the last write is returned in subsequent reads. The challenge is

efficiency since requiring cryptography and consistency inthe wide-area can easily be prohibitive.

Alternatively, to make the problems associated with distributed wide-area storage more

tractable, many systems eliminate the ability to modify data and store onlyimmutabledata [CDH+06,

DKK+01, HMD05, DR01]. Immutable data is read-only and cannot change. Ensuring data and or-

der integrity is immediate since the data object cannot change. Creating a secure hash one time

when the object is first created would be sufficient to ensure that the data returned at some later date

is the same as the original data stored. We explore maintaining both immutable data objects that

cannot change andmutabledata objects that can be modified.

1.1.3 Putting It All Together

Combining both durability and integrity poses new challenges to distributed wide-area on-

line archival storage systems. The system must, in aggregate, maintain correct state of data objects

even as servers fail, store incorrect local state, or attempt to maliciously alter data. These challenges

are compounded by the additional requirements of wide-area, long-term, and efficiency.

In Figure 1.3, we return to the examples originally shown in Figures 1.1 and 1.2 to il-

10

lustrate the combined requirements of durability and integrity. Recall a fault tolerance algorithm

chooses a configuration of four servers to store data object replicas.B is the latest successful write

to a threshold of servers. Additionally, the server in Georgia stores incorrect state. Later, the server

in Louisiana fails as shown in Figure 1.2.(a) and (b). Duringrepair, the system should initialize the

new configuration to the latest state,A B, shown in Figure 1.2.(c).

In summary, durability via fault tolerance and repair ensures data exists over long periods

of time and integrity ensures it correctly reflects changes made only by the owner.

1.2 Challenges

A distributed wide-area on-line archival storage system offers improved durability and

increased accessibility but must overcome several disadvantages arising from the distributed en-

vironment. We address the challenges associated with durability, fault tolerance and repair, and

integrity.

1.2.1 Assumptions

To limit the scope, we make the following assumptions.

First, we assume that eventually all servers permanently fail, that servers are geographi-

cally spread across the wide-area, and that data persists longer than the lifetime of any individual

server. As a result, the persistence of data is dependent on the system’s ability to copy replicas

across the wide-area to new servers as old ones fail. We further assume that wide-area access link

bandwidth is the critical resource and needs to be efficiently utilized when servers communicate and

replicas are created. All durability and integrity guarantees operate under these assumptions.

Second, while we do explore the effects of Byzantine (arbitrary) failures and some corre-

lated failures, we do not explore massively correlated failures, which can result from virus, worm

attacks, etc. Such failures can be extremely catastrophic if they cause permanent data loss on a

large fraction of disks. We assume, rather, that in aggregate, servers behave correctly and there are

a limited number of permanent server failures during some period of time.

Third, we assume storage servers reside in professionally managed sites where sites con-

tribute servers, processor, non-volatile storage, and network bandwidth. We assume server availabil-

ity, lifetime, storage capacity, and access link bandwidthin professionally managed sites is sufficient

to support distributed wide-area on-line archival storage[BR03]. It is the software that allows these

11

servers and sites to cooperate to maintain data durability and ensure the integrity of data.

Finally, we assume that a particular data object has a singleowner but multiple simultane-

ous writers. For example, an owner might be represented by a public/private key pair and multiple

devices such as a workstation and laptop may have access to both keys.

1.2.2 The Fault Tolerance Problem

Fault tolerance is the first key to ensuring data durability.The goal is to tolerate server

failure without loss of data. Fault tolerance algorithms must choose the type of redundancy, number

of replicas to create, and where to store replicas. We discuss the three components (redundancy,

number of replicas, and replica placement) of fault tolerance further.

First, redundancy is the duplication of data in order to reduce the risk of data loss. There

are two categories of redundancy: replication and erasure-coding. Replication involves creating

whole copies of data. The limitation with replication is that it increases the storage overhead and

maintenance bandwidth without comparable increase in fault tolerance. In particular, a linear in-

crease in the replication level results in only a linear increase in the number of failures that can

be tolerated. In contrast, erasure-coding involves breaking data into data fragments (pieces of the

data object) then creating new redundant fragments that areunique from other data and redundant

fragments. Only a fraction of all fragments are required to reconstruct the original data object. All

fragments are the same size. Since a fragment may be as large as a whole copy of the data object,

erasure-coding is a superset that includes replication. Erasure-codes have a better balance between

storage overhead, maintenance bandwidth, and fault tolerance. With a linear increase in storage,

the number of server failures tolerated often increases exponentially (e.g. when the number of frag-

ments required to reconstruct the object is greater than one). We demonstrate that erasure-coding

is more efficient than replication. However, the choice of redundancy type is a designer decision

since replication is simple to use and coding is complex, andthe savings are not always worth the

increased complexity [RL05, WK02].

Second, fault tolerance is dependent on the number of replicas created. The number of

replicas must be configured to cope with aburst of failures. It is the size of burst of failures and

their probability of occurrence that results in the probability of data loss. If the size of a failure

burst exceeds the number of replicas, some objects may be lost. As a result, one could conclude that

the highest possible value is desirable. On the other hand, the simultaneous failure of even a large

fraction of servers may not destroy any objects, depending on how replicas are placed. Ultimately,

12

the proper number of replicas to create is related to the burstiness of permanent failures, but other

factors such as placement and access link bandwidth limits need to be considered as well.

Finally, replica placement is the process in which servers are selected to store data repli-

cas. The goal of placement is to maximize durability. We showthat spreading replicas sets of

different objects over many servers increases durability.Less time is required to recover from fail-

ure since more servers can assist in repair. The decrease in repair time increases durability since

durability is inversely proportional to repair time [PGK88]. Furthermore, we show that a variant of

a random replica placement that avoids blacklisted serversand replaces duplicate sites is sufficient

to avoid the problems introduced by many observed correlated failures.

Fault Tolerance Insights

The following is a summarized list of insights about fault tolerance. First, with the same

storage overhead, erasure-codes tolerate more failures than replication. However, erasure-codes in-

crease the complexity of storage systems, thus designers must weigh efficiency of erasure codes

versus the simplicity of replication. Second, increasing the replication level helps cope with bursts

of failures. It is the size of burst of failures and probability of occurrence that results in the proba-

bility of data loss. Third, less time is required to recover from failure when replica sets for different

data objects are spread over many servers so that more servers can assist in repair, thus increase

durability. Finally, random replica placement such as one that avoids blacklisted servers and re-

places duplicate sites, is sufficient to avoid the problems introduced by the many observed correlated

failures.

1.2.3 The Repair Problem

Repair is the other key to ensuring data durability. The goalof repair is to restore the level

of fault tolerance by refreshing lost redundancy before data is lost due to permanent failures. We

assume replicas are geographically spread, thus the cost ofcreating new replicas requires wide-area

bandwidth, a critical resource. Monitored information, which measures the number of available

replicas, is the basis for initiating repair. However, thismonitored information is imprecise since

replicas can be durably stored (e.g. exist on a server’s disk) but not immediately available (e.g.

server powered off), hence transient failure. Transient failure does not decrease the number of

replicas that are durably stored, therefore it is not necessary to create replicas in response to transient

failure to maintain a target level of durability. Furthermore, users of many Internet applications can

13

tolerate some unavailability. For example, requested datais readable eventually, as long as it is

stored durably.

Ideally, replicas would be created in responseonly to permanent server failure. A hypo-

thetical system that can differentiate permanent from transient failures using an oracle could react

only to permanent failures. However, it is not possible to distinguish the two failure types using

only remote network measurements (e.g.ping). Initiating repair after failure, whether permanent

or transient, is the method currently used by most existing systems since they are limited to network

measurements. This method may serve as a solution but provesto be costly.

Transient failures are common in wide-area systems (e.g. 21,255 transient versus 219

permanent failures in one year on PlanetLab [CDH+06]). Many replication algorithms waste band-

width by making unneeded replicas. For example, the initialreplication algorithm used by many

distributed hash table (DHT) storage systems such as DHash [Cat03], OpenDHT [RGK+05], and

PAST [DR01] turned out to be costly [CDH+06, WCSK05]. The problem was that their designs

were driven by the goal of achieving 100% availability; thisdecision caused them to waste band-

width by creating new replicas in response to temporary failures. Their designs and similar ones

(such as Total Recall [BTC+04]) are more than what is required for durability.

Since we assume that wide-area bandwidth is a critical resource, a system should attempt

to minimize repair costs due to failure while maintaining a target level of durability. A key tech-

nique to reduce repair costs is to reduce the number of replicas created in response to transient

failures. One solution requires an increase in the time to detect a failure. Such a solution does not

respond to many transient failures since a server that transiently fails might return before a failure

is detected. However, durability is decreased since the “window of vulnerability” is increased. The

larger failure detection time subjects data to loss from additional permanent server failure. Alter-

natively, instead of increasing the failure detection time, another solution increases the number of

replicas. The solution supplements the replication level with extra replicas that arenot required

for durability, but instead are required to be simultaneously unavailable before repair is initiated.

For example, assume the replication level required for a target durability is five replicas, then this

solution might add two more replicas for a total of seven replicas. Repair is invoked when four

replicas (or less) are available , thus this solution would be invoked whenthree(or more) replicas

are simultaneously unavailable. In general, as the number of replicas required to be simultaneously

unavailable increases, the probability that they are all unavailable due to transient failure decreases

exponentially. As a result, increased replication can be used to decrease bandwidth usage due to

transient failures.

14

The solution of using increased replication to reduce repair costs depends on whether

data is mutable (data can change) or immutable, (data is read-only and cannot change). For mutable

data, servers that return from failure need to either be updated or removed from the replica set if a

write occurred while the server was unavailable. To reduce repair cost, the system must estimate the

number of replicas that are required to be simultaneously unavailable in order to initiate repair. This

estimate is based on system measurements such as average server availability, lifetime, amount of

data, and bandwidth to support target durability level. Forimmutable data, however, reintegrating

replicas from transient failures into replica sets minimizes the number of copies created incorrectly

due to transient failures. The result is that the system performs some extra work for each object

early in its life creating replicas in response to transientfailures, but over the long term creates new

copies of the object only as fast as it suffers permanent failures. Replicas created in response to

transient failure and reintegrated into the replica set insulate the data object from future transient

failures.

Repair Insights

The insights of repair can be summarized as follows. First, durability is a more practical

and useful goal than availability for applications that store objects (as opposed to caching objects)

for long periods of time. Since data is not lost during transient failures, which are common in

the wide-area, the cost (such as the number of replicas created per unit time) can be reduced via

maintaining high durability versus high availability. Second, the main goal of a durability algo-

rithm should be to create new copies of an object faster than they are destroyed by permanent server

failures. The choice of how replicas are distributed among servers can make this task easier. Fi-

nally, extra replicas beyond what is required for durability reduce the cost due to transient failure

(e.g. number of replicas created). For mutable data, estimating the number of extra replicas mini-

mizes unnecessary copying. For immutable data, reintegrating returning replicas is key to avoiding

unnecessary copying.

1.2.4 The Integrity Problem

In addition to the durability requirements of fault tolerance and repair, storage systems

must maintain the integrity of data. The problem is we assumeany server may behave in arbitrary,

Byzantine, ways. A server may be in an arbitrarily undefined or malicious state due to a network

error, storage corruption, software bug, or compromise. Asa result, a server may modify data in

15

ways not authorized by the owner of the data, corrupt data on disk or during transmission, or by

not following protocol. For example, nearly a third of the PlanetLab servers were compromised in

December of 2003 when an attacker exploited a kernel vulnerability [WCSK05].

Since we assume that any fraction of the servers may exhibit Byzantine behavior, it is

difficult to develop mechanisms and protocols that ensure the integrity of data in this environment.

Specifically, ensuring the integrity of data includes ensuring three properties: non-repudiability,

data integrity, and order integrity. We discuss these threeproperties and viable solutions that ensure

them further below.

First, the non-repudiability property ensures that only the owner (or agent of the owner)

can modify mutable data. The approach most commonly proposed for assuring this property is

to include a cryptographically signed certificate with eachdata object. The certificate provides a

secure, non-repudiable binding between the data and its owner. The certificate remains colocated

with the data, even as the data is replicated or transferred.

While this solution is conceptually simple, an efficient implementation has proved elusive.

One impediment is the time it takes the client to sign all of the certificates. In fact, some designers

have rejected the solution by reasoning that the cost of producing certificates is prohibitively ex-

pensive [FKM00]. To illustrate this problem, assume an application running on a 3 GHz processor

wishes to store 1 TB of data. If the data is divided into 8 KB blocks and certificates are created

using 1024-bit RSA cryptography and a single processor, it would take more thansix daysto create

certificates for the data2. A hardware accelerator solution can reduce this signaturecreation time for

an increase in financial cost; for example, using six processor cores in parallel with cryptographic

co-processors per core can reduce the time by a factor of 32 from six days to six hours.

Instead of designing more expensive hardware solutions, however, we present a solution

that addresses the efficiency challenges described above byexploiting aggregation. For instance,

consider an application storing 1 TB of data into a system that aggregates data into 4 MB containers.

A client machine with a 3 GHz processor could create the certificates in17 minutes, a reduction of

three orders of magnitude over a system that implements the certificate-per-block approach. Further,

using the hardware accelerator solution described above would reduce the time to create certificates

to one-half of one minute.

Aggregation by itself, however, is not a sufficient solutionsince clients should be able to

add data to the system without local buffering. The design, then, should aggregate small blocks of

2A single 3 GHz Pentium-class processor can create a signature in 4 ms, as measured with the commandopenssl
speed rsa1024.

16

data into larger containers (to amortize the cost of creating and managing certificates) while simul-

taneously supporting incremental updates (to obviate databuffering at clients) and fine-granularity

access (to allow clients to retrieve exactly the data they need). Moreover, the design should allow

any member of the storage system to identify, in a secure and non-repudiable fashion, the owner of

each piece of data stored in the system.

Second, a system ensures the data integrity property as longas returned data is the same

as stored. It is a straight forward application of a secure hash function to ensure data integrity of

strictly replicated data. Erasure-codes, however, are more difficult. To apply a secure hash when

erasure-coding is used, many systems either require data tobe reconstructed from erasure-coded

fragments (e.g. DHash [Cat03]) or associate a cryptographically signed certificate that includes a

secure hash of all fragments (e.g. Glacier [HMD05]). The problem with the former solution is that a

storage server cannot locally verify the integrity of a fragment. The problem with the latter solution

is that more bandwidth and storage may be required to store the certificate since the certificate may

be larger than a single fragment and each server must store the certificate along with the fragment.

Additionally, significantly more processor time is required to create a signature in addition to a

hash. We present an algorithm where each erasure-coded fragment, as well as the object itself, can

be self-verified by any component in the system using a singlesecure hash.

Finally, consistency protocols such as Byzantine agreement and quorums ensure the order

integrity property that the last write is returned in subsequent reads. Maintaining order integrity is

challenging because a threshold of an object’s replica servers need to always be available and agree

on a value in the midst of arbitrary failure. Once a thresholdis no longer available, other servers

need to be recruited and integrated into the replica set,configuration change. It is this configuration

change process while maintaining consistency that is difficult. Previous solutions either do not allow

configurations to change or do not guarantee that successfulwrites are maintained as configurations

do change over time. We present a configuration change protocol that maintains order integrity

when configurations change even if a threshold is unavailable.

Solving the Integrity Problem with a Secure Log

Basing the design of a distributed wide-area on-line archival storage system on a secure

log can solve the integrity problem while incorporating theinsights of fault tolerance and repair. Our

basic premise is that a secure log provides an ideal primitive for implementing an archival storage

infrastructure. A log’s structure is simple and its security properties can be verified [LKMS04,

17

MRC+97, Mer88, MMGC02, SK98]. Only a single interface,append(), is provided to modify

the log, and all mutations occur at a single point—the log head. A system can secure the log head

by requiring that allappend() operations be signed by the private key of the log owner. If each

log element is named individually, random accessget() provides quick data retrieval. Although

simple, this interface is powerful enough to implement a variety of interesting applications.

In Part III, we show how to construct a Byzantine-fault-tolerant, efficient, and wide-area

archival system from a secure log. Such an archival system isintended to be a component of a larger

application. While a secure log is conceptually simple, replicating the log in a distributed storage

system has proved challenging [MMGC02, REG+03]. We describe a system design that combines

this log interface with three technologies: quorums, quorum repair, and aggregation. Dynamic

Byzantine fault-tolerant quorums ensure consistency of the log heads. Data integrity is assured at

both the block and container granularity. We provide data durability with an algorithm that repairs

quorums when replicas fail. Finally, aggregation reduces communication costs while maintaining

fine-granularity access for clients.

The design of an archival storage system that exploits a secure log has the following

contributions. First, a secure-log based archival storagesystem maintains the integrity of data.

Second, a consistency protocol based on dynamic Byzantine fault-tolerant quorums that works well

in the wide-area. Third, a Dynamic Byzantine quorum repair protocol that responds to failure and

continuously maintains replication and consistency. Finally, an operational prototype that combines

these features and is currently running in the wide area.

1.3 Architecture for a Solution: Antiquity Prototype

The conceptual insights and solutions described in Section1.2 have been embodied in an

architecture that we have developed. The first implementation of this architecture is called Antiquity.

Antiquity supports a secure log abstraction, only the ownerof the log can append new data blocks

to the head of the log. It efficiently stores the log as serversfail and ensures the data and order

integrity overtime.

We demonstrate that a narrow interface simplifies the designof a storage system. In par-

ticular, Antiquity’s design and implementation combines the log interface with three technologies—

dynamic Byzantine fault-tolerant quorums, quorum repair,and aggregation—to store replicated

logs, to enforce consistent append, to provide random-access reads, to ensure durability, and to

store and update the log efficiently.

18

Experience with a deployment of the prototype shows that Antiquity’s design is robust.

It has been running in the wide-area for over two months on 400+ PlanetLab servers maintaining

nearly 20,000 logs containing more than 84 GB of unique data.94% of the logs are in a consistent

state. 100% of logs are durable, though 6% do not have a quorumof servers immediately available

due to transient failures. The prototype maintains a high degree of consistency and availability

due to the quorum repair protocol despite the constant churnof servers (a quarter of the servers

experience a failure every hour).

1.4 Historical Perspective

This thesis is a product of the OceanStore proposal [K+00]. OceanStore is an Internet-

scale distributed data store designed to securely provide continuous access to persistent information.

Unlike many previous distributed storage systems, OceanStore constructs a reliable and secure stor-

age infrastructure from many untrusted servers. Data is protected via redundancy and cryptographic

techniques. Although many servers may be corrupted or compromised at a given time, the aggre-

gate behavior of the complete system provides a stable storage substrate to users. The challenge for

OceanStore, then, is to design a system that provides an expressive storage interface to users while

guaranteeing high durability atop an untrusted and constantly changing base.

In addition to providing the motivation for this thesis, OceanStore provides the design and

implementation experience necessary to investigate the problems posed by this thesis. In particular,

Pond [REG+03] is the OceanStore prototype that precedes Antiquity. Itcontains many of the fea-

tures of a complete OceanStore system including location-independent routing via Tapestry [ZHS+04,

ZJK01] and Bamboo [RGRK04], Byzantine fault-tolerant update serialization and commitment,

push-based update of cached copies through an overlay multicast network, and continuous archiv-

ing to erasure-coded form. Every Pond server implements each of these subsystems as a stage, a

self-contained component with its own state and thread pool, which is a good mechanism to modu-

larize and integrate the subsystems together. Stages communicate with each other by sending events.

Most importantly, Pond contains sufficient implementationand integration of the OceanStore design

to give a reasonable estimate of the performance of a full system. For instance, in the wide-area,

Pond outperforms NFS on the read-intensive phase of the Andrew benchmark, but underperforms

NFS on the write-intensive phase. Microbenchmarks show that write performance is limited by the

speed of erasure coding and threshold signature generation.

Though experience implementing Pond (and its predecessor Puddle) is necessary for this

19

thesis, maintaining an integrated solution where each subsystem needs to be tolerant of attack

and restartable due to server failure is difficult. Instead of a fully integrated solution, breaking

OceanStore into layers may be more attainable. In fact, the secure log interface implemented by

Antiquity is a result of breaking OceanStore into layers. Inparticular, a component of OceanStore

is the primary replica implemented as a Byzantine fault-tolerant agreement process. This primary

replica serializes and cryptographically signs all updates. Given this total order of all updates, the

question is how to durably store and maintain the order? Furthermore, what should be the interface

to this underlying storage system? An append-only secure log answered both questions. The secure

log structure assists the storage system in durably maintaining the order over time. The append-only

interface allows a client (such as OceanStore’s primary replica) to consistently add more data to the

storage system over time. Finally, when data is read from thestorage system at a later time, the

interface and protocols ensure that data will be returned and that returned data is the same as stored.

Another aspect of OceanStore from which this thesis borrowsis the notion of a respon-

sible party. A responsible party is financially responsiblefor the integrity of data and selects sets

of servers to obey protocol and host data replicas. Superficially, the responsible party seems to

introduce a single point of failure into the OceanStore design. While this is true to an extent, it is

a limited one. First, there can be more than one responsible party in the system; the role of the

responsible party thus can scale well. Second, the responsible party’s state can be stored in the

system. Thus, the durability of the state can be assured likeany other data object. If the responsible

party fails, a new one could be created using the state storedin the system. Third, the state of the

responsible party can be cached to reduce the query load on it. Finally, the responsible party can

be implemented as a replicated service to improve availability further. Antiquity implements the

responsible party as anadministrator, which is consulted to create a secure log and select a set of

servers to store log replicas.

In summary, this thesis owes credit to the OceanStore project for providing the initial

motivation and experience necessary to investigate, design, and construct distributed wide-area on-

line archival storage systems.

1.5 Lessons Learned

In this section we discuss lessons learned from our experience investigating this thesis.

First, mechanisms fordurability should be separated from mechanisms forlatency re-

duction. For instance, erasure-resilient coding should be utilized for durability, while replicas (i.e.

20

caching) should be utilized for latency reduction. The advantage of this organization is that replicas

utilized for caching aresoft-stateand can be constructed and destroyed as necessary to meet the

needs of temporal locality. Further, prefetching can be used to reconstruct replicas from fragments

in advance of their use. Such a hybrid architecture is illustrated in Figure 4.3. This is similar to

what is provided by OceanStore [K+00, REG+03].

Second, a random placement policy—that avoids blacklistedservers and duplicate sites—

-is sufficient to avoid many observed correlated failures. The reason random is effective is that a

significant fraction of correlated failures involve a smallnumber of servers and are often predictable

(e.g. within same site) [NYGS06]. Furthermore, large correlated events that cause many servers to

fail simultaneously occur very infrequently and are unpredictable [NYGS06]; as a result, it is often

not possible to avoid these large correlated events. Since most correlated failures are small (involve

few servers), however, they are not likely to destroy all data replicas for a particular object and often

can be avoided with simple policies. In Section 4.3.2, we demonstrate that a random placement

policy (with small optimizations) has similar performanceto a clairvoyant placement that knows

the future time that servers fail and can avoid correlated failure.

Third, Byzantine fault-tolerant agreement- and quorum-based protocols ensure consis-

tency of replicated state; however, quorum-based protocols are easier to implement than agreement.

The difference between the two is that Byzantine fault-tolerant agreement-based protocols use com-

munication between replicas to agree on a proposed orderingof requests; whereas, in Byzantine

fault-tolerant quorum-based protocols, clients choose the order and contact replicas directly to op-

timistically execute operations [CML+06]. It is the selection of an ordering in the mist of fail-

ure and attack that make agreement-based protocols difficult to implement. For instance, neither

Pond [REG+03] or Castro and Liskov [CL99] initially implemented view changes, which is re-

quired to tolerate failure. Quorum-based protocols on the other hand do not require replicas to order

requests, instead clients provide the order. Reducing complexity of implementation is the reason

Antiquity implements a quorum-based protocol instead of anagreement-based protocol.

Fourth, the use of an administrator significantly reduces the complexity of the overall

design of a distributed wide-area on-line archival storagesystem and reflects the design of other

storage systems (such as cluster based storage designs). The storage system can be audited for cor-

rectness and ensure that integrity of data is maintained since the administrator authorizes clients to

utilize storage resources and selects servers to obey protocol and maintain replicated state. Without

an administrator, designs such as Antiquity’s could becomesignificantly more complex and difficult

to implement.

21

Finally, storage systems should decouple the infrastructure’s unit of management (e.g.

extent) from the client’s unit of access (e.g. data block). As a result, the storage infrastructure can

amortize management costs over larger collections of data while clients can access smaller blocks

of data. For instance, Pond maintains (replicated) location-pointers to track the availability of every

fragment of every block. However, resource (computation, storage and bandwidth) consumption

maintaining location-pointers dominates resource consumption used to maintain actual data. As

a result, Antiquity aggregates blocks into containers called extents and maintains metadata on an

extent basis reducing resource consumption significantly.Further, the design supports incremental

updates (to obviate data buffering at clients) and fine-granularity access (to allow clients to retrieve

exactly the data they need).

1.6 Contributions

We make several contributions in this work.

First, we explore the parameterization space of fault tolerance algorithms and asso-

ciated durability . We show that erasure-coding reduces the bandwidth costs tomaintain a target

level of durability when compared to replication. Alternatively, for the same storage overhead and

bandwidth costs, erasure-coding can maintain a significantly higher level of durability than repli-

cation. Further, we show durability is related to the distribution of failure bursts. Next, we show

that random placement is sufficient to increase durability via reduced repair time and avoid many

correlated failures. Additionally, we present a unified view of existing wide-area storage systems

and evaluate the long-term maintenance costs of the systemsusing a trace-driven simulation.

Second,we show how to reduce costs due to transient failures.We demonstrate a

principled way to estimate the amount of extra replication required to reduce repair costs due to

transient failures. Further, when data is immutable, we show that the system can limit the number

of unnecessary copies made due to transient failures by ensuring that recovered copies are integrated

in place into the replica set. The result is that the system performs some extra work for each object

early in its life, but over the long term creates new copies ofthe object only as fast as it suffers

permanent failures.

Third,we show how a secure log can solve the data integrity problem.We demonstrate

how the narrow interface of a secure, append-only log simplifies the design of wide-area distributed

storage systems. The system inherits the security and integrity properties of the log. We describe

how to replicate the log for increased durability while ensuring consistency among the replicas. We

22

present a repair algorithm that maintains sufficient replication levels as machines fail. Finally, the

design uses aggregation to improve efficiency.

Finally, we describe the design and evaluation of Antiquity Prototype. Antiquity is an

implementation of a distributed on-line archival storage system that exploits a secure log interface.

It efficiently maintains the mutable log head and all other immutable components applying insights

and design points from exploring the fault tolerance, repair, and integrity problems.

1.7 Summary

As the amount of digital assets increase, systems that ensure the durability, integrity, and

accessibility of digital data become increasingly important. Distributed on-line archival storage

systems are designed for this very purpose. In this thesis, we explore several important problems

that must be addressed to build such systems. We start in PartII where we explore how to efficiently

maintain durability via fault tolerance and repair. Next, in Part III, we describe an architecture that

exploits a secure log to solve the integrity problem. We thenapply the insights and architecture to a

Prototype called Antiquity in Part IV. Antiquity efficiently maintains the durability and integrity of

data. Finally, in Part V, we discuss related and future work and conclude.

23

Chapter 2

Methodology

The software and algorithms of a distributed on-line archival storage system allow servers

to cooperate in order to maintain the durability and integrity of data. The behavior of the software

and algorithms, however, depends on the environment in which they are used. An environment is a

set of circumstances and conditions under which a server operates. For example, environments with

high disk failure rates or low network access link speeds make it difficult for any system to maintain

durability [BR03].

To gain a deeper understanding and intuition about algorithmic design decisions and as-

sociated costs, we use traces of both existing and syntheticwide-area environment characteristics.

These characteristics vary by the rate and distribution of permanent and transient server failures.

Additionally, they vary by access link bandwidth. The target environment characteristics are that of

servers residing in managed sites such as universities, companies, etc.

To measure and compare algorithms, we use environment characteristics to drive a series

of simulations. We use traces of permanent and transient server failure to drive an event-based

simulator. A server is affected by three events in a trace:join, fail, crash. In the simulator, a

server is added and all content stored by the server is available at the time of ajoin in the trace.

A server is removed and all content stored by the server is unavailable at the time of afail or

crash. Furthermore,crash permanently removes all content stored by the server. Servers that are

not available in the trace are not available in the simulator(and visa versa). Figure 2.1 illustrates a

server failure traces. Finally, in the simulator, each server has unlimited disk capacity, but limited

link bandwidth.

A distributed wide-area storage algorithm maintains data durability as servers fail. Each

algorithm is represented as a set of parameters. Parametersinclude redundancy type, target repli-

24

1109635207 join 219.243.200.37
1109635207 join 132.239.17.226
1111558805 fail 219.243.200.37
1111559207 join 219.243.200.37
1112813519 crash 132.239.17.226

Figure 2.1: Example Server Failure Trace.

cation level, replica placement strategy, failure detection time, number of extra replicas beyond

replication level, and whether to reintegrate replicas or not. The simulator measures the cost that

storage algorithms incur to maintain data (e.g. cumulativenumber of replicas created over length

of trace). Further, it measures the number of objects permanently lost. Together, cost and durabil-

ity metrics describe the effectiveness of a particular algorithm in maintaining data over a particular

server failure trace.

In general, simulation provides a way to study system algorithmic design alternatives in a

controlled environment. Simulation facilitates exploring system configurations that are difficult to

physically construct. Simulation can observe interactions that are difficult to capture in a live sys-

tem. Further, simulation can compare cost tradeoffs over time. For example, Total Recall [BTC+04]

showed via simulation that lazy repair could mask transientfailures by delaying triggering repair,

which reduced the cost of maintaining durability. Simulations drive our analysis and comparisons

in Part II.

After simulating system behavior, we use the insights gained from simulation to design,

implement, and deploy best approaches. We use both emulatedand real environments to measure

performance of a deployed system in Part IV. We use a real deployment running and storing data on

PlanetLab [BBC+04] to evaluate the efficacy of proposed algorithms. Furthermore, we measure the

performance of the deployed system in alternative environments where we emulate different server

failure patterns such as the failure trace used in simulation.

The failure characteristics are described further in Section 2.1. In Section 2.2, we describe

the simulation, emulation, and deployment environments.

2.1 Failure Characteristics

We use permanent and transient server failure characteristics from both real and synthetic

sources. First, we use PlanetLab [BBC+04] to create failure traces of an existing wide-area environ-

ment. PlanetLab is a large (> 600 server) research testbed with servers located in many universities

25

and companies from around the world. It is a distributed collection of servers that have been moni-

tored for long periods of time. We use this monitored data to construct a realistic trace of failures in

a mostly managed environment.

Furthermore, traces of PlanetLab server failures can be divided into two distinct intervals.

The first interval contains many correlated failures due to software and disk upgrades, as well as

compromise of the system. The second interval contains lesscorrelated failure since system main-

tenance and operation had matured. We expect the second interval to be more typical of a storage

environment.

Finally, for explanatory purposes, we also use a synthetic trace that makes some of the

underlying trends more visible. For example, we may increase the length of the trace, increase the

failure density, or remove transient failures, etc.

The rest of this section is organized as follows. First we discuss the failure collec-

tion technology in Section 2.1.1. Then we discuss the three failure trace characteristics in Sec-

tions 2.1.2, 2.1.3, and 2.1.4.

2.1.1 Analyzing the Behavior of PlanetLab

We use two different data sets to characterize the behavior of PlanetLab: all-pairs ping [Str]

and CoMon project [PP06] plus PlanetLab Central [PCAR02] (CoMon+PLC) data sets. The all-

pairs ping data set characterizes the first interval of PlanetLab operations. The CoMon+PLC data

set characterizes the second interval. The difference between the two data sets is how and when the

data was collected. We explain further below.

All-Pairs Ping Data Set

The all-pairs ping data set provides failure data for the first interval of PlanetLab opera-

tions. It spans from February 16, 2003 to June 25, 2005 and includes a total of 694 servers in that

time period. It collects minimum, average, and maximum pingtimes (over 10 attempts) between

all pairs of servers in PlanetLab. Measurements were taken and collected approximately every 15

minutes from each server. The 15 minute ping period does not contain enough fidelity to detect

transient failures less than 15 minutes. Measurements weretaken locally from individual servers’

perspective, stored locally, and periodically archived ata central location. Failed ping attempts were

also recorded.

To create a trace from the all-pairs ping data set, we need to determine the times during

26

 220

 230

 240

 250

 260

 270

 280

Dec03 Jan04 Feb04 Mar04 Apr04 May04 Jun04

N
um

be
r

of
 R

em
ai

ni
ng

 N
od

es

Time
(a) Server Attrition

UpperBound LowerBound
951 days 663 days
(b) Expected Lifetime Estimates

Figure 2.2: Server Attrition of All-pairs Ping Data Set.

which servers transiently and permanently fail. The server’s transition from available to unavail-

able defines a failure, which might be transient if the serverreturns later. We use at least a single

successful ping from at least one other server to determine that a server is available. On the other

hand, if there are no successful pings from any server, then the server is unavailable. This single

ping and server method of determining server availability was used by Chun and Vahdat [CV03];

a single non-faulty path is sufficient for many routing algorithms to allow servers to communicate.

For example, algorithms exist for servers to communicate innetworks with non-transitive connec-

tivity [And04, FLRS05].

All-pairs ping does not measure permanent failure. Instead, it measures only the availabil-

ity of a server name (i.e. availability of an IP address) and not the existence of data on a server. As

a result, all-pairs ping was used to produce an estimated upper bound on server lifetimes. We used

a technique described by Bolosky et al. [BDET00] to estimatethe expected server lifetime based

on server attrition. In particular, if servers have deterministic lifetimes, then the rate of attrition is

constant, and the count of remaining servers decays linearly. The expected server lifetime (meaning

the lifetime of the servers IP address, not physical hardware) is the time until this count reaches

zero [BDET00]. We counted the number of remaining servers that started before December 5, 2003

and permanently failed before July 1, 2004. The expected server lifetime of a PlanetLab server is

951 days (Table 2.2(b)). Figure 2.2(a) shows the server attrition. Furthermore, we computed an

estimated lower bound of a server lifetime by supplementingthe trace with a disk failure distribu-

27

tion obtained from [PH02] (Table 2.2(b)). In our experiments, the expected lifetime of a server lies

between the upper and lower bound.

Another limitation of the all-pairs ping data set is no data exists between December 17,

2003 and January 20, 2004 due to a near simultaneous compromise and upgrade of PlanetLab. In

particular, Figure 2.3(a) shows that 150 servers existed onDecember 17, 2003 and 200 existed on

January 20, 2004, but no ping data was collected in between the dates above.

CoMon+PLC data set

The CoMon+PLC data set provides failure data for the second interval of PlanetLab op-

erations. It is from March 1, 2005 to February 28, 2006 and includes a total of 632 servers. We use

historical data collected by the CoMon project to identify transient failures. CoMon has archival

records collected on average every 5 minutes that includes the uptime as reported by the system

uptime counter on each server. We use resets of this counter to detect reboots, and we estimate the

time when the server became unreachable based on the last time CoMon was able to successfully

contact the server. This allows us to pinpoint failures without depending on the reachability of the

server from the CoMon monitoring site.

We define a disk failure to be any permanent loss of disk contents, due to disk hardware

failure or because its contents are erased accidentally or intentionally. In order to identify disk

failures, the CoMon measurements were supplemented with event logs from PlanetLab Central.

This database automatically records each time a PlanetLab server is reinstalled (e.g., for an upgrade,

or after a disk is replaced following a failure). The machineis then considered offline until it is

assigned a regular boot state in the database.

2.1.2 PlanetLab First Interval: Insights into Correlated Failures

Figure 2.3 shows the PlanetLab first interval trace characteristics using the all-pairs ping

data set. Figure 2.3(a) shows the (total and available) number of servers versus time. It demonstrates

system growth over time. More importantly, it pictorially shows the number of servers that we

simulated at each time instance in our trace.

Figures 2.3(b) and (c) show the frequency and cumulative frequency for the sessiontime

and downtime, respectively. Note that the frequency uses the left y-axis and cumulative frequency

uses the right. Asessiontimeis one contiguous interval of time when a server is available. In

contrast, adowntimeis one contiguous interval of time when a server is unavailable. Sessiontime

28

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

Jun05Feb05Oct04Jun04Feb04Oct03Jun03Feb03

nu
m

be
r

of
 a

va
ila

bi
le

 n
od

es

Time

Total
Available

(a) Number of available servers v Time

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

100days10days1day1hr15min
 0

 0.2

 0.4

 0.6

 0.8

 1

fr
eq

ue
nc

y

cu
m

ul
at

iv
e

fr
eq

ue
nc

y

Session Time

frequency
cumulative frequency

(b) Sessiontime CDF and PDF

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

100days10days1day1hr15min
 0

 0.2

 0.4

 0.6

 0.8

 1

fr
eq

ue
nc

y

cu
m

ul
at

iv
e

fr
eq

ue
nc

y

Down Time

frequency
cumulative frequency

(c) Downtime CDF and PDF

Distribution Mean(d) Stddev(d) Median(m) Mode(m) Min(m) 90th(d) 99th(d) Max(d)

Session 8.5 23.5 180 15 15 26.6 118.0 376.7
Down 3.5 16.9 45 15 15 5.9 73.2 388.7

Availability 0.700 0.249 0.757 1.000 0.002 0.977 1.000 1.000
(d) Sessiontime, Downtime, and Availability Statistics (d=days, m=mins)

Figure 2.3: PlanetLab first Interval Characteristics (All-pairs Ping). Sessiontime, downtimes, and
availability distributions.

and downtime are commonly referred in the storage literature as a time-to-failure (TTF) and time-

to-repair (TTR), respectively. Additionally, the averagesessiontime and downtime is the mean-TTF

and mean-TTR (MTTF and MTTR), respectively. A server’slifetime is comprised of a number of

interchanging sessiontimes and downtimes. The mean sessiontime was 204.4 hours (8.5 days) and

mean downtime was 82.8 hours (3.5 days). Both the sessiontime and downtime distributions were

long tailed and the median times were 3 hours and 0.75 hours, respectively.

The sessiontimes decreased dramatically between October 2004 and March 2005 due to

multiple kernel bugs that caused chronic reboot of PlanetLab servers (shown in Figure 2.3(a)). The

chronic reboots within the last six months of the trace doubled the total number of sessions with

mostly short sessiontimes. In particular, the median sessiontime decreased from 55.8 hours (2.3

days) between February 2003 and October 2004 to 3 hours between February 2003 and June 2005.

Despite the decrease in sessiontimes, we continue to use PlanetLab as an example wide-area system.

By doing so, we show how storage systems should adapt to changes over time without loss of data

or increase in communication costs.

Figure 2.3(d) summarizes the sessiontime, downtime, and server availability statistics.

Availability is dependent on the sessiontime and downtime.It is the percent of time that a server is

up (i.e. total sum of the sessiontime divided by the lifetimeor the average sessiontime divided by

the sum of the average sessiontime and downtime) and is equivalent to the more commonly known

expression MTTF
MTTF+MTTR. We measured that 50% of the servers have an availability of 75.7% or

29

Dates 16 February 2003 – 25 June 2005
Number of hosts 694
Number of transient failures 23903
Number of disk failures 308
Transient host downtime (s) 2700, 297994, 507600
Any failure interarrival (s) 868, 3079, 6300
Permanent failures interarrival (s) 11702, 234965, 629045

(Median/Mean/90th percentile)

Table 2.1: PlanetLab First Interval Trace Characteristics(All-pairs Ping). Permanent and transient
server failure distributions.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

C
um

ul
at

iv
e

F
re

qu
en

cy
 P

(X
 <

=
 x

)

Permanent Failure Interarrival Time (days)

Permanent Failure Interarrival Distribution

data
exponential fit

Figure 2.4: PlanetLab First Interval Trace Characteristics (All-pairs Ping). Permanent server failure
interarrival distribution.

higher. However, 22% of the servers are available less than 50% of the time.

Table 2.1 summarizes the permanent and transient failures and time between failures.

As shown in Figure 2.4, 25% of the permanent failures occurred simultaneously due to multiple

server upgrades and a compromise of the system; the time between 50% of permanent failures was

separated by three hours or less. Further, the permanent failure interarrival distribution is long tailed

with 10% adjacent failures separated by at least eight days or more.

2.1.3 PlanetLab Second Interval: Insights into Matured System and Operation

Figure 2.5 shows the PlanetLab second interval trace characteristics using the CoMon+PLC

data set. In contrast to the first interval, the second interval has similar average sessiontime, 194.0

hours (8.1 days) compared to 204.4 hours (8.5 days). However, the average downtime is shorter,

29.0 hours (1.2 days) compared to 82.8 hours (3.5 days). As a result, the average server availability

is higher in the second interval, 0.87 compared to 0.70. Furthermore, in the second interval, 50% of

30

 350

 400

 450

 500

 550

 600

 650

Mar05 Jun05 Sep05 Dec05 Mar06

nu
m

be
r

of
 a

va
ila

bi
le

 n
od

es

Time (UTC)

Total
Available

(a) Number of available servers v Time

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

100days10days1day1hr15min
 0

 0.2

 0.4

 0.6

 0.8

 1

fr
eq

ue
nc

y

cu
m

ul
at

iv
e

fr
eq

ue
nc

y

Session Time

frequency
cumulative frequency

(b) Sessiontime CDF and PDF

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

100days10days1day1hr15min
 0

 0.2

 0.4

 0.6

 0.8

 1

fr
eq

ue
nc

y

cu
m

ul
at

iv
e

fr
eq

ue
nc

y

Down Time

frequency
cumulative frequency

(c) Downtime CDF and PDF

Distribution Mean(d) Stddev(d) Median(m) Mode(m) Min(m) 90th(d) 99th(d) Max(d)

Session 8.1 25.9 1305 45 5 19.0 39.7 365.0
Down 1.2 5.7 20 30 15 0.1 1.2 224.9

Availability 0.870 0.127 0.990 1.000 0.000 1.000 1.000 1.000
(d) Sessiontime, Downtime, and Availability Statistics (d=days, m=mins)

Figure 2.5: PlanetLab Second Interval Trace Characteristics (CoMon+PLC). Sessiontime, down-
time, and availability distributions.

Dates 1 March 2005 – 28 Feb 2006
Number of hosts 632
Number of transient failures 21255
Number of disk failures 219
Transient host downtime (s) 1208, 104647, 14242
Any failure interarrival (s) 305, 1467, 3306
Permanent failures interarrival (s) 54411, 143476, 490047

(Median/Mean/90th percentile)

Table 2.2: PlanetLab Second Interval Trace Characteristics (CoMon+PLC). Permanent and transient
server failure distributions.

the servers are available at least 99% of the time and 2% of theservers are available less then 50%

of the time.

Table 2.2 summarizes the permanent and transient failures and time period between fail-

ures. Notice in Figure 2.4, the shape of the curve for permanent failure interarrival times indicates

that an exponential distribution is a reasonable fit. The best fitting exponential distribution uses the

maximum likelihood estimation with a mean of 1.7 days (143,893 seconds).

2.1.4 Synthetic trace

We also generated synthetic traces of failures by drawing failure interarrival times from

exponential distributions. Synthetic traces have two benefits. First, they let us simulate longer time

periods, and second, they allow us to increase the failure density, which makes the basic underly-

31

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14

C
um

ul
at

iv
e

F
re

qu
en

cy
 P

(X
 <

=
 x

)

Permanent Failure Interarrival Time (days)

Permanent Failure Interarrival Distribution

data
exponential fit

Figure 2.6: PlanetLab Second Interval Trace Characteristics (CoMon+PLC). Permanent server fail-
ure interarrival distribution.

ing trends more visible. We conjecture that exponential inter-failure times are a good model for

disks that are independently acquired and operated at geographically separated sites. Exponential

intervals are possibly not so well justified for transient failures due to network problems.

Each synthetic trace contains 632 servers, just like the PlanetLab second interval trace.

The mean sessiontime and downtime match the values shown in Table 2.2 and Figure 2.5.(d). How-

ever, in order to increase the failure density, we extended the length to two years and reduced the

average server lifetime to one year.

2.2 Analyzing Algorithmic Solutions

This thesis uses a variety of methods to test the effectiveness of its techniques. These

methods show that significant efficiency gains can be realized in distributed wide-area storage sys-

tems via analysis, trace-driven simulation, and real implementation of algorithms. For instance,

in Part II, we explain principled ways for choosing the redundancy type, number of replicas, data

placement, and repair strategies. Our methods are based on both analytical models and empirical

measurements. We describe our methods in the following sections.

First, we present a unified view of storage algorithms in Section 2.2.1. Next, we de-

scribe the metrics we use to measure the effectiveness of each storage algorithmic parameterization

in Section 2.2.2. In Section 2.2.3, we describe the subsystem responsible for collecting and ana-

lyzing each storage algorithmic solution. Then, in Section2.2.4, we discuss the criteria to make

conclusions about algorithms. Finally, we describe the different environments where the tests are

32

General Parameters Description

Redundancy type Replication or erasure-codes.
Replication level Number of replicas or fragments required to be available.
Rate of encoding Fraction of fragments required to read a data object.
Placement strategy Policy used to select servers to store replicas (e.g. random).
Placement scope Number of servers eligible to stores replicas for a particular object.
Failure detection time Timeout used to determine a server is unavailable.

Repair Parameters Description

Extra replicas Number of replicas created beyond replication level.
Reintegrate Reintegrate replicas returning from transient failure.

Table 2.3: Storage System Algorithm Parameterization

Parameter Dhash Dhash++ PAST Pond TotalRecall Carbonite

Redundancy type repl erasure repl erasure erasure repl
Replication level 5 14 9 24 variable 3
Rate of encoding N/A 1

2 N/A 1
2 ≈ 1

3 N/A
Failure detection time < 15 < 15 < 15 < 15 < 15 < 15
Placement strategy Random Random Random Random Random Random
Placement scope 5 14 9 N N N
Extra replicas 0 0 0 6 10 0
Reintegrate no no no no no yes

Table 2.4: Existing Storage System Parameterization

performed in Section 2.2.5.

2.2.1 Algorithmic Solution Representation

Using a unified view of distributed wide-area storage systems, we can measure and com-

pare the effectiveness of different algorithms. We assume that each algorithm is parameterized

based on general system parameters. These parameters are used to maintain durability while reduc-

ing costs due to transient failure. We assume further that these parameters are defined once for the

whole system and applied individually to each server and data object. The parameters are described

in Table 2.3.

As an example of the utility of these parameters, we describethe parameterization of

six existing wide area storage systems in Table 2.4: Carbonite [CDH+06], Dhash [DKK+01],

Dhash++ [DLS+04], PAST [DR01], Pond [REG+03], and TotalRecall [BTC+04]. These storage

systems have been measured and deployed. Furthermore, their parameterizations are described in

literature and many other notable storage systems are derived from them. In Part II, we demonstrate

33

and evaluate the durability and cost of many storage algorithm parameterizations.

2.2.2 Metrics

Storage system algorithmic solution parameterizations are measured and compared based

on durability and cost.

Durability is the probability that a data object exists after a specific amount of time. We

use many metrics to measure durability. For instance, in Section 4.2, we choose the replication level

based on the probability that an object is permanently lost in a particular amount of time. Durability

is one minus this probability. Alternatively, in Section 4.1.1, we use a failure rate, number of times

a particular (fixed-size) data object fails per unit time. For example, we use the fraction of blocks

lost per year (FBLPY) as a failure rate. In the special case – when the likelihood of failure remains

constant as time passes such as with an exponential failure distribution – the failure rate is simply

the inverse of the mean-time-to-failure (MTTF) for a particular data object.

Cost is the amount of resources used per time to maintain a target durability or replication

level. In Chapters 5 and 11 we measure the cumulative number of replicas created. This mea-

sures the total bytes sent to maintain a specific durability.Additionally, we measure the bytes sent

due to monitoring. However, in many situations the amount ofbandwidth used for monitoring is

significantly less than the bandwidth due to replica creation.

2.2.3 Statistics Gathering and Analysis

Gathering and analyzing statistics from simulation is immediate. For instance, we count

the number of data objects permanently lost to measure durability. On the other hand, we count the

number of replicas created to measure cost. Additionally, we measure the data availability since we

know the exact time data objects are available or not. Simulation allows us to analyze particular

storage algorithms over particular failure traces. This ispossible since simulation can measure the

percentage of objects lost, availability of objects, and the amount of bandwidth needed to sustain

objects over time.

Similar to simulation, we measure object durability and cost in our deployed system.

However, the subsystem responsible for gathering and analyzing these statistics is more complex in

the deployed system. The subsystem is broken into two parts:event recorder and analyzer.

The event recorder subsystem is run by each server and has four components. First, each

server maintains a generation identifier. This is a random number created and stored to disk when the

34

server is installed or reinstalled following a disk failure. Second, periodically (every minute), a local

process on each server probes the local storage applicationtesting if the storage server application

is available. Third, each server maintains a database of locally stored object replicas. Finally, each

server logs the request and response of every request.

The analysis subsystem is run at a central location and is broken into two components:

downloading and analysis. Periodically, once a day, the central site contacts every server down-

loading their generation identifier, server application availability, list of object replicas, and log of

requests. Given the server event logs, the analyzing subsystems measures the number of objects

lost, unavailable, and the cost to maintain objects in the system.

The analyzing subsystem has a caveat, it does not know which objects exist or not for

each moment. For example, if a server is available but has a new generation identifier, then the

central site knows all the object replicas stored on the old generation have been lost. If, however,

the central site cannot contact a server, then it does not know whether the object replicas exist on

the server or not. In this case, the central site marks the server as unavailable and analyzes the logs

accordingly. If the server later becomes available, the event logs are downloaded and the central site

uses the new server logs. Since the statistics are produced via logs, the central site simply reruns the

analyzing routines over all the downloaded logs.

2.2.4 Algorithmic Solution Comparison Criteria

Ideally, a storage system will not permanently lose any dataobjects and the cost (number

of replicas created) will be proportional to the rate of permanent server failure. Real storage sys-

tems, however, are less than ideal. As a result, the effectiveness of an algorithmic solution is based

on the difference between the ideal and measured durabilityand cost. For instance, in Chapter 5,

we compare the cost for each algorithm to an oracle that can differentiate permanent and transient

server failures and only reacts to permanent failures. Using this method, we show that an algorithm

that reintegrates replicas returning from transient failure is nearly optimum. The algorithm initially

incurs a penalty for not distinguishing permanent and transient failures, then creates replicas pro-

portional to the permanent failure rate. In general, good algorithmic solutions are measurably closer

to an ideal system using an oracle.

35

2.2.5 Environments

Simulation is the main method used to analyze algorithms. After simulating system

behavior, we use the insights gained from simulation to design, implement, and deploy best ap-

proaches. The deployments are configurable: we are able to change the parameterization of a

deployed system by changing the configuration file for each server.

We currently run two separate deployments discussed in PartIV. Both deployments are

parameterized to replicate each object on a configuration ofseven storage servers (except where

explicitly stated otherwise). Each configuration can toleratetwo faulty servers and still have a ma-

jority. Both deployments are hosted on machines shared withother researchers, and, consequently,

performance can vary widely over time.

We apply load to these deployments using 32 servers of a different local cluster. Each

machine in thetest clusterhas two 1.0 GHz Pentium III CPUs with 1.0 GB of memory, and two

36 GB disks. 1024-bit RSA signature creation and verification takes an average of 6.0 and 0.6 ms,

respectively. The cluster shares a 100 Mbps link to the external network. This cluster is also a

shared site resource, but its utilization is lower than the storage cluster.

Simulation

We use the failure traces to drive an event-based simulator.In the simulator, each server

has unlimited disk capacity, but limited link bandwidth. However, it assumes that all network paths

are independent so that there are no shared bottlenecks. Further it assumes that if a server is avail-

able, it is reachable from all other servers. This is occasionally not the case on PlanetLab [FLRS05];

however, techniques do exist to mask the effects of partially unreachable servers [And04].

The simulator takes as input a trace of transient and disk failure events, server repairs and

object insertions. It simulates the behavior of servers under different protocols and produces a trace

of the availability of objects and the amount of data sent andstored by each server for each hour

of simulated time. Each simulation maintains 1 TB of unique data (50,000 data objects, each of

size 20 MB). Unless otherwise noted, each server is configured with an access link capacity of 150

KBytes/s, roughly corresponding to the throughput achievable under the bandwidth cap imposed by

PlanetLab. The goal of the simulations is to show the percentage of objects lost and the amount of

bandwidth needed to sustain objects over time.

36

Emulation

The first deployment runs on 30 servers of a local cluster run by the Petabyte Storage

Initiative [UoC]. Each machine in thepsi clusterhas one 1.0 GHz VIA processor with 1.0 GB

of memory, and up to 1 TB of disk space of which we can only utilize 50 GB due to resource

sharing. Servers are connected via a gigabit Ethernet switch. 1024-bit RSA signature creation and

verification routines take an average of 12.5 and 0.7 ms, respectively. This cluster is a shared site

resource; a load average of 10 on each machine is common.

Real Deployment

The other deployment runs on thePlanetLabdistributed research test-bed [BBC+04].

We use 400+ heterogeneous machines spread across most continents in the network. While the

hardware configuration of the PlanetLab servers varies, theminimum hardware requirements are

1.5 GHz Pentium III class CPUs with 1 GB of memory and a total disk size of 160 GB; bandwidth

is limited to 10 Mbps bursts and 16 GB per day. 1024-bit RSA signature creation and verification

take an average of 8.7 and 1.0 ms, respectively. PlanetLab isa heavily-contended resource and the

average elapsed time of signature creation and verificationis often greater than 210.5 and 10.8 ms.

2.3 Discussion

To test solutions proposed in this thesis we often utilize PlanetLab [BBC+04], a surpris-

ingly volatile environment [PFM06]. Even though it is not typical for current enterprise storage

systems, an environment such as PlanetLab’s—composed of servers from multiple autonomous or-

ganizations that are geographically dispersed—may be morecommon for many new distributed

systems such as the Global Information Grid (GIG) [Age] and GRID. In these new distributed sys-

tems, servers cooperate across the wide-area to provide services such as persistent storage. Systems

designed in this manner exhibit good scalability and resilience to localized failures such as power

failures or local disasters. Unfortunately, distributed systems involving multiple, independently-

managed servers suffer from new challenges such as security(including malicious components),

automatic management (reliable adaptation to failure in the presence of many individual compo-

nents), and instability. In PlanetLab, for example, typically less than half of the active servers are

stable (available for 30 days or more) [PFM06].

Providing secure, consistent, and available storage in these systems that exhibit extremely

37

high levels of churn, failure, and even deliberate disruption is a challenging problem and the sub-

ject of this thesis. Demonstrating techniques, designs, and implementations that operate well in

these environments is a contribution that will lend itself to other distributed wide-area storage sys-

tem endeavors. This thesis, however, does not investigate peer-to-peer environments composed of

home users since bandwidth is not sufficient to durably storedata [BR03]; instead, we focus on

professionally managed environments where bandwidth is sufficient.

38

Part II

Maintaining Data Durability Through

Fault Tolerance and Repair

39

Chapter 3

Fault Tolerance and Repair Overview

Wide-area distributed storage systems typically use replication to provide two related

properties: durability and availability.Durability means that objects stored in the system are not

lost due to permanent server failure such as disk failure; whereasavailability means that the system

will be able to return the object promptly. Objects, self-contained units of storage, can be durably

stored but not immediately available. If the only copy of an object is on the disk of a server that

is currently powered off, but will someday re-join the system with disk contents intact, then that

object is durable but not currently available.

The threat to durability is losing the last copy of an object due to permanent server failure.

We assume all content stored by a server is lost when it permanently fails. Efficiently countering

this threat to durability involves two techniques: fault tolerance and repair. Fault tolerance ensures

that data is durable despite permanent failure. It is characterized by an object’s configuration, which

defines the type of redundancy (replication or erasure-codes), number, and location of replicas. For

example, creating three replicas of an object via replication and placing each replica on a disk that

fails independently of each other is a fault tolerant technique that can tolerate two failures. Fault

tolerant techniques do not respond to server failure; rather, they are designed to tolerate them. Since

any particular fault tolerant technique can only tolerate afinite number of failures, redundancy lost

due to permanent failure must be replaced eventually; otherwise, given time and failure, the object

would be permanently lost. Repair is the process that replaces redundancy lost to permanent failure.

This part of the thesis explores fault tolerant and repair algorithms designed to durably

store objects and at a low bandwidth cost in a system that aggregates the disks of many servers

distributed throughout the wide-area. In particular, we seek to answer two questions. First, given a

set of fault tolerant and repair algorithms what is the associated durability measured in percent of

40

objects lost per unit time? Second, what is the cost of the algorithm as measured by replicas created

over time? Below, we highlight some of the insights discussed in Chapters 4 and 5.

Fault tolerance is the first key to ensuring data durability.The goal of fault tolerant algo-

rithms is to tolerate permanent disk failure without permanent object loss. The storage system must

choose the type of redundancy. Both replication and erasure-codes duplicate data in order to reduce

the risk of data loss and are considered redundancy. The typeof redundancy, however, is more

of a designer decision since replication is simple but expensive (bandwidth and storage overhead)

and erasure-codes are more efficient but complex. In this thesis, we use the term replica to refer to

both replication and erasure-code schemes unless otherwise noted. In addition to the redundancy

type, the storage system must choose how much replication touse; the proper amount is related to

the burstiness of permanent failures. Finally, the storagesystem must also choose where to store

replicas. Less time is required to recover from failure whenreplica sets for different data objects

are spread over many servers thus allowing more servers to assist in repair. The decrease in repair

time increases durability since durability is inversely proportional to repair time [PGK88].

Repair is the other key to ensuring data durability. The goalof repair is to refresh lost

replicas before data is lost due to permanent failures. Monitored information, which measures the

number of available replicas, is the basis for initiating repair. However, this monitored information

is imprecise since replicas can be durably stored but not immediately available, hence transient

failure. Initiating repair after failure, whether permanent or transient, is the method currently used

by most existing systems. This method may serve as a solutionbut proves to be costly since creating

replicas in response to transient failure is not necessary to maintain durability. We demonstrate

how to minimize repair cost. The solution requires many replicas to be simultaneously unavailable

before repair is initiated and depends on whether data is mutable or not. For mutable data, servers

that return from failure need to either be updated or removedfrom the replica set if a write occurred

while the server was unavailable. To reduce repair cost, thesystem must estimate the number of

replicas that are required to be simultaneously unavailable before repair is initiated. For immutable

data, however, reintegrating replicas from transient failures into replica sets minimizes the number

of copies created incorrectly due to transient failures. The result is that the system performs some

extra work for each object early in its life, but over the longterm creates new copies of the object

only as fast as it suffers permanent failures.

In the rest of this chapter we present an example for maintaining data durability that will

be used in the following chapters. We begin with a set of assumptions and model of the system.

Next, we present the redundancy and reconstruction mechanisms.

41

3.1 System Model

Fault tolerance and repair algorithms, along with a data objectreplica location and repair

servicework together to maintain data durability.

A replica location and repair service is used to locate and monitor data object replicas and

trigger a repair process when necessary. An implementationaffects the possible policies for fault

tolerance and repair. It knows for each object the location of each replica and number of total and

remaining1 replicas; therefore, it knows how to resolve object location requests and when to trigger

repair. The replica location and repair service abstraction gives the storage system location indepen-

dence and allows different fault tolerance algorithms to beimplemented. It may be a central service

where a database records the location of all object replica locations and triggers repair if replicas

are unavailable; alternatively, it may be a distributed directory where responsibility is partitioned

among the servers.

Fault tolerance algorithms choose a configuration that defines the type of redundancy,

number of replicas, and placement of each replica. It is invoked when an object is initially inserted

into the storage system and when an object is repaired.

Repair works by maintaining alow watermark rL on the number of replicas. When the

number of replicas falls below therL, the replication level is increased at least back torL (some

repair algorithms increase the replication level higher [BTC+04]). The data object replica location

and repair service tracks the number of available replicas and triggers repair when the available

replicas is less than the low watermark.

3.2 Example

Consider the following example to understand the interaction between fault tolerance, re-

pair, and the replica location and repair service. Initially, a fault tolerance scheme uses a replication

redundancy algorithm to produce eight total replicas for some object with a low watermarkrL of

seven replicas required to be available to satisfy some datadurability constraint. Using a data place-

ment strategy, replicas are then distributed throughout the wide-area. Over time, suppose that, a

replica in Georgia permanently fails losing data and a replica in Washington transiently fails when

a heartbeat is lost (Figure 3.1(a)). As a result of the failures, a repair process might create two new

replicas, one in Arizona and the other in Minnesota (Figure 3.1(b)). Repair uses a fault tolerance

1The number of remaining replicas is the number of replicas that reside on servers that are currently available.

42

= Missed Heartbeat
= Heartbeat
= Replica

= Failed Node

Replica Location &
Repair Service

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

(a) Threshold Reached

���
���
���

���
���
���

���
���
���

���
���
���

Replica Location &
Repair Service

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

(b) Data Recovered

Figure 3.1: Example of Maintaining Data in a Wide Area Storage System.

scheme to choose new servers to store the new replicas.

One might ask what if the server in Washington returns from failure with data intact?

There are two possible solutions. First, the system couldreintegratethe extant replica into the

replica set. Reintegrating the extant replica reduces the probability of triggering repair due to future

transient failures since the replica set is larger. In the above example, reintegrating the Washington

replica into the replica set would result in nine instead of eight total replicas; as a result, three

replicas instead of two would have to simultaneously fail for a subsequent repair to be triggered.

If the returning replica needs to be updated, however, the benefits of reintegration can be reduced.

Systems that do not allow object updates – such as systems that store immutable (read-only and

cannot change) data objects – retain the full benefits of reintegration. On the other hand, the system

could forgetabout the returning replica. If the object was mutable and anupdate occurred while the

Washington replica was unavailable, then reintegrating the server may actually increase costs since

the replica needs to be updated.

In this part of the thesis we investigate fault tolerance algorithms, when to trigger repair,

and how to perform repair.

43

Chapter 4

Fault Tolerance

Fault Tolerance is the first key to ensuring durability. It isdefined by a configuration that

includes the type of redundancy, number of replicas, and location of replicas. It also represents

a data object’s ability to tolerate permanent server failure without permanent data loss where no

replicas exist anywhere. In Section 4.1, we demonstrate that the type of redundancy is more of a

designer decision since replication is simple but expensive (bandwidth and storage overhead) and

erasure-coding is more efficient but complex. Next, in Section 4.2, we show the proper number

of replicas to create is related to the burstiness of permanent failures. Finally, in terms of replica

placement in Section 4.3, we show that less time is required to recover from failure when replica

sets for different data objects are spread over many servers. This allows more servers to assist in

repair. The decrease in repair time increases durability since durability is inversely proportional to

repair time [PGK88]. Furthermore, we show that a random replica placement strategy – such as

one that avoids blacklisted servers and replaces duplicatesites – is sufficient to avoid the problems

introduced by many observed correlated failures.

4.1 Choosing Redundancy Type

Redundancy type is the first parameter that a fault tolerancealgorithm must choose. Re-

dundancy is the duplication of data in order to reduce the risk of data loss. We address two cate-

gories of redundancy: simple replication and erasure-coding. The limitation with replication is that

it increases the storage overhead and maintenance bandwidth without comparable increase in fault

tolerance. In particular, a linear increase in the replication level results in only a linear increase in

the number of failures that can be tolerated. In contrast, erasure-coding has a better balance between

44

 1e-70

 1e-60

 1e-50

 1e-40

 1e-30

 1e-20

 1e-10

 1

 6 12 18 24
 1e-70

 1e-60

 1e-50

 1e-40

 1e-30

 1e-20

 1e-10

 1

P
ro

ba
bi

lit
y

of
 B

lo
ck

 F
ai

lu
re

 p
er

 Y
ea

r

Repair Time (months)

number of fragments = 4
number of fragments = 8

number of fragments = 16
number of fragments = 32
number of fragments = 64

Figure 4.1: Fraction of Blocks Lost Per Year (FBLPY) for a rate 1
4 erasure-encoded block. Disks fail

after five years and a repair process reconstructs data regularly. The four-fragment case (top line) is
equivalent to simple replication on four servers. Increasing the number of fragments increases the
durability of a block while total storage overhead remains constant. Notice, for example, that for a
repair interval of 6 months the four-way replication (top line) loses 0.03 (3%) blocks per year while
the 64 fragments, any 16 of which are sufficient to reconstruct (bottom line) loses 10−35 blocks per
year.

storage overhead and fault tolerance. With a linear increase in storage, the number of server failures

tolerated often increases exponentially (e.g. when the number of fragments required to reconstruct

the object is greater than one).

Erasure-coding provides redundancy without the overhead of strict replication[CEG+96,

DFM00, RWE+01, WK02]. There are three types of erasure-codes: optimal,near optimal, and

rateless. Optimal erasure-codes such as Reed-Solomon [BKK+95, Pla97, RV97] encode an object

into n fragments, any m of which are sufficient to reconstruct the object (m < n). We call r =

m
n < 1 the rate of encoding. A rater optimal erasure-code increases the storage cost by a factor

of 1
r . For example, anr = 1

4 encoding might producen = 64 fragments, anym= 16 of which are

sufficient to reconstruct the object, resulting in a total overhead factor of1r = n
m = 64

16 = 4. Note that

m= 1 represents strict replication, and RAID level 5 [PGK88] can be described by (m= 4, n = 5).

Unfortunately, optimal erasure-codes are costly (in termsof memory usage and/or processor time)

whenm is large, so near optimal erasure codes such as Tornado codes[LMS+97, LMS+98] are

often used. These near optimal erasure-codes require (1+ε)m fragments to recover the data object.

Reducingε can be done at the cost of increasing processor time. Alternatively, rateless erasure

codes such as LT [Lub02], Online [May02], or Raptor [Sho03],codes transform a data object of

m fragments into a practically infinite encoded form. We assume the use of optimal erasure-codes

45

unless otherwise noted.

Weatherspoon and Kubiatowicz illustrated that increased fragmentation provides greatly

increased durability[WK02] as shown in Figure 4.1. More importantly, erasure-resilient systems

use up to an order of magnitude less bandwidth than replicated systems to provide the same level of

data availability and durability[BSV03, BR03, WK02]. However, there are negative consequences

to using erasure-codes.

Erasure-codes and their checksum[WWK02] are processor intensive to produce. For

example, the Pond [REG+03] prototype performance was limited by erasure-coding; producing

erasure-encoded fragments contributed more than 72% (566.9 ms out of 782.7 ms for a 2MB up-

date) of the write latency. As a result, there is a tradeoff between CPU costs and networking effi-

ciency when considering the use of erasure-codes or replication. Additionally, if a metadata layer

individually accounts for each fragment, the layer can be overloaded with location pointers. In order

to prevent this problem, fragments need to be aggregated together (e.g. extents) so their individual

cost can be amortized. Furthermore, repair is more complicated with erasure-codes since a complete

data object would have to be reconstructed to produce a new fragment for repair. This repair read

adds extra complexity and cost to the erasure encoded system. However, reconstructed data objects

can be cached to reduce costs (eliminate read requirement) of subsequent repairs.

We compare replication and erasure-coding more deeply next.

4.1.1 Erasure-coding versus Replication

In this subsection we demonstrate that systems based on erasure-codes use up to an order

of magnitude less bandwidth and storage than replication for systems with similarmean time to data

loss(MTTDL). Furthermore, we show that employing erasure-codes increases the MTTDL of the

system by many orders of magnitude over simple replication with the same storage overhead and

repair policy. For the following discussion, we assume a simple repair model where lost redundancy

is periodically refreshed. Later, in Chapter 5, we will showhow to perform a more sophisticated

repair. We present this system model next followed by a comparison of systems based on replication

and erasure-codes.

System Model

In this section, we make several simplifying assumptions tocompare the durability and

overhead (storage and bandwidth) of systems that use erasure-coding versus replication. First, we

46

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 10 20 30 40 50 60N
um

be
r

of
 F

ai
le

d
D

is
ks

 p
er

 M
ill

io
n

D
is

ks

Age in Months

Failure Distribution of Hard Disks

Figure 4.2: Disk Mortality Distribution [PH02].

assume the utilization of a collection ofindependently, identically distributedfailing disks—the

same assumption made by bothA Case for RAID[PGK88] and disk manufacturers. Further, we

assume that failed disks are immediately replaced by new blank ones1. During initial placement or

repair, each replica (orfragment) for a given data object is placed on a unique, randomly selected

disk. Finally, we postulate a global sweep and repair process. The process scans the system, at-

tempting to restore redundancy by reconstructing each dataobject and redistributing lost replicas

(or fragments) over a new set of disks. Notice that repair inRAID[PGK88] istriggeredwhen a disk

fails, which is fundamentally different than sweep and repair. We consider storage systems that trig-

ger repair in Section 4.2. Some type of repair is required; otherwise, data would be lost eventually

regardless of the redundancy. See Figure 4.2 for a typical distribution of disk mortality. We denote

the time period between sweeps of the same data object anepoch.

We perform three comparisons. First, we fix both themean time to data loss(MTTDL)

of the system and the length of therepair epoch. Second, we fix the storage overhead and repair

epoch. Finally, we fix the MTTDL of the system and the storage overhead. Note that thefraction of

blocks lost per year(FBLPY) illustrated in Figure 4.1 is a rate of object lost andis independent of

the size of the system; whereas, MTTDL is the expected time toloss of any object, thus MTTDL of

the system is dependent on the MTTDL of an individual object and the system size.

1We are ignoring other types of failures such as software errors, operational errors, configuration problems, etc.

47

For our analysis, we will use the following. We characterizean erasure-encoded or repli-

cated system (denoted byx) in terms of total storageSx, total bandwidth (leaving the source or

entering the destination)BWx, and the total number of disk seeks required to sustain rate (repair,

write, and read)Dx. When comparing the two systems, we will assume that they store the same

amount of unique data measured in number of objects, where all objects are the same size. Addi-

tionally, new objects are added to the system at a constant ratew (e.g. new data objects per second).

We do not compare reads when considering storage and bandwidth because the amount of band-

width required to read a data object is the same for both systems. We assume the use of optimal

erasure-codes such as Reed-Solomon where the object can be reconstructed fromm fragments and

m fragments is equivalent to one replica in storage and bandwidth requirements.

Fix MTTDL and Repair Epoch

Given a system size defined by the total number of data objectsO, we focus on answering

the question, what are the resources required to store data in a system long-term? We define the

notion of strong durability to be the expected MTTDL of losing anydata object is sufficiently larger

than the expected lifetime of the system. That is

MTTDLsystem=
MTTDLdata object

O
≫ system lifetime

We are concerned with the usage of three different resourcesto maintain strong durability:

storage, bandwidth, and disk seeks. The resources can be derived as follows:

Sx = total bytes stored in systemx

BWx = BWxwrite +BWxrepair

Dx = Dxwrite +Dxrepair

WhereSx is the total storage capacity required of the systemx (wherex is replication or erasure-

codes),BWx is a function of the bandwidth required to support both writes and repair of the total

storage every repair epoch, andDx is the number of disk seeks required to support repair, writes, and

reads. The repair bandwidth is a function of the total bytes replaced due to server failure during a re-

pair epoch and the length of a repair epoch. We further derivethe storage bandwidth, and disk seeks.

48

First, we compute the storage for both systems

Srepl = o·R·O

Serase =
o
m
·n·O = o·

1
r
·O

WhereR is the number of replicas,r = m
n is the rate of encoding, ando is the data object size.R

and 1
r are the storage overhead factors. Thus, storage is dependent on the data object size, storage

overhead factor, and number of data objects.

Next, we show that bandwidth and disk seeks can be expressed in terms of aDataRate, the number

of original data objects written and repaired.

DRx = N ·w+
O ·P(ex)

ex

Where the first term represents new writes and includes the number of usersN and the new data

object creation ratew. The second term represents storage being repaired, whereex is the repair

epoch length,P(ex) is the probability that an object is lost during the epoch, and O ·P(ex) is the

number of data objects that needs repair in system.

Bandwidth is the DataRate multiplied by the size of each object (denoted byo) and storage overhead

factorR or 1
r . Additionally, an erasure encoded system needs to reconstruct a complete data object

49

before creating a new fragment. Bandwidth can be derived as follows

BWrepl = BWreplwrite +BWreplrepair

= o·R·N ·w+
o·R·Orepl ·P(erepl)

erepl

= o·R·

(

N ·w+
Orepl ·P(erepl)

erepl

)

= o·R·DRrepl

BWerase = BWerasewrite +BWeraserepair write+BWeraserepair read

= o·
1
r
·N ·w+

o
m ·n·Oerase·P(eerase)

eerase
+

o
m ·m·Oerase·P(eerase)

eerase

= o·
1
r
·N ·w+

o
m ·Oerase·P(eerase)

eerase
· (n+m)

= o·
1
r
·N ·w+

o· 1
r ·Oerase·P(eerase)

eerase
· (1+ r)

= o·
1
r
·

(

N ·w+
Oerase·P(eerase)

eerase
· (1+ r)

)

= o·
1
r
·

(

DRerase+
Oerase·P(eerase)

eerase
· r

)

= o·
1
r
·DRerase·

(

1+

Oerase·P(eerase)
eerase

DRerase
· r

)

The bandwidth for replication is straightforward and dependent on the write and repair rates mul-

tiplied by the size of each data object and storage overhead factor. Bandwidth for erasure-codes

is similar to replication except there is an extra term for reconstructing data objects due to repair.

The added cost of this extra repair read term is dependent on the ratio of new writes (N ·w in the

DataRateDRerase) to repair writes
(

O·P(eerase)
eerase

)

. If new writes dominate repair writes, then the repair

read term becomes less significant; otherwise, repair readsreduce the benefit of erasure codes.

Third, we compute the number of disk seeks required to support writes and repair.

Drepl = R·N ·w+R·
O·P(erepl)

erepl

Derase = n·N ·w+n· O·P(erepl)
eerase

The above equation states that the number of disk seeks required is dependent on the number of

50

replicas (or total number of fragments), throughput, system size, repair epoch, and the number of

replicas (or fragments) needed to reconstruct the data object.

Finally, a replicated system can be compared to a similar erasure encoded system with the following

bandwidth, storage, and disk seek ratios

Srepl

Serase
= R· r (4.1)

BWrepl

BWerase
=

o·R·DRrepl

o· 1
r ·DRerase

(

1+
Oerase·P(eerase)

eerase
DRerase

· r

) =
r

1+ r
·R→ R· r (4.2)

(As writes begin to dominate repairs)

Drepl

Derase
=

R·DRrepl

n·DRerase
= R· r (4.3)

We make the abstract numbers concrete using the following parameters as appropriate. Bolosky

et. al [BDET00] measured that an average workstation produces 35MB
hr of data. We associate a

workstation with a user and assume there areN = 224 users. Witho = 8kB size data objects, each

user writesw = 17,676 new data objects per hour. Further, assume we storeO = 1017 total data

objects and wish for theMTTDLsystem> 1000 years. Hence, the mean time to failure of a particular

data object would need to be 1020 years (MTTDLdata object= 1020 years). As a consequence of the

former parameters and using the analysis described in [RWE+01] and reprinted in Appendix A, we

solve for a repair epoch length and number of replicas and rate and compute thaterepl = eerase= 4

months,R= 22 andr = 32
64 = 1

2 satisfy above constraints, respectively.

Applying these parameters to equations 4.1, 4.2, and 4.3 we produce the following result

Srepl

Serase
= 11

BWrepl

BWerase
= 7.33→ 11

Drepl

Derase
= 11

These results show that a replicated system requires up to anorder of magnitude more bandwidth,

storage, and disk seeks as an erasure encoded system of the same size. Erasure-codes are more

complicated to use, however. For instance, a data object needs to be reconstructed before a new

fragment can be created for repair.

51

Fix Storage Overhead and Repair Epoch

The same formulas from above can be used to verify durabilityof system calculations

presented in [CEG+96, RWE+01]. For example, using the parameters above and assuming iid

failures, we set repair time oferepl = eerase= four months,R= two replicas2, and rater = 32
64. Both

the replicated and erasure encoded systems have the same apparent storage overhead of a factor

of two. Using Appendix A, we compute theMTTDLdata objectof a data object replicated onto two

servers as 74 years and theMTTDLdata objectof a data object using a rate12 erasure-code onton= 64

servers as 1020 years! It is this difference that highlights the advantage of erasure-coding.

Fix MTTDL and Storage Overhead

As a final comparison, we can fix the MTTDL and storage overheadbetween a replicated

and erasure encoded system. This implies that the storage and bandwidth for writes are equivalent

for these two systems. In this case erasure encoded systems must be repaired less frequently, and

hence, requires less repair bandwidth.

For example, to devise a system withO = 1000 data objects where the expected time to

lose any data object is 1000 years (MTTDLsystem= 1000 years), we would want the expected time

to lose a particular data object to beMTTDLdata object= 106 years. A replicated system could meet

the above requirements usingR= four replicas and a repair epoch oferepl = one month. An erasure

encoded system could meet the same requirements using anr = 16
64 = 1

4 erasure-code and a repair

epoch ofeerase= 28 months. As a result, the replicated system uses 28 times more bandwidth than

erasure encoded system for repair.

If, instead, the system storesO = 1017 data objects (as described in subsection 4.1.1)

with the same expected time to lose any data object as above (MTTDLsystem= 1000 years), then the

expected time to lose any data object should beMTTDLdata object= 1020 years. Using a factor offour

storage overhead (like in the previous example), the erasure encoded system meets the requirements

using anr = 16
64 = 1

4 erasure-code and a repair epoch ofeerase= 12 months, but a replicated system

with R= 4 replicas would have to repair all data objects almost instantly and continuously.

Discussion

The previous section presented the advantages of erasure-coding, but there are some

caveats as well. We highlight three issues: intelligent buffering, caching, correlated failures.

2In section 4.1.1R= 22 to attain the same durability

52

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

Fragments

Fragments

Fragments

REPLICAS

REPLICAS

REPLICAS

Fragments

UPDATES

Archiver

Figure 4.3: Hybrid Update Architecture: Updates are sent toa central “Archiver”, which produces
archival fragments at the same time that it updates live replicas. Clients can achieve low-latency
read access by utilizing replicas directly.

Each client in an erasure-resilient system sends messages to a larger number ofdistinct

servers than in a replicated system. Further, the erasure-resilient system sends smaller “logical” data

objects to servers than the replicated system. Both of theseissues could be considered enough of a

liability to outweigh the results of the last section. We assume two measures could be employed to

offset these negative qualities of erasure-coding. First,storage servers can be utilized by a number

of clients; this means that the additional servers are simply spread over a larger client base. Second,

intelligent buffering and message aggregation can reduce overhead of maintaining many fragments.

Although the outgoing fragments are “smaller”, aggregating them together into larger messages and

larger disk blocks can reduce the consequences of fragment size. These techniques were implicitly

assumed in our exploration via metrics of total bandwidth, storage overhead, and disk seeks in the

previous subsection.

Another concern about erasure-resilient systems is that the time and server overhead to

perform a read has increased, since multiple servers must becontacted to read a single data object.

The simplest answer to such a concern is that mechanisms fordurability should be separated from

mechanisms forlatency reduction. Consequently, we assume that erasure-resilient coding will be

utilized for durability, while replicas (i.e. caching) will be utilized for latency reduction. The

advantage of this organization is that replicas utilized for caching aresoft-state(do not need repair)

53

and can be constructed and destroyed as necessary to meet theneeds of temporal locality. Further,

prefetching can be used to reconstruct replicas from fragments in advance of their use. Such a hybrid

architecture is illustrated in Figure 4.3. This is similar to what is provided by OceanStore [K+00,

REG+03].

Finally, the assumption that failures areindependentandidentically distributedis not true

in general. Server failures may be correlated because they share network routers, software bugs,

configuration problems, operating systems, suffer from same attack, etc.. The rate of failure may be

elevated in regions of the network that share common administration or unstable hardware elements.

Studies have shown that human errors and network problems are major causes for server failures in

the same site [OP02].

We list three possible techniques to address the independence failure assumption. First,

greater redundancy gives data a greater chance of survivingcorrelated failure [HMD05]. Second,

sophisticated measurement and modeling techniques could be used to choose a set of servers that are

maximally independent during fragment dissemination [jBH+05, WMK02]. Finally, distributing

fragments to geographically diverse locations eliminatesa large class of correlations caused by

natural disasters, denial of service attacks, and administrative boundaries. We show in Section 4.3.2

that random replica placement such as one that avoids blacklisted servers and replaces duplicate

sites, is sufficient to avoid the problems introduced by the many observed correlated failures3.

4.1.2 Complexity of Erasure-Codes and Self-Verifying Data

There are negative consequences to using erasure codes. In particular, erasure codes are

more processor intensive to compute than replication and require aggregation and caching to main-

tain their efficiency. As a result, it is desirable to use complete replication to increase latency

performance and erasure codes to increase durability. The challenge is finding synergy between

complete replication and erasure coding. Also, maintaining systems built using erasure codes is dif-

ficult because erasure coded fragments cannot be verified locally and in isolation, but instead have

to either be verified in a group or through higher level objects.

We identify an important challenge when building systems based on erasure codes. In

particular, data integrity associated with erasure codes.We contribute a naming technique to al-

low an erasure encoded document to be self-verified by clientand servers. Later, in Part III, we

demonstrate how to use this self-verifying property to maintain the integrity of data.

3Massively correlated attacks such as virus or worm attack that simultaneously destroy large fractions of the system
are out of scope of this thesis.

54

Identifying Erasures: When reconstructing information from fragments, we must discard failed

or corrupted fragments (callederasures). In traditional applications, such as RAID storage servers,

failed fragments are identified by failed devices or uncorrectable read errors. In a malicious environ-

ment, however, we must be able to prevent adversaries from presenting corrupted blocks as valid.

This suggests cryptographic techniques to permit the verification of data fragments; assuming that

such a scheme exists, we can utilize anym correctly verifiedfragments to reconstruct a block of

data. In the best case, we could start by requestingm fragments, then incrementally requesting

more as necessary. Without the ability to identify corrupted fragments directly, we could still re-

quest fragments incrementally, but might be forced to try a factorial combination of all returned

fragments to find a set ofm that reconstructs our data; that is,
(n

m

)

combinations.

Naming and Verification: A dual issue is thenamingof data and fragments. Within a trusted

LAN storage system, local identifiers consisting of tuples of server, track, and block ID can be used

to uniquely identify data to an underlying system. In fact, the inode structure of a typical UNIX

file system relies on such data identification techniques. Ina distributed system with malicious or

compromised servers, however, some other technique must beused to identify blocks for retrieval

and verify that the correct blocks have been returned. Belowwe demonstrate that a secure hashing

scheme can serve the dual purpose of identifying and verifying both data and fragments. We illus-

trate how data in both its fragmented and reconstructed forms can be identified with thesame secure

hash value.

An Erasure Coding Integrity Scheme: We demonstrate how a cryptographically-secure hash,

such as SHA-1[NIS94]4, can be used to generate asingle, verifiable namefor data object and all of

its encoded fragments.

The scheme works as follows. For each encoded data object, wecreate a binary veri-

fication tree[Mer88] over its fragments and the data object itself as shown in Figure 4.4.(a). The

verification tree is produced by computing a hash over each fragment, concatenating the correspond-

ing hash with a sibling hash and hashing again to produce a higher level hash,etc.. This process

continues until it reaches the topmost hash (H14 in the figure). This topmost hash is concatenated

with a hash of the data, then hashed one final time to produce aglobally-unique identifier (GUID).

The GUID is a permanent pointer that serves the dual purpose of identifying and verifying a block.

Figure 4.4.(b) shows the contents of eachverification fragment. We store with each fragment all

of the sibling hashes to the topmost hash, a total of(logn)+ 1 hashes, wheren is the number of

4Other cryptographically-secure hashing algorithms will work as well.

55

B−GUID

Hd H1 H2 H3 H4

Data

H12 H34

Encoded Fragments
F1 F2 F3 F4

H14

(a) Verification Tree

data

H4 H12 Hd

H1 H34 Hd

H34 HdH2

H3 H12 Hd

Fragment 1:

Fragment 2:

Fragment 3:

Fragment 4: F4−fragment data

F3−fragment data

F2−fragment data

F1−fragment data

Data: H14

(b) Verification Fragments

Figure 4.4: (a) Verification Tree: is a hierarchical hash over the fragments and data of a block.
The top-most hash is the block’sGUID. (b) Verification Fragments: hashes required to verify the
integrity of a particular fragment.

fragments.

On receiving a fragment for re-coalescing (i.e. reconstructing a data object), a client veri-

fies the fragment by hashing over the data of the fragment, concatenating that hash with the sibling

hash stored in the fragment, hashing over the concatenation, and continuing this algorithm to com-

pute a topmost hash. If the final hash matches the GUID for the block, then the fragment has been

verified; otherwise, the fragment is corrupt and should be discarded. Should the infrastructure return

a complete data block instead of fragments (say, from acache), we can verify this by concatenating

the hash of the data with the top hash of the fragment hash tree(hash H14 in Figure 4.4) to get the

GUID. Data supplemented with hashes as above may be consideredself-verifying.

Other erasure-coding verification schemes have been proposed. However, all schemes

are significantly more complex and expensive than simple replication. For example, a verification

scheme for rateless erasure-coding has been proposed [KFM04]. The advantage of rateless erasure-

coding is each fragment produced during repair is unique (with high probability) from all other

fragments that exist. Whereas, in (near) optimal erasure-coding, fragments produced during repair

may be duplicate of other fragments that already exist. The latter system must carefully track the

unique fragments that exist to avoid creating duplicate fragments during repair. Another verification

56

scheme associates a cryptographically signed certificate with each fragment that includes a secure

hash of all fragments (e.g. Glacier [HMD05]). The problem iscreating and verifying signatures is

significantly more expensive then hashes.

More Complex Objects: More complex structures may be constructed from self-verifying data

objects. For example, placing GUIDs into blocks and encoding them is a building block to construct

complex objects. The resulting structure is a tree of blocks, with original data at the leaves. The

GUID of the topmost block serves much the same purpose as an inode in a file system, and is

a verifiable name for the whole complex object. We verify an individual data block (a leaf) by

verifying all of the blocks on the path from the root to the leaf. Although composed of many blocks,

such a complex object is immune to substitution attacks because the integrity and position of each

block can be checked by verifying hashes. Complex objects can serve in a variety of rolls, such

as documents, directories, logs, etc. In Part III, we demonstrate how to use very high integrity

self-verifying structures such as a secure log.

4.2 Choosing the Number of Replicas to Create

The second parameter that a fault tolerance algorithm must choose is the replication level.

The choice depends on a target durability level (e.g. probability of data loss after a specific amount

of time), distribution of permanent failure bursts, and theability or rate of creating additional redun-

dancy. Given these parameters, a system designer must choose an appropriate number of replicas to

create to meet the target level of durability. In particular, for the characteristics of the system, the

number of replicas must be high enough so that the probability of a burst of failures that destroys

all replicas is sufficiently rare. Calculating the replication level is the subject of this section.

Replication alone, however, is insufficient to maintain data durability since all servers

eventually permanently fail. Over time, permanent server failures decrease the number of replicas

that exist. To compensate for this attrition, the system must also use a repair mechanism to create

new redundancy to account for lost redundancy. The next Section (4.2.1) discusses the selection of

replication level. Additional details of the repair process are discussed in Chapter 5.

4.2.1 System Model

In this section, we assume a replicated system since it is easier to understand and the

intuition, derivations, and results are equivalent to an erasure-encoded system. The key difference

57

Replica Location
and Repair Service

Download A, C, then D
from servers 2, 3, or 4

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Server 4

Server 1

Server 5

Server 2

Server 3

A
C
D

A
B
D

B
C
D

A
B
C

(a) Server 1 Fails

Replica Location
and Repair Service

���
���
���

���
���
���

Download A, D, then B
from servers 3 or 4

Download A, D, then C
from servers 3 or 4

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Server 4

Server 1

Server 5

Server 2

Server 3

Server 6

A
C
D

A
B
D

B
C
D

A
B
C

(b) Server 2 Fails

Replica Location
and Repair Service

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Server 4

Server 5

Server 3

Server 6

A
B
D

B
C
D

A
B
C

A
C
D

(c) Repair Finished

Figure 4.5: Example repair process. The replica location and repair service coordinates repair
process: new servers prioritize downloading new replicas.Initially, there are four servers and four
objects (A thru D) withrL = 3 for each object. (a) Server 1 fails. The replica location and repair
service selects a new server, server 5, to download lost replicas. (b) Before any repair completes,
server 2 fails. The replica location and repair service selects server 6 to download lost replicas and
communicates new download priority to server 5 (A,D,C instead of A,C,D since D has less replicas
that exist than C). (c) All repair completes. Notice that object replica C on server 5 and B on server
6 waited for an entire servers worth of repairs to complete before they completed.

is that data is lost when no replicas exist in a replicated system orm− 1 or less fragments exist

in an erasure-encoded system. We call the replication levelthe fault tolerance algorithm selectsrL

and study systems that aim to maintain this target level of redundancy in order to survive bursts of

failure.

Given a choice of the number of replicas to maintain denotedrL, the system works as

follows. An initial number of replicas,rL, are stored in the system. We assume that a replica

location and repair service monitors each replica and measures the number of replicas that exist

over time. When a replica fails due to permanent server failure, a new replica is created. The replica

location and repair service selects a new server to host a newreplica. The new server downloads the

replica from a server storing an existing replica. Finally,the new server updates the replica location

and repair service when the download completes.

We assume the new server may have many new replicas to download and prioritizes which

replica to download next. Priority is based on the number of remaining replicas that exist for each

object. The replica location and repair service communicates the priority to the new server when

triggering repair and updates the priority if necessary (e.g. when repair completes by another new

server or another failure occurs). The repair time is dependent on the time to download the new

replica plus the time to download other replicas with the same or higher priority. Figure 4.5 shows

58

Initial
Object
Insertion

Failure
Detection
Lag

Data
Repair
Triggered

Simultaneous
Failure

Data
Repaired

Data
Repaired

Low
Replication
Level

16
15
14
13
12
11
10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

Time
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

rL

r(t)

Permanent Failure

Failure Detected and Repair Triggered

r(t) ; Number of replicas that exist

Cumulative number of replicas created

rL

Figure 4.6: Example number of replicas that exist over time.Initially, rL = 8 replicas of an object are
inserted into the system. At time 3, a server storing a replica fails. The failure is detected at time 4
and repaired by time 6. The repair lag is due to constrained resources such as access link bandwidth
that restrict the number of objects that a server can repair in a given time period. Furthermore,
the newly triggered repair would have to wait for previouslytriggered repairs to complete. Later,
another server fails at time 9. But before repair can complete, another server fails at time 11 bringing
the number of replicas that exist down to 6. The lost replicasare replaced by time 14. The lowest
number of replicas that exist is 5 at time 21.

the process of creating a new replica where repair is coordinated via a replica location and repair

service. Details of implementing this service are discussed in Chapter 9.

Replicas are continuously created until one of two situations occurs: eitherrL replicas

exist again or no replicas exist anywhere and the data objectis permanently lost. Figure 4.6 illus-

trates how the number of replicas that exist evolves over time. Permanent server failures reduce the

replication level. Server failure must be detected and repair triggered. The problem is that failure

detection has a lag because it takes time to detect failure since wide-area storage systems often use

heartbeats to determine that a server is available and lack of a heartbeat to determine a server is

unavailable. Further, the repair process has a lag due to constrained resources such as access link

bandwidth that restrict the number of objects that can be repaired in a given time period. Moreover,

newly triggered repairs may have to wait for previously triggered repairs to complete. We assume

59

all failures are permanent failures. We study the effects oftransient failures, where servers return

with data intact, in Chapter 5.

The target replication levelrL is dependent on the failure rateλ f , distribution of failure

bursts, and replica creation rate denoted byµ. The server failure rateλ f is the average number of

times a particular server fails per time unit (assuming thata server can be “renewed” – replaced,

after each failure, and then returned to service immediately after failure). In some cases, such as

with an exponential distribution, it is the reciprocal of the mean-time-between-failures (MTBF)

where MTBF is the average time between failures of a particular server.λ f (and MTBF) is a system

characteristic; see Table 2.2 for example. The replica creation rate is the average number of times

one server can copy a particular replica from a remote serverper time unit. It is dependent on system

characteristics such as the per-server network access linkspeed, the amount of data stored on each

server, and the number of servers (and hence number of accesslinks) which help replace replicas

stored on a failed server. When a server fails, new servers must be selected to download replicas

from the other remaining servers holding replicas of the objects stored on the failed server. Objects

remain durable as long as there is sufficient bandwidth available for the lost replicas to be recreated.

For example, in a symmetric system, each server must have sufficient bandwidth to download (and

serve) a server’s worth of data during its lifetime.

At minimum, if servers are unable to keep pace with the average failure rate, no replication

policy can prevent objects from being lost [BR03, CDH+06, Dab05]. These systems areinfeasible.

If the system is infeasible, it will eventually “adapt” to the failure rate by discarding objects until it

becomes feasible to store the remaining amount of data. A system designer may not have control

over access link speeds and the amount of data to be stored. Fortunately, choice of scheduling which

object to repair and object replica placement can improve the speed that a system can create new

replicas. Scheduling is considered in our model below and placement is discussed in Section 4.3.1.

If the creation rate is only slightly above the average failure rate, then a burst of failures

may destroy all of an object’s replicas before a new replica can be made; a subsequent lull in failures

below the average rate will not restore the situation since all the replicas are gone. For our purposes,

these failures aresimultaneous: they occur closer together in time than the time required tocreate

new replicas of the data that was stored on the failed disk. Simultaneous failures pose a constraint

tighter than just meeting the average failure rate: every object must have more replicas than the

largest expected burst of failures. Simultaneous failure due to statistical coincidence is one source

of correlation and occurs according to a distribution.

60

0 1 2 3 4 5

4µ1 3µ1 2µ1 µ2

λ f 2λ f 3λ f 4λ f 5λ f

Figure 4.7: A continuous time Markov model for the process ofreplica failure and repair for a
system that maintains three replicas (rL = 5). Numbered states correspond to the number of replicas
of each object that exist. Transitions to the left occur at the rate at which replicas are lost; right-
moving transitions happen at the replica creation rate.

4.2.2 Generating a Markov Model

We assume that server failure occurs randomly according to an exponential distribution

with mean (MTBF) 1
λ f

, whereλ f is the rate of server failure (the number of times a particular server

fails per unit time). We assume thatλ f is independent and identically distributed for all servers

and that an exponential distribution is reasonable for servers that are independently acquired and

operated at geographically separated sites (See Figure 2.6for example). According to the model

presented, an object withi replicas loses a replica with rateiλ f because each of thei servers storing

an existing replica might fail.

Further, a replica lost due to server failure is replaced viaa new server downloading a

new replica from a remote server storing an existing replica. This replica creation process takes

some time. For instance, creating a particular replica may first require waiting for an entire servers

worth of replicas to be downloaded first. To model repair, we assume that repair occurs randomly

according to an exponential distribution with mean1
µ, whereµ is the replica creation rate (the num-

ber of times one server can download a particular replica from a remote server). We assume thatµ

is independent and identically distributed for all object repairs and is subject to some randomness

due to available bandwidth and competing repairs. An objectwith i replicas that exist increases

the number of replicas with rate(rL − i)µ. Each of therL − i new servers (selected by the replica

location and repair service) may complete downloading a newreplica.

To analyze the system model presented in this section, we reduce it to a Markov chain.

At any point in time, the system hasr i replicas that exist with(0≤ r i ≤ rL). The remainingrL − r i

replicas are lost and need to be repaired (i.e. new server selected and downloads replica from

existing servers). An object replication level can be modeled as a Markov chain withrL +1 states.

An object is in statei if there arer i replicas that exist. In statei, any one of ther i replicas that exist

61

can fail, in which case the object goes to statei−1. Alternatively, any one of therL− r i non-existing

replicas can be repaired, in which case the object goes to state i + 1. This is a continuous Markov

model; in statei, the object moves to statei −1 with rateiλ f and to statei + 1 with rate(rL − i)µ

whereλ f is the server failure rate andµ the replica creation rate (rate at which a particular servercan

download a particular replica). We assume objects with lower replication are scheduled for repair

with higher priority than objects with greater replication, thus have an increased likelihood of repair.

Note that statei = 0 is an absorbing state; the object no longer exists and cannot be repaired since

no replicas exist anywhere. The model is illustrated in Figure 4.7.

The Markov chain model is useful to compute the probability that a data object exists after

some amount of timeT given rL, µ, andλ f . We discuss this computation in Section 4.2.4. Simi-

lar Markov chain model derivations and analyses can be foundin literature, Chun et al [CDH+06],

Dabek [Dab05], and Ramabhadran and Pasquale [RP06]. The Markov models presented in [CDH+06]

and [Dab05] are different, so the results will be different;however, the analytic derivation mechan-

ics are the same. The difference is the rate of creating a new replica is constant, independent of the

object’s current replication state [CDH+06, Dab05]; whereas, we consider “scheduling” of repair,

the likelihood of being selected for repair is increased as more replicas are lost since objects with

less replicas are selected with a higher priority. This scheduling is similar to the model presented

in [RP06].

4.2.3 Creation versus Failure Rate

Intuitively, the server failure rateλ f and replica creation rateµ represent a balance be-

tween how fast a system loses replicas compared to how fast itcan create replicas to compensate for

the attrition. This ratio between replica creation rate andserver failure rate determines the average

replicas per object the system can expect to support [CDH+06, Dab05, RP06]. For example, if the

system must handle coincidental bursts of, say, five failures, it must be able to support at least six

replicas and hence the replica creation rate must be at least6 times higher than the replica failure

rate. We’ll refer to the ratioµ/λ f asθ. Choices forrL are effectively limited byθ. It is not the

case that durability increases continuously withrL; rather, when usingrL > θ the target replication

level is greater than the number of replicas that can be created for a particular object per unit time.

In this case, the system provides the best durability it can,given its resource constraints (i.e. the

average number of replicas will be at mostθ instead ofrL whenrL > θ). On the other hand, When

rL < θ, higher values ofθ decrease the time it takes to repair an object, and thus the ‘window of

62

vulnerability’ during which additional failures can causethe object to be destroyed.

To get an idea of a real-world value ofθ, we estimateλ f andµ based on the historical

failure record for permanent server failures on the second interval of the PlanetLab trace. From

Table 2.2, the average permanent failure inter-arrival time for the entire test bed is 39.85 hours. On

average, there were 490 servers in the system, so we can estimate the mean time between permanent

failures for a single server as 490·39.85 hours or 2.23 years. Hence,λ f ≈ 0.439 permanent server

failures per year.

The replica creation rateµ, number of times one server can download a particular replica

from a remote server per time unit, depends on the achievablenetwork throughput per server, as well

as the amount of data that each server has to store (includingreplication). We assume that an entire

server’s worth of data may be downloaded before downloadinga particular replica. For example,

recall from Figure 4.5 that there were four servers and four objects withrL = 3 (each server stores

3 replicas). After failure, server 5 downloaded an entire server’s worth of replicas before a replica

for object C could be downloaded. Similar to this illustration, we estimateµ based on the amount

of time to download an entire server’s worth of data before downloading a particular replica; As a

result, we estimateµ based on the data per server and network access link bandwidth. In PlanetLab,

the current limit on the available network bandwidth is 150KB/s per server. If we assume the system

stores 500GB of unique data per server withrL = 3 replicas each, then each of the 490 servers stores

1.5TB (Total amount of replicated data is 490·500GB·3=735TB and amount of data per server is

735TB/490=1.5TB). This means that a particular replica, downloaded after a server’s worth of data,

can be downloaded in 121 days (i.e. 1.5TB/150KBs=121 days),or approximately three times per

year. This yieldsµ≈ 3 per year, one server can download a particular replica three times a year.

Therefore, in a system with these characteristics, we can estimate the ratio between the

replica creation rate and server failure rateθ = µ/λ f ≈ 6.85. In practice, this value is somewhat

lower; for example, servers cannot make copies during downtimes or shortly after a permanent

server failure. However, the fact remains thatθ is higher than the minimum for a feasible system

(θ ≥ 1 defines a feasible system). The system still profits from this because higher values ofθ

decrease the time it takes to repair an object, and thus the ‘window of vulnerability’ during which

additional failures can cause the object to be destroyed. Furthermore, when viewed in terms of

permanent server failures and copies,θ depends on the value ofrL: asrL increases, the total amount

of data stored per server (assuming available capacity) increases proportionally and reducesµ.

To study the impact ofθ, we ran a set of experiments via simulation where we reduced

the bandwidth per server effectively reducing the replica creation rateµ (andθ). The goal was to

63

 0

 2

 4

 6

 8

 10

 12

 200 400 600 800 1000 1200

A
vg

 r
ep

lic
as

 p
er

 o
bj

ec
t a

t e
nd

 o
f t

ra
ce

Bandwith per node (bytes/s)

rL=2
rL=4
rL=6
rL=8

Figure 4.8: Average number of replicas at the end of a two yearsynthetic trace for varying values
of θ. This Figures represents a set of simulations where we reduced the bandwidth per server
(x-axis) effectively reducing the replica creation rateµ (andθ). The input to the simulator was a
synthetic failure trace with a 632 servers and a server failure rate ofλ f = 1 per year. The storage
load maintained was 1TB of unique data (50,000 20MB objects). As a result, the total replicated
data was 2TB, 4TB, 6TB, and 8TB forrL = 2, 4, 6, 8, respectively. Finally, each experiment was
run with a specific available bandwidth per server that ranged from 100 B/s to 1,200 B/s.

64

measure the average number of replicas that exist per objectat the end of the trace and relate that

to the expected value based onrL andθ. If rL ≥ θ then the average should be nearθ; otherwise,

if rL < θ, the average should berL. The simulator was discussed in Section 2.2.5. In review, the

simulator acts as a replica location and repair service. After a server failure has been detected via

a timeout, new random servers are selected to download and replace the replicas lost on the failed

server. The input to the simulator was a synthetic failure trace with 632 servers and a failure rate of

λ f = 1 per year (Section 2.1.4). The length of the trace was two years. The storage load maintained

was 1TB of unique data (50,000 20MB objects). As a result, thetotal replicated data was 2TB,

4TB, 6TB, and 8TB forrL = 2, 4, 6, 8, respectively. Finally, each experiment was run with a

specific available bandwidth per server which ranged from 100 B/s to 1,200 B/s. For example, the

case of 100 B/s corresponds toθ = 1.81/rL (i.e. µ= bw
data per server=

100B/s
1TB·rL/632 = 5.748·10−8/rL per

sec,λ f = 1
1yr = 1

31536000 sec= 3.171·10−8 per sec, andθ = µ
λ f

= 5.748·10−8/rL

3.171·10−8 = 1.81/rL). Figure 4.8

shows the results of these simulations. WhenrL < θ, rL is the average number of available replicas

per object at the end of the trace. However, whenθ is less thanrL the ratio of the replica creation

rate to server failure rate is not sufficient to support an average target replication level ofrL replicas

per object. The system can no longer maintain full replication and starts operating in a ‘best effort’

mode, where higher values ofrL do not give any benefit. The exception is if some of the initialrL

replicas survive through the entire trace, which explains the small differences on the left side of the

graph.

4.2.4 ChoosingrL

A system designer must choose an appropriate value ofrL to meet a target level of dura-

bility. This process could be automated. Essentially, for the characteristics of the system,rL must

be high enough so that a burst ofrL failures is sufficiently rare.

One approach to choosingrL would be to simply examine a trace and select one more

than the maximum burst of simultaneous failures. For example, Figure 4.9 shows the burstiness of

permanent failures in the second interval of the PlanetLab trace by counting the number of times

that a given number of failures occurs in disjoint 24 hour and72 hour periods. If the size of a failure

burst exceeds the number of replicas, some objects may be lost. As a result, one may conclude

perhaps that 12 replicas are needed to maintain the desired durability. This value would likely

provide durability but at a high cost. If a lower value ofrL would suffice, the bandwidth spent

maintaining greater numbers of replicas would essentiallybe wasted.

65

0 1 2 3 4 5 6 7 8 9 10 11 12

Crashes in single period

0

20

40

60

N
um

be
r

of
 o

cc
ur

re
nc

es

24 Hour
72 Hour

Figure 4.9: Frequency of “simultaneous” failures in the PlanetLab trace. These counts are derived
from breaking the trace into non-overlapping 24 and 72 hour periods and noting the number of
permanent failures that occur in each period. If there arex replicas of an object, there werey
chances in the trace for the object to be lost; this would happen if the remaining replicas were not
able to respond quickly enough to create new replicas of the object.

There are several factors to consider in choosingrL to provide a certain level of durability.

First, bursts arrive according to the distribution of failures: there is no maximum burst size. Worse,

a burst may arrive while there are fewer thanrL replicas. From this, one could conclude that the

highest possible value ofrL is desirable. On the other hand, the simultaneous failure ofeven a

large fraction of servers may not destroy any objects, depending on how replicas are placed. In real

systems, the workload may also change over time, affectingµ.

The selection ofrL does not capture the impact of placement strategies: this isbest cap-

tured via simulations that include real workloads and placement strategies. We discuss placement

strategies in Section 4.3.1. The replication levelrL does capture the effect of the burst distribution

via the Markov model presented in Section 4.2.1.

Given this Markov model, we can analyze the relationship between the values ofrL, µ,

λ f and the probability that data is lost. By examining the probability of data loss for various com-

binations of the system parameters, we hope to provide some guidance to system designers who

must pick a reasonable value forrL. Previously we stated that an appropriate value forrL might be

the maximum number of simultaneous failures that the systemwill experience: since this analysis

assumes that failures are independent events, what the calculation here determines is the probability

of more thanrL failures occurring due to statistical coincidence.

66

In the context of the Markov process, the probability that weare interested in corresponds

to the probability that the system is in statei = 0 at timeT. We can find this probability by solving

the differential equations that describe the behavior of the Markov process over time. For each state,

we can write a differential equation that relates the probability of remaining in a state to the rate

of transitions into the state and out of the state. The negative term of each equation captures the

transitions out of the state, the positive term captures thein transitions:
dP0(t)

dt = λ f P1(t) // prob enter statei = 0

// no leaving statei = 0!
dP1(t)

dt = −((rL −1)µ+ λ f)P1(t) + // prob leave statei = 1

2λ f P2(t) // prob enter statei = 1
dPi (t)

dt = −((rL − i)µ+ iλ f)Pi(t) + // prob leave statei

(rL − i +1)µPi−1(t)+ (i +1)λ f Pi+1(t) // prob enter statei
dPrL (t)

dt = −rLλ f PrL(t) + // prob leave statei = rL +1

= µPrL−1(t) // prob enter statei = rL +1

∑Pi(t) = 1

with the initial conditionsPrL(0) = 1 andPi(0) = 0. The final equation stipulates that the probabil-

ities sum to 1; this constraint is necessary to solve the system since the otherrL equations are not

independent. This system can be analyzed numerically to estimate the probability of data object

loss by timeT: P0(T).

We can analyze the example presented in Section 4.2.3 where 490 PlanetLab servers store

500GB of replicas each with parametersrL = 3, λ f = 0.439,µ= 3, andθ = 6.85. Figure 4.10 plots

P(t) for each of the four states. The solid bold line shows the probability of object loss over time.

The dotted bold line shows the results of a simulation of the same system. The observed fraction

of data lost at each point in time is plotted (error bars show the minimum and maximum from five

runs of the simulator). The probability that data is lost rises towards one as time increases even

though the system can create objects faster than they are lost (µ/λ f ≈ 6.85> 1). If failure events

are generated by Poisson processes, object loss is inevitable given enough time, since a burst ofrL

failures between repair actions has a nonzero probability.

The shape of the curve in Figure 4.10 is affected mainly by theratio θ = µ
λ f

. The higher

θ, the faster repair is in relation to data loss, so the system spends more time in the nonzero states.

Therefore it is important to design the system such thatµ is as high as possible. In Section 4.3.1, we

67

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

P
ro

ba
bi

lit
y

Time (days)

P0
P1
P2
P3

sim

Figure 4.10: Analytic results for the probability of data loss over time. These curves are the solution
to the system of differential equations governing a continuous time Markov process that models a
replication system running on PlanetLab storing 500GB. At time zero, the system is in state 3
(three replicas) with probability 1.0 (dot-dash line is at 1.0). As time progresses, the system is
overwhelmingly likely to be in state 0 which corresponds to object loss (that probability is shown
as a bold line in the above plot).

describe placement strategies that can be used to increaseµ. The individual values ofλ f andµ also

affect the results.

By solving this system of differential equations to determine P0(T) for variousrL, a de-

signer can estimate anrL that gives an acceptably small chance of object loss in a bounded time

after the object is inserted. To explore different workloads, we consider different amounts of data

per server. In Figure 4.11, we graph the probability that an object will survive after four years as

a function ofrL and data stored per server which affects the repair rate and henceθ. Note that the

amount of unique data stored in the system decreases asrL increases since we constrain the amount

of data per server.

The points plotted are obtained by evaluating the probability that no replicas exist and the

object is in state zero after four yearsP0(4years) in the continuous time Markov model withrL +1

total states; each value ofrL requires evaluating a different model. Each curve lowers towards the

right: asrL increases the system can tolerate more simultaneous failures and objects are less likely

to be lost. The predicted object loss increases as per-server capacity is increased: when more data

must be copied after a failure, the window of vulnerability for a simultaneous failure to occur also

68

 1e-30

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

 2 3 4 5 6 7 8 9 10
 1e-30

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

P
ro

ba
bi

lit
y

of
 O

bj
ec

t L
os

s

rL

500 GB
50 GB
5 GB

Figure 4.11: Analytic prediction for object durability after four years on PlanetLab. Thex-axis
shows the initial number of replicas for each object: as the number of replicas is increased, object
durability also increases. Each curve plots a different per-server storage load; as load increases,
it takes longer to copy objects after a failure and it is more likely that objects will be lost due to
simultaneous failures.

increases. Finally,rL = 1 is not shown since it corresponds to not using any replication and objects

are lost based only on the lifetime of a server (withrL = 1, no new replicas are created, so the object

is lost when the only copy is lost).

4.3 Choosing Where to Store Replicas

The third decision a fault tolerance algorithm must consider is the placement of replicas.

Replica placement is the process in which servers are selected to store data replicas. There is

a plethora of proposed placement algorithms [KKM02] optimizing for properties such as access

latency, availability, or load balance. However, in the context of durability, two properties are most

relevant: scope and predictability.

First, scopedetermines which servers are eligible to store replicas fora given object.

Furthermore, after replicas are placed, scope implies which servers are monitored for liveness and

storage of replicas for particular objects. Systems like GFS [GGL03], Pond [REG+03], and To-

talRecall [BTC+04] have a large scope and consider all servers in the system as eligible to store

replicas. While storage systems based on distributed hash tables (DHTs) such as Dhash [Cat03],

69

OpenDHT [RGK+05], and PAST [DR01] to name a few, consider a small number of servers; the

exact set depends on the identifier of the object in question.Increasing the scope has two desir-

able effects: It increases flexibility of the system and it increases the parallelism during repair. In

general, with a scope of sizek, if one server of thek servers fails, then thek− rL −1 other servers

can use their combined access links to download and replace the replicas lost on the failed server.

When scope is small (e.g.k = rL), only a few servers download new replicas (namely, new servers

replacing the failed servers download replicas); however,when scope is large (e.g.k = N), many

servers download new replicas (any server that does not already store the lost replica can download

a replacement replica). A large scope can utilize more network paths to replace lost replicas. The

disadvantage of a large scope is that higher values ofk increase the overhead of monitoring server

liveness (monitoring is discussed further in Section 5.1).

Second, afailure predictorbiases the placement of replicas towards more reliable servers.

In other words, failure predictors use an “oracle” to make statements about the expected remaining

lifetime of servers or groups of servers. If a predictor is used, the system can improve its chances

of maintaining durability by placing replicas on highly reliable groups of servers. Several exist-

ing systems use this approach; Pond [REG+03, K+00] infers host reliability from the observed

failure pattern [WMK02] while Phoenix [jBH+05] uses server attributes such as operating system

or installed software. On the other hand, failure predictors have been criticized as inherently un-

reliable [HMD05], and measurement studies have shown that failures in real systems are difficult

to predict [YNY+04]. When using a failure predictor, there is an obvious tradeoff between load

balance and optimized placement. It is only by biasing load towards more reliable servers that dura-

bility can be improved; as a consequence, these servers are required to provide more storage (and to

answer more requests) than their less reliable counterparts.

Failure predictors can also be used to avoid temporally correlated failures. Temporally

correlated failures occur close together in time. A hypothetical failure predictor that knows the ex-

act time servers permanently fail can be used in a placement strategy to avoid temporally correlated

failures between pairs or large groups of servers. Avoidingplacing replicas on servers that fail at

the same time helps ensure there is sufficient time to replacereplicas lost to failure. This clair-

voyant failure predictor is able to better avoid temporallycorrelated failures than Weatherspoon

et al [WMK02] and Phoenix [jBH+05] since it knows future failure times while the latter strate-

gies do not know the future. We use a clairvoyant failure predictor as a basis for comparison in

Section 4.3.2.

As a specific instance of applying scope and failure prediction, we demonstrate two ef-

70

Server set i

i +1

i +1
��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

i

Server set

(a) scope=3

Server set i

i +1

i +1
��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

i

Server set

(b) scope=5

Figure 4.12: Scope. Each unique serveri has a unique set of servers it monitors and can potentially
hold copies of the objects thati is responsible for (server seti 6⊂ storage server setj , ∀i 6= j). The
sizeof that set is the server’sscope. (a) scope=3 and (b) scope=5. In terms of placement choices,
assuming thatrL =3 and object replicas are stored on serveri’s server set, then there is no choice for
(a) and

(scope
rL

)

=
(5

3

)

choices in (b).

fects (in the context of systems with failure characteristics such as PlanetLab). First, a large scope

increases durability. Second, not much benefit is gained from use of failure predictors since ran-

dom replica placement – such as one that avoids blacklisted servers and replaces duplicate sites –

is sufficient to avoid the problems introduced by many observed correlated failures. Using a failure

trace with correlated failures due to upgrade and compromise (first interval of PlanetLab), a ran-

dom placement policy that avoids blacklisted servers and duplicate sites, triggered only 3.4% more

repairs than a clairvoyant placement that knew the future time that servers fail.

We discuss scope and failure prediction further.

4.3.1 Increasing Durability Through Repair Parallelism with Scope

This subsection explores how the system can increase durability by copying objects from

a failed server in parallel. In effect, this reduces the timeneeded to repair the replicas lost on failed

servers and increasesθ (ratio of rate of replica creation to rate of server failure).

Each server,i, designates a set of other servers that it monitors and can potentially hold

copies of the objects thati is responsible for. We call thesizeof that set the server’sscope, and

consider only system designs in which every server has the same scope. Scope can range from a

minimum of rL to a maximum of the number of servers in the systemN. Scope and the replica

location and repair service (discussed in Section 3.1) are related since scope defines the number of

servers a particular server will monitor. Thus, it defines which servers can assist in locating and

monitoring servers responsible for storing replicas of a particular object.

To be explicit, each unique serveri has a unique set of servers it monitors and can poten-

71

tially hold copies of the objects thati is responsible for (server seti 6⊂ storage server setj , ∀i 6= j).

All server sets are the same size, and the size of the server set ranges fromrL to N. Each object

is replicated within a unique server set. Generally, a larger scope offers more flexibility since the

number of possible replica sets is larger (around
(scope

rL

)

); however, more servers must be monitored

with a larger scope. Figure 4.12.(a) pictorially shows how aserver, server set, and replicas for a

particular object are organized.

After a particular scope (size of server set) has been chosen, a placement strategy needs

to be chosen. For example, if the number of replicas isrL, scope isN, and placement strategy

is random, then any random server may be chosen to store a replica. On the other hand, if the

placement is successor list placement (the number of replicas isrL and scope isN), then only the

successiverL servers would initially be chosen to store replicas, even though all servers are eligible.

Notice that successor list placement doesnot imply a small scope (scope isN in this example);

rather, successor list placement states that servers successive in the identifier space should initially

store replicas. Essentially the placement strategies are restricted to a server’s scope. Furthermore,

existing copies only “count” towards the replication levelof an object if they are stored on one of

the servers in the set. We compare placement strategies in Section 4.3.2, but for this section we

assume a random placement.

A small scope means that all the objects stored on serveri have copies on servers chosen

from the same restricted set of other servers. The advantageof a small scope is that it makes it

easier to keep track of the copies of each object. For example, DHash stores the copies of all the

objects with keys in a particular range on the successor servers of that key range. The result is

that those servers store similar sets of objects, and can exchange compressed summaries of the

objects they store when they want to check that each object isreplicated a sufficient number of

times [Cat03, RGK+05].

The disadvantage of a small scope is that the effort of creating new copies of objects

stored on a failed disk falls on the small set of servers in that disk’s scope. The time required to

create the new copies is proportional to the amount of data onone disk divided by scope minusrL

(dataper server
scope−rL

). A small scope results in a long repair time. Another problem with small scope, when

coupled with systems that use consistent hashing [KLL+97, Cat03, DKK+01, DR01, RGK+05],

is that the addition of a new server may cause unneeded copying of objects: the small scope may

dictate that the new server replicates certain objects, forcing the previous replicas out of scope and

thus preventing them from contributing to durability.

Assuming a random placement policy with replicas for a particular object placed in dif-

72

Replica Location
and Repair Service

���
���
���

���
���
���

���
���
���

���
���
���

Server 5

Download A
from server 3 Download D

from server 4

Download C
from server 7

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Server 7

Server 1

Server 6

Server 4Server 3
Server 2

A
C
D

B
C
G

F
E
G

A
D
G

A
B
F

B
C
E

E
F

D

(a) Server 1 Fails. Coordinate Repair

Replica Location
and Repair Service

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Server 7
Server 6

Server 4Server 3
Server 2

Server 5

B
C
G

A
D
G

A
B
F

E
F

D

A

B

D

C
E

G
E
F
C

(b) Repair Completes

Figure 4.13: Example parallel repair with a large scope. Scope is 7 andrL = 3. Only servers within
scope are monitored and there are

(7
3

)

possible replica sets. The replica location and repair service
coordinates the repair process utilizing as many source anddestination server pairs as possible.
Initially, there are seven servers and seven objects (A thruG) with rL = 3 for each object. (a) Server
1 fails. The replica location and repair service selects as many source and destination server pairs to
reduce the repair time. Server 2 downloads replica A from server 3. Similarly, server 5 downloads
replica D from server 4 and server 6 downloads replica B from server 7. (b) All repair completes.

ferent unique sites, larger scopes spread the work of makingnew copies of objects on a failed disk

over more access links, so that the copying can be completed faster. In the extreme of a scope of

N (the number of servers in the system), the remaining copies of the objects on a failed disk would

be spread over all servers, assuming that there are many moreobjects than servers. Furthermore,

the new object copies created after the failure would also bespread over all the servers. Thus the

network traffic sources and destinations are spread over many network paths, and the time to re-

cover from the failure is short (proportional to the amount of data on one disk divided byN or
dataper server
scope=N−rL

). Figure 4.13 illustrates spreading repair over many sources and destinations server

pairs reducing repair time.

A large scope requires coordination to effectively reduce repair time. For instance, in

Figure 4.5 and 4.13, a replica location and repair service coordinates many source and destination

server pairs to parallelize repair. Many network paths are used in parallel decreasing repair time. In

implementation, in Section 9, the replica location and repair service is implemented as a distributed

directory. Each server is responsible for monitoring the replicas for particular objects. When a

particular object’s replication level falls below the target level, the server responsible for monitoring

the object triggers repair. The repair process, then, selects a leader to coordinate repair.

Additionally, a larger scope also means that a temporary failure will be noticed by a

73

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 5 10 15 20 25
D

ur
ab

ili
ty

 a
t e

nd
 o

f t
ra

ce
Scope

rL=2
rL=4

Figure 4.14: Durability for different scopes. Assuming random placement. We vary the target repli-
cation levelrL and scope (x-axis). To reduceθ, we limit the bandwidth per server to 1000 B/s in this
experiment. Durability is measured via simulation using a two year synthetic trace. Increasing the
scope from 5 to 25 servers reduces the fraction of lost objects by an order of magnitude, independent
of rL.

larger number of servers. Thus, more access links are available to create additional replicas while

the failure lasts. Unless these links are already fully utilized, this increases the average number of

replicas per object, and thus improves durability.

Figure 4.14 shows how scope (and thus repair time) affects object durability in a sim-

ulation on a synthetic trace. To reduceθ, we limit the bandwidth per server to 1000 B/s in this

experiment. We vary the repair threshold and the scope, and measure durability after two years of

simulated time. Increasing the scope from 5 to 25 servers reduces the fraction of lost objects by an

order of magnitude, independent ofrL. By including more servers (and thus more network connec-

tions) in each repair effort, the work is spread over more access links and completes faster, limiting

the window of time in which the system is vulnerable to another disk failure. Ideally, by doubling

the scope, the window of vulnerability can be cut in half.

A large scope reduces repair time and increases durability;however, implementing a large

scope presents two trade-offs. First, the system must monitor each server in the scope to determine

the replication levels; when using a large scope, the systemmust monitor many servers. This in-

creased monitoring traffic limits scalability. Second, in some instances, a large scope can increase

the likelihood that a simultaneous failure of multiple disks will cause some object to be lost.

If object replicas are placed randomly with scopeN, there are many more objects than

disks, and each object has exactlyrL replicas, then it is likely that all
(N

rL

)

potential replica sets are

used. In this scenario, the simultaneous failure of anyrL disks is likely to cause data loss: there

is likely to be at least one object replicated to exactly those disks. A small scope inherently limits

74

placement possibilities that are used, concentrating objects into common replica sets. As a result, it

is less likely that a given set ofrL failures will affect a replica set, but when data loss does occur,

many more objects will be lost. These effects are similar: the expected number of objects lost during

a large failure event is identical for both strategies. It isthe variance that differs between the two

strategies.

4.3.2 Placement Strategies, Failure Predictors, and Durability

Scope limits the possible servers eligible for replica placement of a particular object;

however, once scope has been decided, a plethora of placement strategies are possible. There are

two categories of replica placement strategies: random andselective. Random placement is used for

its simplicity. Random does not use any information when selecting a server for replica placement.

Its use is often accompanied by the assumption that each server failure is independent or has low

correlation with each other. If server failures are not independent or have high correlation, the end

result could reduce durability or increase costs such as thenumber of repairs triggered. In contrast,

selective placement uses information to choose specific servers that satisfy some constraints. For

example, select servers that have been previously shown to have low correlation [AHK+02, DW01,

DF82, jBH+05, WMK02]. Selective placement strategies emulate use of afailure predictor that

attempts to select servers with the most remaining lifetimeand not temporally correlated (fail close

together in time).

In this subsection, we explore various random and selectivereplica placement strategies in

the context of systems with PlanetLab failure characteristics. We begin with an analysis of the Plan-

etLab trace for correlated failures. We use the first interval since it likely contains many correlated

failures. Next we describe some selective placement strategies based on analysis. Additionally, we

describe some random variants. Finally, we compare replicaplacement strategies with a simula-

tion using the PlanetLab trace. This study is not exhaustive, however, it demonstrates that even in

environments with correlated failures such as PlanetLab, simple placement strategies are sufficient

to maintain durability. For example, random replica placement that avoids blacklisted servers and

replaces duplicate sites can avoid the problems introducedby the many observed correlated failures.

Correlated Failures in PlanetLab

In this subsection, we test the first interval of the PlanetLab data (Figure 2.3) for the

possibility of servers with correlated failures. We test for temporally correlated failures between

75

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5 0.6 0.7 0.8 0.9 1

P
[X

 is
 d

ow
n

| Y
 is

 d
ow

n]

P[Y is down | X is down]

Different Site Same Site
(a) (upper right quadrant) 2D Correlation

Site 2D Correlation Threshold Fraction Correlated
Same 0.5 22.43%
Same 0.8 8.86%
Different 0.5 0.91%
Different 0.8 0.04%

(b) Fraction of Correlated Servers

Figure 4.15: Temporally Correlated Failures. We use a two-dimensional space of conditional down-
time probabilities, both p(x is down| y is down) and p(y is down| x is down). Serversx andy are
temporally correlated ifbothprobabilities are greater than a threshold such as 0.5 or 0.8. (a) upper
right quadrant of 2D Correlation. (b) Fraction of Correlated Servers. 22% of the time that a server
goes down, there is at least a 50% chance another server in thesame site will go down as well.
Alternatively, the servers in different sites were not temporally correlated.

pairs of servers that commonly fail close together in time. Serversx andy are temporally correlated

if, given serverx is unavailable, servery is also likely to be unavailable and visa versa. We perform

two tests to measure the degree of temporal correlation. First, we measure the two-dimensional

space of conditional downtime probabilities, which illustrates the likelihood that two servers are

down at the same time. Using two dimensions reduces the influence of servers with long downtimes.

Second, we perform the same study again, however, this time removing the servers with the longest

total downtimes. This study illustrates two effects. Firstthe PlanetLab distribution has a long tail

of servers with long total downtimes. Second, servers experience correlated failures, however, the

strongest correlation is amongst servers in the same site.

First, to capture server correlation, we use a two-dimensional space of conditional down-

time probabilities, both p(x is down| y is down) and p(y is down| x is down). Serversx andy are

temporally correlated ifbothprobabilities are greater than a threshold such as 0.5 or 0.8. Note that

most studies only use a single dimension when producing a correlation metric. For instance, prob-

76

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600

D
ow

n
tim

e
(h

ou
rs

)

Rank

Figure 4.16: Per Server Total Downtime (log scale).

ability thaty is down given thatx is downor probability thatx is down given thaty is down. The

use of an “or” instead of an “and” between the two dimensions increases the number of serversthat

may be temporally correlated. For example, using only one dimension would correlate servers that

are chronically down with all other servers increasing the number of temporally correlated servers;

using two dimensions prevents this effect, servers are onlytemporally correlated if both dimensions

are above a threshold. We do not discuss one-dimension conditional downtime probabilities further.

Figure 4.15.(a) shows the upper right quadrant of the two-dimension conditional down-

time probability. It highlights servers in thesame sitewith open circles and different sites with

dots. The fraction of correlated servers are highlighted inFigure 4.15.(b). Figure 4.15.(b) shows

that 22% of the time that a server goes down, there is at least a50% chance another server in the

same site will go down as well. Alternatively, Figure 4.15.(b) shows that the two-dimension condi-

tional downtime probability of servers in different sites was insignificant. Figure 4.15 is interesting

because it illustrates that significant temporally correlated failures exists.

Second, we look at the two-dimension conditional downtime probability when servers

with long downtimes are removed from consideration. Figure4.16 shows the total downtime for

each server and orders the servers from most to least total downtime. Of the 512 total PlanetLab

servers, 188 servers have total downtimes greater than 1000hours. In Figure 4.17.(a), we again show

the two-dimension conditional downtime probability, but with servers with total downtime longer

than 1000 hours factored out. Figure 4.17.(a) shows more density along the diagonal, meaning that

p(x is down| y is down) is more symmetric with p(y is down| x is down); that is, the servers are not

asymmetrically influenced by long downtimes. Similar to Figure 4.15.(b), Figure 4.17.(b) shows

that 33% of the time that a server goes down, who’s total downtime is less than 1000 hours, there

77

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
[X

 is
 d

ow
n

| Y
 is

 d
ow

n]

P[Y is down | X is down]

Different Site Same Site
(a) 2D Correlation (servers w/ total downtime≤ 1000 hours)

Site 2D Correlation Threshold Fraction Correlated
Same 0.5 33.33%
Same 0.8 13.83%
Different 0.5 0.34%
Different 0.8 0.04%

(b) Fraction of Correlated Servers (servers w/ total downtime≤ 1000 hours)

Figure 4.17: Temporally Correlated Failures with servers with total downtimes longer then 1000
hours removed from consideration. (a) 2D Correlation and (b) Fraction of Correlated Servers
(servers w/ total downtime≤ 1000 hours). 33% of the time that a server goes down, who’s to-
tal downtime is less than 1000 hours, there is at least a 50% chance another server in the same site
will go down. The temporally correlated probability increased when we removed the long down-
time servers because the number of servers temporally correlated remained relatively unchanged
from Figure 4.15 while the total number of servers was reduced by 188. Alternatively, the servers
in different sites were not temporally correlated.

is at least a 50% chance another server in the same site will godown. The temporally correlated

probability increased when we removed the long downtime servers because the number of servers

temporally correlated remained relatively unchanged while the total number of servers was reduced

by 188. However, the inter-site two-dimension conditionaldowntime probability is still insignifi-

cant. Figures 4.16 and 4.17 are interesting because they demonstrates that significant correlation

exists amongst servers in the same site and not much between servers in different sites.

Replica Placement Strategies

Unreliable and correlated servers have been cited in literature [CV03, NYGS04, YNY+04].

However, it is not clear to what degree “flaky” and correlatedservers affect durability or cost such

as the number of repairs triggered. We compare random placement strategies that blacklist flaky

servers and/or avoid placing multiple replicas in duplicate sites. In particular, we blacklist the top

78

10% of servers that are likely to be unavailable; 22% of PlanetLab servers in the first interval are

available less than 50% of the time according to Figure 2.3.(d)). Additionally, to avoid placing

multiple replicas in duplicate sites, we pick another random server to store a replica if a server in a

duplicate site was already selected.

The four variations of random replica placement strategiesthat we compare areRandom,

RandomBlacklist, RandomSite, andRandomSiteBlacklist. Random placement picksn unique

servers at random to store replicas.RandomBlacklist placement is the same asRandom but avoids

the use of servers that show long downtimes. The blacklist iscomprised of the topz servers

with the longest total downtimes.RandomSite avoids placing multiple replicas in the same site.

RandomSite picks n unique servers at random and avoids using servers in the samesite. We

identify a site by the 2B IP address prefix. The other criteriacan be geography or administra-

tive domains. Finally,RandomSiteBlacklist placement is the combination ofRandomSite and

RandomBlacklist.

The other category of replica placement is selective. The benefits of more sophisticated

selective placement strategies are not well understood in terms of durability and costs. We compare

costs of the random placement strategies discussed above against the best selective placement strat-

egy that uses a failure predictor. Our failure predictor uses future knowledge when selecting servers

for replica placement. Future knowledge is based on offline information (i.e. the PlanetLab trace).

This offline clairvoyant selective replica placement strategy, namedMax-Sum-Session,

uses future knowledge of server lifetimes, sessiontimes, and availability to place replicas. In partic-

ular Max-Sum-Session places replicas on servers with the highest remaining sum ofsessiontimes.

This strategy places replicas on servers that permanently fail furthest in the future and exhibit the

highest availability. TheMax-Sum-Session was the best performing algorithm of all clairvoyant

algorithms we studied (e.g.Max-Sum-Session performed better than some anti-correlation tech-

niques [WMK02]).

Evaluation of Replica Placement Strategies

We now compare different replica placement strategies. We compare different random,

DHT, and clairvoyant replica placement strategies. DHT isRandom but with a small scope; all other

strategies have a large scope of sizeN (all servers in system). Table 4.1 shows for all the place-

ment strategies the total number of repairs triggered and percentage of improvement overRandom.

Additionally, Table 4.1 shows the average and standard deviation of the number of replicas per

79

Data Replica Strategy. (rL = 5, n = 11, and|blacklist| = 35)
Random DHT RandomSite RandomBlacklist RandomSiteBlacklist Max-Sum-Session

Repairs 227,242 447,204 223,003 221,618 217,291 209,815
% Improvement -96.80 1.87 2.47 4.38 7.67

Replicas/N 1386.2 1439.9 1381.9 1391.8 1386.5 1388.9
Stddev (±) 1126.6 684.4 1140.5 1182.1 1193.7 1213.3

Table 4.1: Comparison of Replica Placement Strategies.rL = 5 andn = 11.

server. The storage system used a low watermark ofrL = 5. The size of the blacklist for the

RandomBlackList andRandomSiteBlacklist placement strategies was the top 35 servers with

the longest total downtimes. Table 4.1 shows how the replicaplacement strategies differ in cost

(number of repairs triggered).

Table 4.1 shows that more sophisticated placement strategies exhibited noticeable in-

crease in performance; that is, fewer repairs triggered compared toRandom. For example, the

RandomSiteBlacklist placement showed a 4.38% improvement overRandom, which was slightly

more than the sum of parts, 1.87% and 2.47% forRandomSite andRandomBlacklist, respectively.

The clairvoyant placement strategy exhibited a 7.67% improvement (Max-Sum-Session). TheDHT

placement triggered more data repairs thanRandom. However, because the load balance is a pri-

mary goal of consistent hashing used byDHT, the distribution of the number of replicas per server

was more uniform forDHT as can be seen with the smaller standard deviation of 684 replicas per

server.

4.4 Summary

Fault tolerance, the first key to ensuring durability, is a property that is highly desired in

distributed wide-area storage systems, yet setting valuesfor its parameters are often not well un-

derstood. A fault tolerance algorithm must choose the type of redundancy, the number of replicas

to create, and where to store replicas. However, questions arise such as what redundancy scheme

should be used? How much redundancy is needed to tolerate failure? What is the associated dura-

bility? Where to store replicas? What servers should and should not be eligible to store replicas.

These are all questions that govern a systems ability to tolerate failure without loss of data. In this

chapter, we explored many techniques to answer these questions using combinations of analytical

models and simulation. We discuss four insights and techniques to answer these questions.

First, we quantitatively compared systems based on replication to systems based on erasure-

codes. We showed that the mean time to data loss (MTTDL) of an erasure encoded system is often

80

many orders of magnitude higher than that of a replicated system with the same storage overhead and

repair period. Another interesting result of our analysis showed that erasure-resilient codes use an

order of magnitude less bandwidth and storage than replication for systems with similar MTTDL.

Use of erasure-codes, however, has negative consequences.Erasure-codes increase system com-

plexity. Complexities include increased memory and processor utilization to produce fragments,

use of cryptographic mechanisms to identify erasures and ensuring the integrity of fragments and

data, need for aggregation, and reconstructing data from fragments for repair. Ultimately, as a result

of these complexities, a designer must decide if the efficiency of erasure codes is more valuable than

the simplicity of replication.

Second, we presented a model that helps the system select thenumber of replicas to cre-

ate for an object. The proper number of replicas to create is related to the burstiness of permanent

failures. We use a model that computes the durability (probability that a data object exists after a

specific amount of time) given a rate of server failure (replica loss), rate of replica creation, and tar-

get replication level. The model based on a continuous time Markov chain calculates the probability

that a burst of server failure destroys the remaining replicas before more replicas can be created in a

specific amount of time. Replica creation rate is dependent on replica placement, repair scheduling,

and constrained by resources such as access link bandwidth that restrict the number of objects that

a server can repair in a given time period. This model considers repair scheduling and constrained

resources; placement, however, is considered separately.This model allows the system to calculate

a target replication level that satisfies a target durability constraint.

Third, we demonstrated that durability could be increased by copying object replicas from

a failed server in parallel. In effect, reducing the time needed to repair the replicas lost on the failed

servers. The decrease in repair time increases durability since durability is inversely proportional

to repair time [PGK88]. We call this property scope. Scope determines the number of servers

that are eligible to store replicas for a particular object.Also, it limits which particular servers

are eligible. Furthermore, after replicas are placed, scope implies which servers are monitored

for liveness and storage of replicas for particular objects. Increasing scope increases parallelism.

However, increasing scope also requires the system to monitor more servers limiting scalability.

Section 5.2.1 illustrates that monitoring costs are often insignificant when compared to repair costs.

Finally, deciding where to place replicas is difficult sincethere are many possibilities.

However, in the context of durability, two properties are most relevant: scope (discussed above)

and predictability. Ideally, if the system knew the exact time that servers fail, then it could select

servers to store replicas based on two criteria. First, servers that fail furthest in the future. However,

81

this technique results in an unbalanced system since some servers store significantly more data than

others. Second, select servers where failures are spaced far apart in time. This technique avoids

temporally correlated failures (failures that occur closetogether in time) allowing repair more time

to replace lost replicas before another failure occurs. Theproblem, of course, is that an oracle that

knows the exact failure time is not available to systems. However, we demonstrated that a random

placement policy—that avoids blacklisted servers and duplicate sites—is sufficient to avoid many

observed correlated failures. For instance, such a policy triggered only 3.4% more repairs than a

clairvoyant placement that knew the future time that servers fail.

82

Chapter 5

Repair

Repair is second key to ensuring data durability. The goal ofrepair is to refresh lost re-

dundancy before data is lost due to permanent failures. Monitored information, which measures

the number of available replicas, is the basis for initiating repair. However, this monitored informa-

tion is imprecise since replicas can be durably stored but not immediately available, hence transient

failure. The possibility of transient failures complicates providing durability efficiently: we do not

want to make new copies in response to transient failures, but it is impossible to distinguish between

disk failures and transient failures using only remote network measurements. This chapter focuses

on minimizing the amount of network traffic sent in response to transient failures while maintaining

a target durability. We demonstrate three techniques to reduce cost due to transient failure.

First, in Section 5.1, we show that timeouts reduce costs dueto transient failure; however,

their effectiveness is limited. Timeouts reduce false-positives, misclassifying servers as permanently

failed that have actually only transiently failed. Their effectiveness is dependent on the downtime

distribution. If the timeout value is set to mask most of the downtime distribution, a transiently

failed server may return before a timeout expires and prevent resources from being wasted creating

replicas unnecessarily. However, setting longer timeout values decrease durability. The time to

recognize permanently failed servers increases as the timeout value increases, thus increasing the

“window of vulnerability” for an object to be lost due to permanent failure.

Second, in Section 5.2, we show that extra replicas, beyond what is required to maintain

a target durability, decreases cost due to transient failure. We demonstrate that the number of extra

replicas that minimizes cost can be estimated. The advantage of extra replication is that it exponen-

tially reduces the cost due to transient failure with only a linear increase in replicas. Furthermore,

there is no reduction in durability by adding extra replicas. As a result, extra replicas perform better

83

than long timeouts.

Finally, in Section 5.3, we show that the optimum number of extra replicas does not need

to be estimated at all. Costs are minimized by simply responding to all failures, transient or per-

manent, creating replicas untilrL (number of replicas required for target durability) are available,

tracking all replicas created, and reintegrating replicasafter transient failure. We call such an al-

gorithm Carbonite. Carbonite was first presented in [CDH+06], we provide a description here for

completeness. The result of the Carbonite algorithm is thatthe system performs some extra work

for each object early in its life, but over the long term creates new copies of the object only as fast

as it suffers permanent failures.

We assume that all data is immutable in Sections 5.1, 5.2, and5.3. We consider efficiently

maintaining durability of mutable data in Part III.

5.1 Reducing Transient Costs with Monitoring and Timeout-based

Failure Detectors

Most replication systems are closed-loop systems; they sense, and can respond to, the

current state of the system. For example, many systems monitor server failures and keep track of

the set of replicas that is stored on each server. Once a failure is detected, these systems can respond

by creating a new replica of each object that was stored on thefailed servers [BTC+04, CDH+06,

Cat03, DKK+01, HMD05, RGK+05]. In particular, we assume that durability is maintainedby

monitoring the availability of at least a low watermark ofrL replicas for a particular object (Sec-

tion 4.2). When the number of available replicas drops belowrL, more replicas are created until one

of two situations occur: eitherrL replicas are again available or no replicas are available, the object

may have been lost (see Section 4.2 for a detailed analysis ofrL and durability).

In this section, we describe failure detectors and how theiraccuracy affects durability and

cost to maintain durability. Cost is measured as the number of replicas created (i.e. total bytes

sent) to maintain durability. In particular, we demonstrate that longer timeout values increase the

accuracy of timeout-based failure detectors and decrease the cost to maintain durability; however,

longer timeouts decrease durability since more time is required to recognize permanent failures.

We do not discuss, in this section, the cost due to monitoringand how to build a monitor-

ing infrastructure, we leave those discussions for Sections 5.2 and 9.2, respectively.

84

5.1.1 Failure detectors

A very common information source for replication systems isthe failure detector. A

failure detector is a functionf (N, t) → {A,U,D} which, for a given timet, maps every serverN

to one of three states: Available, unavailable, or dead. Thesecond state models transient failures,

during which the server cannot be reached by the other servers1 but otherwise remains intact, while

the third state models permanent failures with data loss, such as hardware failures. The information

from the failure detector can be used e.g. to drive the creation of new replicas.

A perfect failure detector iscompleteandaccurate, meaning that it detects all failures and

does not report a failure unless one has actually happened. Ideally, it is alsoinstantaneous, meaning

that failures are reported immediately. Unfortunately, real failure detectors do not have all of these

properties. An incomplete failure detector may not report afailure at all, and one with delays may

do so too late for the system to respond. Both effects can cause data loss, which the system can

avoid by creating additional redundancy. Inaccuracies do not cause data loss but may cause extra

overhead, since they may prompt the system to create unnecessary replicas.

In distributed systems, transient failures are usually detected by sending ping messages to

a remote host, and by declaring it unavailable when no answeris received within a short timeout

τ1. Since permanent failures have the same symptoms, the assumption is usually made that tran-

sient failures do not last longer than a maximum timeτ2; the server is declared dead when it has

not responded to pings for at least that time. Measurement studies of existing systems [BDET00,

YNY+04] have shown that this assumption is realistic.

Timeout-based failure detectorsare complete (a failed server cannot respond to pings and

thereforewill be declared dead afterτ2), but they are not completely accurate, and they have an

inherent delay. There is a difficult tradeoff between delay and accuracy. By increasing the timeouts,

we can reduce the false positives; however, this comes at thecost of a higher delay, which increases

the probability that multiple failures occur before the system can detect the first one.

Better failure detectors can be built if special hardware isavailable, e.g. a watchdog [Fet03].

However, in today’s wide-area storage systems, such hardware is generally not available.

1A server is not reachable by other servers possibly due to temporary server failure such as reboot or network failure
such as dropped messages or network partion.

85

 0

 5

 10

 15

 20

 25

 0.1 1 10 100 1000 10000

T
ot

al
 b

yt
es

 s
en

t (
T

B
)

Timeout (hours)

rL=2
rL=3
rL=4
rL=5

(a)

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0.1 1 10 100 1000 10000

D
ur

ab
ili

ty
 (

at
 e

nd
 o

f t
ra

ce
)

Timeout (hours)

rL=2
rL=3
rL=4
rL=5

(b)

Figure 5.1: The impact of timeouts on bandwidth and durability on a synthetic trace. Figure 5.1(a)
shows the number of copies created for various timeout values; (b) shows the corresponding object
durability. In this trace, the expected downtime is about 29hours. Longer timeouts allow the
system to mask more transient failures and thus reduce maintenance cost; however, they also reduce
durability.

5.1.2 Evaluation of Timeout-based Failure Detectors

Timeout-based failure detectors are most effective when a significant percentage of the

transient failures can be ignored, which is dependent on thedowntime distribution (e.g. Fig-

ure 2.5.(c) illustrates the downtime distribution for PlanetLab). However, for durability to remain

high, the expected server lifetime needs to be significantlygreater than the timeout.

To evaluate this scenario where timeouts should have impact, we performed an experiment

using a synthetic trace where we varied the repair thresholdrL and the server timeout2. Since

the system would recognize servers returning after a permanent failure and immediately expire all

pending timeouts for these servers, we assigned new identities to such servers to allow long timeouts

to expire normally.

Figure 5.1 shows the results of this simulation: (a) shows the total bytes sent as a function

of timeout while (b) shows the durability at the end of the trace. As the length of the timeout

increases past the average downtime, we observe a reductionin the number of bytes sent without

a decrease in durability. However, as the timeout grows longer, durability begins to fall: the long

2In the simulaor, the server timeout is a system-wide defined parameter. An adaptive scheme such as setting a timeout
value per server may perform better [LSMK05] (e.g. using a distribution of downtime per server such as Figure 4.16
may reduce the total bytes sent by masking transient failures). However, use of timeouts (either statically or dynamically)
may reduce durability since a timeout inherently increasesthe lag time to detect a permanent failure, thus increasing the
‘window of vulnerability’, during which additional failures can cause data loss.

86

Status

link failure
(lost heartbeat)

permanent
failure

failure
detection
lag

live

failed

failed

live

0 1 2 3 4 5 6 7 8 9 10

reboot

Noisy
Node
Status

Node
True

Time

Figure 5.2: Transient and Permanent Failures over Time.

timeout delays the point at which the system can begin repair, reducing the effective repair rate.

Thus setting a timeout can reduce response to transient failures but its success depends greatly on

its relationship to the downtime distribution and can in some instances reduce durability as well.

5.2 Reducing Transient Costs with Extra Replication

Storage systems are required to trigger repair and replace lost replicas as servers fail to

maintain target data durability levels. As described earlier, a fundamental problem with this con-

struction is differentiating permanent failures (data is lost) from transient failures (server returns

with data intact). Figure 5.2 shows an example of transient and permanent failures over time. Tran-

sient failures that render a server temporarily unavailable are due to server reboot, system main-

tenance, Internet path outage, etc. In addition to transient failures, failure detection has a lag; a

permanently failed server is classified as alive during the lag period. A study found that transient

failures occur often in the wide-area [CV03].

Triggering repair due to transient failures can increase the cost of maintaining data severely.

Some environments are very reliable and do not have much transient failures (e.g. within a data

center). In contrast, other environments do not support durable storage [BR03] due to too many

permanent and transient failures (e.g. Kazaa, Gnutella, and other high client churn environments).

But for many wide-area systems, like PlanetLab [BBC+04], reliable storage can be supported and

transient failures are common[CV03].

The cost of maintaining durability is determined by the costdue to permanent failure,

transient failure, write, and monitoring rate.

87

Monitor

Extra Replicas

Write

Permanent

Transient

0 . . .
e

Cost

(log scale)
BW/N

Total

(linear scale)

Figure 5.3: Example. Cost per Server of Maintaining Data in aWide Area Storage System.

Work = f (permanent failure, transient failure,write,monitoring)

= f (permanent failure)+ f (transient failure)+

f (write)+ f (monitoring) (5.1)

Although the overall cost is additive, the cost due to transient failures often dominates. Intuitively,

decreasing the cost due to transient failures decreases theoverall cost.

In this section, we show that we can decrease the cost due to transient failures by adding

extra replicas beyond what is required for a target durability. Decreasing the reaction to transient

failure is analogous to decreasing the error rate of sendinga message across a noisy channel by

adding extra bits. Explicitly, we tradeoff increased storage for reduced communication while main-

taining the same minimum3 target durability. The extra replicas absorb noise. This translates into

a decreased rate of triggering repair since it is less likelyfor the extra replicas tosimultaneouslybe

unavailable. Figure 5.3 illustrates the breakdown in the data maintenance costs as the extra replicas

are increased.

Figure 5.3 is key. It shows that with no extra replicas the probability of triggering repair

due to transient failures is actually quite high; hence, thecost due to transient failures is high. In

fact, the probability of triggering repair ishigher than the probability of a single timeout since the

chance ofanyone out ofn replicas timing out is higher than the probability of a single timeout. If

we add extra replicas and require that at leastall extra replicas simultaneously be unavailable, then

3Extra replication beyond what is required for durability does increase the expected durability since more replicas
must be lost for the object to be lost. However, we use it to decrease communication costs and hence call the target
durability, the minimum target durability.

88

the rate of triggering repair drops significantly; similarly, the cost due to transient failures drops

significantly.

The goal is to estimate the optimum number of extra replicas required to minimize work.

In the following subsections we describe how to estimate this optimum number of extra replicas. In

particular, we discuss how to estimate the number of extra replicas that minimize work.

Note, this estimator algorithm assumes that any replicas that exist, but were unavailable

when repair was triggered areforgottenabout; when the extant replica returns it isnot re-included

into the replica set.

5.2.1 Estimator Algorithm

In this section, we show how to estimate the amount of extra replicas required to absorb

“noise” and reduce rate of triggering repair. The algorithmworks as follows. Given a target data

durability to maintain, first it calculates the minimum low watermarkrL of the number of replicas

required to be available (see Section 4.2 for relationship betweenrL and durability, calculation based

on ratio between the rate of replica creationµ [access link speeds, replicas per server, and replica

placement] and rate of server failureλ f , i.e. rL is based onµ/λ f = θ). It then supplements this

number with a set of extra replicas to absorb noise (calculation based on average server lifetime,

sessiontime, and downtime). Finally, it triggers repair when all extra replicas are simultaneously

considered unavailable. In the following subsections we show how to estimate the amount of extra

replicas. See Section 4.2 to understand how to first setrL.

Estimating the Amount of Extra Replicas

We estimate the optimum number of extra replicaseby synthesizing the cost due to main-

taining durability as expressed in Equation 5.1. In particular, we develop an estimator for each term

in Equation 5.1, then calculate each term’s cost, and pickewhere the overall cost is minimum. The

key is to pick the optimum number of extra replicase that reduces the cost due to transient failures

without increasing the cost due to writes or permanent failures too high. We discuss each term’s

estimator and the overall extra replication estimator in turn below.

Permanent Failure Estimator

Permanent failure is the loss of data on a server. The maintenance cost due to permanent

failures is dependent on the average amount of storage per server S
N and the average storage server

lifetime T.

89

Variable Description
rL Number of replicas required to be available.

Repair is invoked when available replicas is less thanrL.
e Number of “extra” replicas beyondrL to create during repair.
n Total number of replicas available after repair completes(n = rL +e).
m Number of replicas required to read object.m= 1 replication,m> 1 erasure codes.
1− ε Target minimum data availability.
ε Probability data isunavailable.
a Average server availability.
D Total amount of unique data.
S Total amount of storage (S= kD) where storage overhead factork = n

m.
N Total number of servers.
T The average lifetime of allN servers.
u(x) Probability distribution function of downtimes
τ Timeout used to determine a server is unavailable.
τmax Maximum time a server has been unavailable and came back.
pdr Rate of triggering repair
pτ Probability server down longer than timeoutτ.

Table 5.1: Notation

permanent
BW
N

= O

(

S
NT

)

(5.2)

where total storageS is the product of the total amount of unique dataD and storage overhead factor

k (i.e. S= kD). Note that the storage overhead factor is dependent on the rate of erasure-codingnm
(m= 1 for replication) and total number of replicasn; that is,k = rL+e

m = n
m. Equation 5.2 states that

on average the total storageSmust be copied to new storage servers every average server lifetime

T period. We assume that all storage servers have a finite lifetime (e.g. 1-3 years) typical of a

commodity server, so storage will not be biased towards one ultra reliable server. Equation 5.2 has

been discussed in literature by Blake and Rodrigues [BR03].

Transient Failure Estimator

Transient failure is when a server returns from failure withdata intact. Reducing the rate

of triggering repair due to transient failure reduces the amount of unnecessary repair. We assume

that a timeout-based failure detector with value timeoutτ is used to determine if a server has failed

or not. pτ is the probability of a single timeout. If there are no extra replicas, then the probability of

at leastone server timing out is high; as a result, the rate of triggering data repair,pdr, is high. That

90

is,

pτ = P(storage unavailable longer thanτ)

=

∞
Z

τ

u(x)dx (5.3)

pdr = P(at least one storage server unavailable longer thanτ)

=
n=rL

∑
i=1

(

n
i

)

pi
τ(1− pτ)

n−i (5.4)

whereu(x) is the probability distribution function of downtimes. Figure 2.3(c) is the downtime

distribution for PlanetLab. Equation 5.4 is the probability that at least one of then replicas times

out. Note that the probability of at least one ofn replicas timing out is higher than the probability

of a single time outpτ. This assumes that failures are independent.

Lets now assume we add extra replicas beyondrL. We require that at leastall extra

replicas to simultaneously be unavailable in order to trigger repair. As a result, the rate of triggering

repair is

pdr = P(at least allextra replicas unavailable longer thanτ)

=
n=rL+e

∑
i=e+1

(

n
i

)

pi
τ(1− pτ)

n−i (5.5)

Equation 5.5 computes the probability that at leaste+ 1 servers have simultaneously timed out. It

also shows that the rate of triggering repair can be reduced by increasing the extra replicas. For

example, given a timeout periodτ = 1 hour and a probability of a timeoutpτ = 0.25, then for

the following parameterizationm= 1, rL = 5,e= 4(n = 9 = 5+4), the resulting rate of triggering

repair ispdr = 0.049, which is significantly less than the probability of triggering repair with no

extra replicaspdr = 0.762 (m= 1, rL = 5,n = 5,e= 0).

The cost of triggering repair is the amount of storage per server S
N and the average period

for the MTTF and MTTR (i.e. average session and downtime). The transient term is

transient
BW
N

= pdr ·O

(

S
N(MTTF+MTTR)

)

(5.6)

91

Write Rate Estimator The write rate is the rate of unique data being added to the storage system.

The cost due to writes is simply the unique write rate multiplied by the storage overhead factork.

write
BW
N

= k ·write rate (5.7)

Ideally, we wantk = rL+e
m = n

m to be small. However, the cost due to writes may be increased until

an optimum number of extra replicase is obtained sincek depends one.

Heartbeat Timeout-based Failure Detector Estimator

A heartbeat timeout-based failure detector is used to determine whether a server is alive

or not. We assume that each server heartbeats all other servers, as a result, knows the status of all

other servers. This assumption is used to implement a monitoring infrastructure called a distributed

directory (see Sections 9.2). The cost per server for monitoring all other servers is dependent on the

number of serversN, the heartbeat timeout periodτ, and the size of a heartbeathbsz, That is,

heartbeat
BW
N

=
N
τ
·hbsz (5.8)

Equation 5.8 states that each server sends a heartbeat to allother servers everyτ period. For

many reasonable timeouts, the cost due to heartbeats will not be a significant fraction of the overall

data maintenance costs. For example, ifN = 10,000 servers,τ = 1 hour, andhbsz = 100 B, then

heartbeatBW
N = 277.8 Bps.

Example of Applying Extra Replication Estimator

Figure 5.4 shows an example of applying the extra replication estimator. Using anrL = 5,

we can maintain six 9’s of data durability (i.e. 1 out of everymillion objects is permanently lost

per year). We assume network access link speeds of 1.2Mbps (or 150KB/s), an aggregate amount

of unique data isD = 2TB, the aggregate unique write rate is 2GB per day, the number of servers

is N = 400, and the timeout value isτ = 1 hour. Finally, we use the expected server availability,

lifetime, MTTF, and MTTR from Figure 2.3(d) and the downtimedistribution from Figure 2.3(c).

Using an average of 400 servers in the system, we can estimatethe mean time between failures for a

single disk as 400·39.85 hours or 1.82 years. Hence,λ f ≈ 0.550 disk failures per year. The replica

creation rateµ≈ 187 disk copies per year given 25GB of replicated data per server and 150KB/s

92

 1

 4

 16

 64

 256

 0 5 10 15 20

B
an

dw
id

th
 p

er
 n

od
e

K
bi

ts
/s

ec

e Extra Replicas

Average bandwidth per Node for Random Placement
rL = 5, m = 1, to = 1hr

 2 TB of initial unique data
 aggregate unique write rate = 2 GB per day

total
permanent

transient

constant
write rate

(a) τ = 1 hour

 8

 16

 32

 64

 128

 256

 0 5 10 15 20

B
an

dw
id

th
 p

er
 n

od
e

K
bi

ts
/s

ec

e Extra Replicas

Average bandwidth per Node for Random Placement
rL = 5, m = 1

 2 TB of initial unique data
 aggregate unique write rate = 2 GB per day

to = 30mins
to = 1hr

to = 4hrs
to = 8hrs
to = 1day

to = 2days
to = 4days

(b) Vary τ

Figure 5.4: Extra Replication Estimator for Storage Systems on PlanetLab.

per server network access link speeds. Thus,θ ≈ 320 andrL = 5 yields six 9’s of durability.

Figure 5.4(a) shows that the estimated optimum number of extra replicas that minimizes

the cost due to data maintenance is six. Similarly, Figure 5.4(b) shows the estimated optimum

number of extra replicas for varying timeout values.

Notice that the extra replication estimator computation can be performed locally at a each

server with local estimates for the total number of storage servers, average server availability, life-

time, MTTF, MTTR, storage per server, and write rate per server. This is beneficial because the

extra replication estimator can be performed online so thatthe storage system parameterization can

adapt to the changing environment characteristics overtime.

5.2.2 Evaluation of Extra Replication

We now evaluate the effectiveness of extra replication. Forthis analysis, we maintain

six 9’s of data durability, use a low watermark ofrL = 5, limit the access link speeds to 1.2Mbps

(150KB/s), and useRandom placement with large and small scope denoted byRandom and DHT

respectively. We used a timeout value ofτ = 1hr. In Figure 5.5, we measure the number of repairs

triggered and average bandwidth per server over time for theoptimum and worst number of extra

replicas. Additionally, we show the breakdown in cost in Figure 5.6. Note that the small scope,

DHT-based storage system, parameterization (i.e.m= 1, rL = 5, and small scope) is the same as

Dhash [Cat03, DKK+01].

The results in Figure 5.5 show that in both the small scope (DHT) and large scopeRandom-

based storage system (Figures a-c and d-f, respectively), the configurations that use the estimated

93

 1

 10

 100

 1000

 10000

 100000

Jun05Feb05Oct04Jun04Feb04Oct03Jun03Feb03

A
gg

re
ga

te
 D

at
a

R
ep

ai
r

pe
r

W
ee

k

Time

Data Repair Triggered for DHT
th = 5, m = 1, to = 1hr, 32768 objects

 32768 initial objects, increase 32 objects per 1 day

Base (e = 0, th = 5, n = 5)
Enhanced (e = 10, th = 5, n = 15)

(a) Data Repairs Triggered vs Time

2 Mbps
1 Mbps

512 Kbps
256 Kbps
128 Kbps
64 Kbps
32 Kbps
16 Kbps

8 Kbps
Jun05Feb05Oct04Jun04Feb04Oct03Jun03Feb03

B
an

dw
id

th
 p

er
 n

od
e

(b
its

/s
ec

)

Time

Bandwidth per Node for DHT
th = 5, m = 1, to = 1hr

 2 TB of initial unique data
 aggregate unique write rate = 2 GB per 1 day

Base (e = 0, th = 5, n = 5)
Enhanced (e = 10, th = 5, n = 15)

(b) Bandwidth per server vs Time

1 Mbps

512 Kbps

256 Kbps

128 Kbps

64 Kbps
 0 5 10 15 20 25

B
an

dw
id

th
 p

er
 n

od
e

(b
its

/s
ec

)

e Extra Replicas

Average bandwidth per Node for DHT
th = 5, m = 1

2 TB of initial unique data
 aggregate unique write rate = 2 GB per 1 day

to = 15mins
to = 1hr
to = 4hrs
to = 8hrs
to = 1day
to = 2days
to = 4days

(c) Average Bandwidth vs Total Repli-
cas

 1

 10

 100

 1000

 10000

 100000

Jun05Feb05Oct04Jun04Feb04Oct03Jun03Feb03

A
gg

re
ga

te
 D

at
a

R
ep

ai
r

pe
r

W
ee

k

Time

Data Repair Triggered for Random
th = 5, m = 1, to = 1hr, 32768 objects

 32768 initial objects, increase 32 objects per 1 day

Base (e = 0, th = 5, n = 5)
Enhanced (e = 6, th = 5,n = 11)

(d) Data Repairs Triggered vs Time

512 Kbps
256 Kbps
128 Kbps
64 Kbps
32 Kbps
16 Kbps

8 Kbps

Jun05Feb05Oct04Jun04Feb04Oct03Jun03Feb03

B
an

dw
id

th
 p

er
 n

od
e

(b
its

/s
ec

)

Time

Bandwidth per Node for Random
th = 5, m = 1, to = 1hr

 2 TB of initial unique data
 aggregate unique write rate = 2 GB per 1 day

Base (e = 0, th = 5, n = 5)
Enhanced (e = 6, th = 5, n = 11)

(e) Bandwidth per server vs Time

256 Kbps

128 Kbps

64 Kbps

32 Kbps
 0 5 10 15 20 25

B
an

dw
id

th
 p

er
 n

od
e

(b
its

/s
ec

)

e Extra Replicas

Average bandwidth per Node for Random
th = 5, m = 1

2 TB of initial unique data
 aggregate unique write rate = 2 GB per 1 day

to = 15mins
to = 1hr
to = 4hrs
to = 8hrs
to = 1day
to = 2days
to = 4days

(f) Average Bandwidth vs Total Repli-
cas

Figure 5.5: Extra Replication. Figures (a), (b), and (c) usethe DHT-based storage system like Dhash
and Figures (d), (e), and (f) use a directory-based storage system with a Random placement. Figures
(a) and (d) shows the number of repairs triggered per week over the course of the trace. Figures (b)
and (e) show the average bandwidth per server (averaged overa week) over the course of the trace.
Finally, Figures (c) and (f) show the average bandwidth per server as we vary the number of extra
replicas and timeout values.

optimum number of extra replicas use at least an order of magnitude less bandwidth per server than

with no extra replicas. Furthermore, Figures (c) and (f) show that large timeout values exponentially

decrease the cost of data maintenance; however, the increase in server failure detection potentially

compromises data durability. An alternative solution was alinear increase in extra replicas which

similarly exponentially decreased the cost of data maintenance without sacrificing data durability.

Figures (c) and (f) are consistent with the expected costs asdepicted in Figure 5.4(b).

Figure 5.6 showed the breakdown in bandwidth cost for maintaining a target durability

and extra replicas. Figure 5.6 fixed both the timeoutτ = 1hr and data placement strategy toRandom

with a large scope. Figure 5.6(a) and (b) used a per server unique write rate of 1Kbps and 10Kbps,

respectively. Both Figures 5.6(a) and (b) illustrated thatthe cost of maintaining data due to tran-

sient failures dominated the total cost. The total cost was dominated by unnecessary work. As the

number of extra replicas, which are required to be simultaneously unavailable in order to trigger

repair, increased, the cost due to transient failures decreased. Thus, the cost due to actual perma-

94

256 Kbps
128 Kbps

64 Kbps
32 Kbps
16 Kbps
8 Kbps
4 Kbps
2 Kbps
1 Kbps

 0 5 10 15 20 25

B
an

dw
id

th
 p

er
 n

od
e

(b
its

/s
ec

)

e Extra Replicas

Average bandwidth per Node for Random
th = 5, m = 1

2 TB of initial unique data
 aggregate unique write rate = 2 GB per 1 day

Total BW
Permanent BW

Transient BW
Write BW

(a) Cost Breakdown vs Number Replicas (1Kbps)

1 Mbps
512 Kbps
256 Kbps
128 Kbps

64 Kbps
32 Kbps
16 Kbps

8 Kbps
4 Kbps

 0 5 10 15 20 25

B
an

dw
id

th
 p

er
 n

od
e

(b
its

/s
ec

)

e Extra Replicas

Average bandwidth per Node for Random
th = 5, m = 1

2 TB of initial unique data
 aggregate unique write rate = 20 GB per 1 day

Total BW
Permanent BW

Transient BW
Write BW

(b) Cost Breakdown vs Number Replicas (10Kbps)

Figure 5.6: Cost Breakdown for Maintaining Minimum Data Availability for 2 TB of unique data.
(a) and (b) Cost breakdown with a unique write rate of 1Kbps and 10 Kbps per server, respectively.
Both (a) and (b) fix the data placement strategy toRandom and timeoutτ = 1hr. The cost due to
heartbeats is not shown since it was less than 1Kbps.

nent failures, which was a system fundamental characteristic, dominated. The difference between

Figure 5.6(a) and (b) is that the cost due to permanent failures dominated in (a) and the cost due to

new writes dominated in (b). Finally, the cost due to sendingheartbeats to each server in an all-pairs

ping fashion once an hour was insignificant. These results are consistent with the extra replication

estimator depicted in Figure 5.4(a).

5.3 Reducing Transient Costs with Reintegration

In Section 5.2, we demonstrated that extra replication reduces cost due to transient fail-

ures. However, the estimator algorithm (Section 5.2.1) involved the measurement of many values

which all affect the accuracy of the algorithm and may be hardto measure in practice. In this sec-

tion, we illustrate a simpler algorithm to add extra replicas to an object where no values need to be

estimated.

The key technique needed to achieve this is to ensure that thesystem reintegrates object

replicas stored on servers after transient failures. For reintegration to be effective, we assume that

the system is able to track all replicas created for an objectand objects are immutable4. The number

of replicas that the system must remember turns out to be dependent ona, the average fraction of

time that a server is available. However, we show that the correct number of extra replicas can

4If objects are mutable and an update occurrs while a replica is unavailable, then reintegrating the server may actually
increase costs since the replica needs to be updated.

95

// Iterate through the object database
// and schedule an object for repair if needed
MAINTAIN REPLICAS ()

keys =<DB.objectkeys sorted number of available replicas>
foreach k in keys:

n = replicas[k].len ()
if (n < rL)

newreplica = enqueuerepair (k)
replicas[k].append (newreplica)

Figure 5.7: Each server maintains a list of objects for whichit is responsible and monitors the
replication level of each object using some synchronization mechanism. In this code, this state is
stored in the replicas hash table though an implementation may choose to store it on disk. This code
is called periodically to enqueue repairs on those objects that have too few replicas available; the
application can issue these requests at its convenience.

be determined without estimatinga by tracking the location of all replicas, including those that

are offline. Carbonite is an algorithm that uses this technique. We demonstrate its effectiveness

using simulations. We additionally show that reintegration is effective for storage systems that use

erasure-coding. Carbonite was first presented in [CDH+06]. We provide a description here for

completeness.

5.3.1 Carbonite details

The Carbonite maintenance algorithm focuses on reintegration to avoid responding to

transient failures. Durability is provided by selecting a suitable value ofrL; an implementation of

Carbonite should place objects to maximizeθ and preferentially repair the least replicated object.

Within these settings, Carbonite works to efficiently maintain rL copies, thus providing durability.

Because it is not possible to distinguish between transientand disk failures remotely,

Carbonite simply responds to any detected failure by creating a new replica. This approach is shown

in Figure 5.7. If fewer thanrL replicas are detected as available, the algorithm creates enough new

replicas to return the replication level torL.

However, Carbonite remembers which replicas were stored onservers that have failed so

that they can be reused if they return. This allows Carboniteto greatly reduce the cost of responding

to transient failures. For example, if the system has created two replicas beyondrL and both fail,

no work needs to be done unless a third replica fails before one of the two currently unavailable

replicas returns. Once enough extra replicas have been created, it is unlikely that fewer thanrL of

96

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50

C
um

ul
at

iv
e

by
te

s
se

nt
 (

T
B

)

Time (weeks)

Cates
TotalRecall (rH=5)
TotalRecall (rH=9)

Carbonite
Oracle

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50

C
um

ul
at

iv
e

by
te

s
se

nt
 (

T
B

)

Time (weeks)

Cates
TotalRecall (rH=5)
TotalRecall (rH=9)

Carbonite
Oracle

 0

 100

 200

 0 10 20 30 40 50
 0

 10000

 20000

D
is

k
fa

ilu
re

s

T
ra

ns
ie

nt
 fa

ilu
re

s

Time (weeks)

Disk
Transient

 0

 100

 200

 0 10 20 30 40 50
 0

 10000

 20000

D
is

k
fa

ilu
re

s

T
ra

ns
ie

nt
 fa

ilu
re

s

Time (weeks)

Disk
Transient

(a) (b)

Figure 5.8: A comparison of the total amount of work done by different maintenance algorithms
with rL = 3 using a PlanetLab trace (left) and a synthetic trace (right). In all cases, no objects are
lost. However,rL = 2 is insufficient: for the PlanetLab trace, even a system thatcould distinguish
permanent from transient failures would lose several objects.

them will be available at any given time. Over time, it is increasingly unlikely that the system will

need to make any more replicas.

5.3.2 Reintegration reduces maintenance

Figure 5.8 shows the importance of reintegrating replicas back into the system by com-

paring the behavior of Carbonite to two prior DHT systems anda hypothetical system that can

differentiate disk from transient failures using an oracleand thus only reacts to disk failures. In

the simulation, each system operates withrL = 3. The systems are simulated against the PlanetLab

trace (a) and a synthetic trace (b). They-axes plot the cumulative number of bytes of network traffic

used to create replicas; thex-axes show time.

The synthetic failure trace parameters used in Figure 5.8 are configured to be similar to the

PlanetLab trace. In particular, the average server lifetime and the median downtime are the same.

The result is an approximation (for example, PlanetLab grewduring the trace) but the observed

performance is similar. Some of the observed differences are due to batching (used by algorithm

97

described in Section 5.2 and Total Recall [BTC+04]) and timeouts (used by all systems); the impact

of these are discussed in more detail in Sections 5.3.4 and 5.1.2.

Since the oracle system responds only to disk failures, it uses the lowest amount of band-

width. The line labeled Cates shows a system that keeps trackof exactlyrL replicas per object; this

system approximates the behavior of DHTs like DHash, PAST and OpenDHT. Each failure causes

the number of replicas to drop belowrL and causes this system to create a new copy of an object,

even if the failure was transient. If the replica comes back online, it is discarded. This behavior

results in the highest traffic rate shown. The difference in performance between the PlanetLab and

Poisson trace is due to differences in the distribution of downtimes: Poisson is not a particularly

good fit for the PlanetLab downtime distribution.

Total Recall [BTC+04] tracks up to a fixed number of replicas, controlled by a parameter

rH ; we showrH = 5 which is optimal for these traces, andrH = 9. As can be seen at the right

of the graphs, this tracking of additional replicas allows Total Recall to create fewer replicas than

the Cates system. When more thanrL replicas are available, a transient failure will not cause Total

Recall to make a new copy. However, Total Recall’s performance is very sensitive torH . If rH is set

too low, a series of transient failures will cause the replication level to drop belowrL and force it to

create an unnecessary copy. This will cause Total Recall to approach Cates (whenrH = rL). Worse,

when the system creates new copies it forgets about any copies that are currently on failed servers

and cannot benefit from the return of those copies. Without a sufficiently long memory, Total Recall

must make additional replicas. SettingrH too high imposes a very high insertion cost and results in

work that may not be needed for a long time.

Carbonite reintegrates all returning replicas into the replica sets and therefore creates

fewer copies than Total Recall (and algorithm presented in Section 5.2). However, Carbonite’s

inability to distinguish between transient and disk failures means that it produces and maintains

more copies than the oracle based algorithm. This is mainly visible in the first weeks of the trace

as Carbonite builds up a buffer of extra copies. By the end of the simulations, the rate at which

Carbonite produces new replicas approaches that of the oracle system.

5.3.3 How many replicas?

To formalize our intuition about the effect of extra replicas on maintenance cost and to

understand how many extra replicas are necessary to avoid triggering repair following a transient

failure, consider a simple Bernoulli process measuringR, the number of replicas available at a given

98

2 4 6 8 10 12

Number of replicas

0.0

0.2

0.4

0.6

0.8

1.0

P
r

[r
ep

ai
r

ac
tio

n]

a = 0.5
a = 0.7
a = 0.9

Figure 5.9: Additional redundancy must be created when the amount of live redundancy drops
below the desired amount (3 replicas in this example). The probability of this happening depends
solely on the average server availabilitya and the amount of durable redundancy. This graph shows
the probability of a repair action as a function of the amountof durable redundancy, witha = 0.5,
a = 0.7 anda = 0.9 for a replication system.

moment, when there arer > rL total replicas. The availability of each server isa. Since repair is

triggered when the number of available replicas is less thanrL, the probability that a new replica

needs to be created is the probability that less thanrL replicas are available:

Pr[R< rL | r extant copies] =
rL−1

∑
i=0

(

r
i

)

ai(1−a)r−i.

This probability falls rapidly asr increases but it will never reach zero; there is always a chance

that a replica must be created due to a large number of concurrent failures, regardless of how many

replicas exist already. However, when a large number of replicas exists, it is extremely unlikely that

enough replicas fail such that fewer thanrL are available.

By computing the Chernoff bound, it is possible to show that after the system has created

2rL/a replicas, the probability of a new object creation is exponentially small. 2rL/a is a rough (and

somewhat arbitrary) estimate of when the probability of a new object creation is small enough to

ignore. Figure 5.9 shows (on they-axis) the probability that a new object must be created whenan

increasing number of replicas already exist. Asr increases, the probability that a new replica needs

to be created falls, and the algorithm creates replicas lessfrequently. Asr approaches 2rL/a, the

algorithm essentially stops creating replicas, despite not knowing the value ofa.

This benefit is obtained only if returning replicas are reintegrated into the appropriate

replica set, allowing more thanrL to be available with high probability. As a result, the cost of

responding to transient failures will be nearly zero. Still, this system is more expensive than an ora-

99

cle system that can distinguish between disk and transient failures. While the latter could maintain

exactlyrL replicas, the former has to maintain approximately 2rL/a. The factor of 2/a difference in

the cost is the penalty for not distinguishing disk and transient failures.

5.3.4 Create replicas as needed

Given that the system tends towards creating 2rL/a replicas in order to keeprL of them

available, it is tempting to create the entire set—not justrL of them—when the object is first inserted

into the system (Total Recall [BTC+04] and algorithm presented in Section 5.2.1 use a similar

technique). However, this approach requires an accurate estimate fora to deliver good performance.

If a is overestimated, the system quickly finds itself with less than rL replicas after a string of

transient failures and is forced to create additional copies. If a is underestimated, the system creates

unneeded copies and wastes valuable resources. Carbonite is simplified by the fact that it does not

need to measure or estimatea to create the “correct” number of replicas.

Another idea is to create not only enough copies to bring the number of available replicas

back up torL, but alsoe additional copies beyondrL (this is similar to the algorithm described

in Section 5.2 and Total Recall’s lazy repair technique). Creating a batch of copies makes repair

actions less frequent, but at the same time, causes more maintenance traffic than Carbonite. The

work required to create additional replicas will be wasted if those replicas are lost due to disk

failures before they are actually required. Carbonite, on the other hand, only creates replicas that

are necessary to keeprL replicas available. In other words, either Carbonite wouldeventually create

the same number of replicas as a scheme that creates replicasin batches, or some replicas created

in the batch were unnecessary: batch schemes do, at best, thesame amount of work as Carbonite.

Figure 5.10 shows the bytes sent in a simulation experiment using a five-year synthetic

trace witha = 0.88, rL = 3, and an average server lifetime of one year. The graph showsresults for

different values ofe (in Total Recall,e= rH − rL) and for two different scenarios. In the scenario

with reintegration, the system reintegrates all replicas as they return from transient failures. This

scenario represents the behavior of Carbonite whene= 0 and causes the least traffic.

In the scenario without reintegration, replicas that are unavailable when repair is triggered

are not reintegrated into the replica set even if they do return. Total Recall behaves this way. Extra

replicas give the system a short-term memory. Additional replicas increase the time until repair

must be made (at which time failed replicas will be forgotten); during this time failed replicas can

be reintegrated. Larger values ofegive the system a longer memory but also put more data at risk of

100

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12

T
ot

al
 b

yt
es

 s
en

t (
T

B
)

Extra replicas

With reintegration
Without reintegration

Figure 5.10: Total repair cost with extra replicas, and withand without reintegration after repair.
Without reintegration, extra replicas reduce the rate at which repair is triggered and thus reduce
maintenance cost; there is an optimal setting (heree= 8). With reintegration, the cost is lowest if
no extra replicas are used.

failure: for this synthetic trace, a value ofe= 8 is optimal. Taking advantage of returning replicas

is simpler and more efficient than creating additional replicas: a system that reintegrates returning

replicas will always make fewer copies than a system that does not and must replace forgotten

replicas.

More formally, consider a replication based system with a perfect failure detector that

makesE additional replicas when the number of replicas falls belowa thresholdrL. let r(t) be the

number of replicas over time. We assume thatd
dt r = −λr for some decay rateλ, i.e. the more data

the system stores, the more data loss is expected per unit time. Thus, if the system createsE ≥ 0

extra replicas when repair is triggered,

r(t) = (rL +E) ·e−λt,

assuming that the steady state or initial conditions has producedrL copies. From this, we can derive

the inter-repair timeT(E) by solvingr(T) = rL −1 for T. We get

(rL +E) ·e−λT = rL −1

T(E) =
1
λ
· ln

rL +E
rL −1

Thus, asE increases,T(E) only increases logarithmically.

101

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20

T
ot

al
 b

yt
es

 s
en

t (
T

B
)

Extra fragments during repair

Replica caching
No caching

Figure 5.11: Total repair cost with a rater = m
n = 7

14 erasure-coding scheme, reintegration, extra
fragments, and with and without replica caching after reconstruction and repair. Without caching,
extra fragments reduce the rate at which repair is triggeredand thus reduce maintenance cost; there
is an optimal setting (heree= 12). With caching, the cost is lowest if few extra fragments are used
(e= 0 to 2).

This affects the amount of work done per unit time, which we can view as the average

number of replicas created per unit time. During each repaircycle, we create 1+E replicas, so the

average number of replicas created per unit time is

1+E
T(E)

=
λ · (1+E)

ln rL+E
rL−1

which is minimal ifE = 0 since the numerator increases faster than the denominator.

When the failure distribution is not exponential, on PlanetLab for example, creating one

replica at a time is optimum assuming that all replicas created and available are tracked and reinte-

grated into the replica set (Figure 5.10).

5.3.5 Reintegration and Erasure-coding

For systems that use erasure codes, there is an additional read cost since a complete copy

of the object is needed in order to generate a new fragment [RL05, WK02]. The cost of reading a

sufficient number of fragments prior to recreating a lost fragment can overwhelm the savings that

erasure codes provide. A common approach is to amortize thiscost by batching fragment creation

but simply caching the object at the server responsible for repair is much more effective. Figure 5.11

shows a simulation contrasting both caching and batching (but both with reintegration). Results in

Figure 5.11 are similar to Figure 5.10: reintegrating and nobatching is optimum. Caching the object

102

with a r = m
n = 7

14 erasure code uses 85% of the bandwidth that the optimal batching strategy would

use.

5.4 Summary

Repair, the second key to ensuring durability, must create replicas in response to failures.

The problem of triggering repair is complicated by transient failure, where data is intact on a server,

but not immediately available. In this chapter we showed that monitoring techniques cannot distin-

guish between permanent and transient failure and that costs due to transient failures were dominant

in maintaining durability. We demonstrated three techniques to reduce costs due to transient failures.

First, we showed that timeouts reduce the number of transient failures by delaying clas-

sifying a server as failed. The effectiveness of timeouts inreducing false-positives, misclassifying

servers as permanently failed that have actually only transiently failed, is dependent on the down-

time distribution. Thus, if the timeout is set to mask most ofthe downtime distribution, a transiently

failed server may return before a timeout expires and prevent resources from being wasted creating

replicas unnecessarily. However, setting longer timeoutsdecreased durability because the time to

recognize permanently failed servers increased, thus increasing the “window of vulnerability”.

Second, we showed that extra replicas, beyond what was required to maintain a target

durability, decreased costs due to transient failures. We demonstrated that the number of extra

replicas required to minimize costs could be estimated. Theadvantage of extra replication is that

it exponentially reduced the cost due to transient failureswith a linear increase in replicas. Fur-

thermore, there was no reduction in durability by adding extra replicas. As a result, extra replicas

perform better than long timeouts.

Finally, we showed that the optimum number of extra replicasdid not need to be esti-

mated. Costs were minimized by simply responding to all failures, transient or permanent, creating

replicas untilrL were available, tracking all replicas created, and reintegrating replicas after transient

failure. We showed that this solution, called the Carbonitealgorithm [CDH+06], created the mini-

mum number of replicas, 2rL/a (without an estimate for server availabilitya). The factor increase

of 2/a was the cost for not being able to distinguish between permanent and transient failures. The

result of the algorithm was that the system performs some extra work for each object early in its life,

but over the long term creates new copies of the object only asfast as it suffers permanent failures.

103

Part III

Exploiting a Secure Log for Wide-Area

Distributed Storage

104

Chapter 6

Secure Log Overview

In previous chapters, we discussed how to durably maintain data. In this part of the thesis,

we design a distributed wide-area on-line archival storagesystem that employs durability techniques

presented earlier. Additionally, the system solves the integrity problem. It ensures that the state of

data stored in the system always reflects changes made by the owner.

We assume that an on-line archival storage system is an essential layer for a variety of

applications and proceed to address two questions: First, what is an appropriateinterfacebetween

applications and an archival infrastructure? Second, how can an archival infrastructure be con-

structed to provide integrity and efficiency in addition to durability?

Our basic premise is that a secure log provides an ideal primitive for implementing an

archival storage infrastructure. A log’s structure is simple and its security properties can be veri-

fied [LKMS04, MRC+97, Mer88, MMGC02, SK98]. Only a single interface,append(), is pro-

vided to modify the log, and all mutations occur at a single point—the log head. A system can

secure the log head by requiring that allappend() operations be signed by the private key of the

log owner. If each log element is named individually, randomaccessget() provides quick data

retrieval. Because of the simplicity of its interface, a secure log is easier to implement in a secure

way than other structures. In particular, only a narrow interface that modifies data needs to be se-

cured. Additionally, most of a secure log is resistant to corruption or attack since it is immutable

(read-only and cannot change). Furthermore, a secure logs interface is sufficient to implement a

variety of interesting applications. For instance, we demonstrate that a secure log interface can be

used to implement a secure file system application.

In the following chapters, we show how to construct an efficient Byzantine fault-tolerant

wide-area archival system with a secure log interface. Suchan archival system is intended to be a

105

component of a larger application. While a secure log is conceptually simple, replicating the log

in a distributed storage system has proved challenging [MMGC02, REG+03]. Such systems offer

improved data durability, but must overcome several disadvantages arising from the distributed

environment. We address the challenges of consistency, durability, and efficiency.

When a system replicates data, it must ensure that replicas are kept consistent and queries

are answered in a manner that reflects the true state of the data. Maintaining consistency of a log is

simpler than other data structures because modifications affect only the log head. In particular, most

of the secure log is immutable where consistency is immediate. Still, a system must maintain the

consistency of the log head as servers hosting the replicas fail or endure attacks. To ensure progress,

the system must manage the replica set, replacing faulty servers with new ones.

Replication alone does not ensure durability. A system mustalso respond intelligently

to changes such as the scheduled retirement of old servers and unexpected transient or permanent

failures. Furthermore, the system must tolerate and recover from a variety of faults and attacks. For

instance, data may be corrupted on disk or during network transmission and malicious agents may

attempt to subvert the system. The system should persist despite server and network failure.

Finally, a wide-area storage system must utilize system resources carefully. Protocols

should limit the number of cryptographic operations and theamount of communication needed

across the wide-area. This requirement leads to aggregation—combining small, application-sized

blocks into larger chunks for validation, storage, and repair. Aggregation is notably lacking from

recent DHT-based storage systems [BTC+04, DKK+01, MGM04, MMGC02] that divide large ob-

jects into small (e.g. 8K) blocks which are spread widely.

This part of the thesis describes the design of a secure, distributed, log-structured storage

system. To meet the challenges described above, the design is based on a log interface. The system

combines this interface with three technologies: quorums,quorum repair, and aggregation. We uti-

lize dynamic Byzantine fault-tolerant quorums to ensure consistency of the log head. Data integrity

is assured at both the block and container granularity. We provide data durability with an algorithm

that repairs quorums when replicas fail. Finally, aggregation reduces communication costs while

maintaining fine-granularity access for clients.

The contributions of this part of the thesis are as follows:

• An implementation of a secure log interface.

• A consistency protocol for a replicated secure log based on dynamic Byzantine fault-tolerant

quorums that works well in the wide-area.

106

• A mechanism for dynamically repairing Byzantine fault-tolerant quorums that maintains con-

sistency and durability in the face of recurring replica failure.

• In Part IV, we describe an operational prototype that combines these features and is currently

running in the wide-area.

In the rest of this section, we give an overview of goals, models, and assumptions of a

system based on a secure log interface.

6.1 Overview

A secure log is a generic low-level data structure and interface used by distributed wide-

area storage systems to provide secure, durable storage. Itis designed to serve as the storage layer

for a variety of applications such as file systems [DKK+01, MMGC02], back-up [QD02, REG+03],

and databases1. It provides to applications a limited interface by which they can create new logs,

append data to the head of an existing log, and read data at anyposition in the log. It can be used

to guarantee fault-tolerance through replication, consistency via dynamic Byzantine fault-tolerant

quorum protocols, and efficiency by aggregation.

6.1.1 Storage System Goals

The design of a storage system based on a secure log was guidedby the following goals.

• Integrity: Only the owner can modify the log. Any unauthorized modifications to the log, as

in substitution attacks, should be detected.

• Incremental Secure Write and Random Read Access: A client can add data to a log securely

as it is created, without local buffering. Further, the client can read arbitrary blocks without

scanning the entire log.

• Durability and Consistency: The log should remain accessible despite temporary and perma-

nent server failure. The system should ensure that logs are updated in a consistent manner.

1A secure log inherently supports transactional databases as an underlying storage layer since it stores data using
ACID (Atomic, Consistent, Isolation, and Durable) semantics: all writes are atomically applied to the log and stored with
a total order within the log structure.

107

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��������
��������
��������

��������
��������
��������

����������
����������
����������

����������
����������
����������

App
Storage System

App

Server

App

Replicated
Service

Figure 6.1: A log-structured storage infrastructure can provide storage for end-user clients, client-
server systems, or replicated services. Each log is identified by a key pair.

• Efficiency/Low overhead: Protocols should limit the numberof cryptographic operations and

the amount of communication needed across the wide-area. The infrastructure should amor-

tize the cost of maintaining data and verifying certificateswhen possible.

A system that provides these goals would be a useful substrate for applications. Integrity

ensures that data stored in the system reflects changes made by the application. For usability, appli-

cations can write new data and read any block already written. Durability and consistency ensure

that the log will exist and be writable even as servers fail. Finally, applications can efficiently use

the storage system reducing the number of cryptographic andwide-area operations.

6.1.2 System Model

The storage system stores logs on behalf of clients. The types of clients storing data in the

system can vary widely as shown in Figure 6.1. The client may be the end-user machine, the server

in a client-server architecture, or a replicated service. In any case, the storage system identifies a

client and its secure log by a cryptographic key pair; only principals that possess the private key

can modify the log. Requests that modify the state of the log must include a certificate signed by

the principal’s private key. Although a log is non-repudiably bound to a single key pair, multiple

instances of the principal may exist simultaneously. If multiple devices possess the same private

key, then they can directly modify the same log.

Storage resources for maintaining the log are pre-allocated in chunks. When a new chunk,

or extent, needs to be allocated, the system consults theadministrator. The administrator authenti-

108

cates the client needing to extend its log and selects a set ofstorage servers to host the extent. The

newly-allocated portion of the log is replicated on the set of selected storage servers. To access or

modify the extent, clients interact directly with the storage servers.

Applications interact with the log through a client librarythat exports a thin interface—

create(), append(), andget(). To create a new log, a client obtains a new key pair and invokes

thecreate() operation. The administrator authenticates the request and selects a set of servers to

host the log.

After a log has been created, a client uses theappend() operation to add data to the

head of the log. The client library communicates directly with the log’s storage servers to append

data. The interface ensures that data is added to the log sequentially by predicating each write on

the previous state of the log. If conflictingappend() operations are submitted simultaneously, the

predicate ensures at most one is applied to the log2.

Data written to a log cannot be explicitly deleted. Instead,implicit deletion based on an

expiration time is supported. A client can extend the expiration time of an extent.

6.1.3 Assumptions

We assume that clients follow specified protocols, except for crashing and recovering. A

malfeasant client, whether due to software fault or compromised key, can prevent the system from

appending data to a log. It cannot, however, affect data already stored in its log or logs belonging to

other principals. If a principal’s private key should be compromised, an attacker could append data

to the log, but it cannot destroy data previously stored in the log. A principle can retrieve data from

a log until the log’s expiration time.

We assume that the administrator, tasked to select sets of storage servers to host logs [MA04],

is trusted and non-faulty. The design, however, includes several mechanisms to mitigate the cost and

consequences of this assumption. While each log uses a single administrator, different logs can use

different administrators. By allowing multiple instances, the role of the administrator scales well.

Second, the administrator’s state can be stored as a secure log in the system. Thus, the durability

of the state can be assured like any other log. If the administrator were to fail, a new administrator

could be created using the state stored in the log. Third, thestate of the administrator can be cached

to reduce the query load on an administrator. Finally, the administrator can be implemented as a

replicated service to improve availability further.

2We assume a storage server atomically handles each request.That is, a server processes requests one at a time, even
though multiple requests may have been received at the same time.

109

H(PK)

H(Dn)

V0

H(D0)

V1

H(D1)

Vn

Figure 6.2: To compute the verifier for a log, the system uses the recurrence relationVi = H(Vi−1+
H(Di)). V−1 = H(PK) wherePK is a public key.

Storage servers may exhibit Byzantine faults. We assume that, in the set of storage servers

selected by the administrator to host a particular extent, amaximum threshold number of servers is

faulty.

6.2 Secure Log Details

A secure log is a data structure with interesting propertiesand an interface that protects

its properties. First, only a single operation,append(), can modify the log. Most of the log, except

for the log head, is immutable – read-only and cannot change.Second, a single cryptographically

secure hash, called theverifier, asserts both the data and append-order integrity of the entire log.

The verifier is cheap to compute and maintain over time. Third, consistency of the log is assured

by requiring the verifier of the previous state of the log as a predicate in a subsequentappend()

operation. Finally, since each log element is individuallynamed, random accessget() provides

quick data retrieval. We discuss the verifier,append(), andget() in more detail below.

First, the data and append-order integrity of the entire logis assured via Merkle’s hash

chaining technique [Mer88]. This technique works by namingeach element in the log with a cryp-

tographically secure hash of the content of the element and embedding the secure name in the data

structure. With Merkle chaining, a malicious or compromised server cannot deceive a client with

corrupt data. Further, Merkle’s technique makes the log self-verifying meaning the integrity of the

entire log can be verified with a single hash called averifier.

A verifier is computed as follows. Assume a log contains a sequence of variable-sized data

blocks,Di. Each data block is named with a secure, one-way hash function, H(Di). The verifier

is computed using the recurrence relationVi = H(Vi−1 + H(Di)), where+ is the concatenation

operator. We bootstrap the process by definingV−1 to be a hash of the public key that identifies the

log. See Figure 6.2. This convention ensures that logs ownedby different principals always have

110

Certificate contents:

verifier token that verifies contents of log
seqnum certificate sequence number
timestamp creation time of certificate
ttl time the certificate remains valid

Table 6.1: The certificate present with each operation and stored with each log. It includes fields to
bind the log to its owner and other metadata fields.

different verifiers.

Creating a verifier in this manner has several advantages. When a block is appended to the

log, the client can compute the verifier incrementally. Thismeans it must hash only the new data,

not all data in the log, to compute the running verifier. Additionally, onlyoneparticular sequence of

appends result in a particular verifier. Thus, chaining creates a verifiable, time-ordered log recording

data modifications. Furthermore, requiring the latest verifier as a predicate in subsequentappend()

operations assures servers maintain a consistent state of the log. A server atomically performs an

append() against its locally stored state. If the predicate matches the currently stored verifier, then

the server applies theappend(); otherwise, theappend() is rejected.

Toappend() data to the log, a client creates a request and submits it to the storage servers.

A request has three arguments. (1) A predicate – verifier thatsecurely summarizes the current state

of the log. (2) New data to append to the log. And (3) a new certificate that includes a new

verifier and new sequence number. The certificate verifier summarizes the next state of the log after

appending data. The sequence number is a monotonically increasing number. Table 6.1 shows the

contents of a certificate.

When a server receives anappend() request, it determines if a request succeeds or not. It

performs several checks using local knowledge. The certificate contained in the request must include

a valid signature. Also, the predicate verifier contained inthe request must match the current state

of the log recorded by the storage server. Additionally, theverifier in the certificate must match the

new verifier after appending new data to the log. Further, thesequence number in the certificate

must be greater than the one currently stored. If these conditions are met, the server writes the new

data to the log on its local store and returns success to the client. Otherwise, the request is rejected

and failure is returned.

To get() data, the client library must first locate the server storingthe requested block(s)

and then retrieve the block(s) from that server. If the entire log was stored by one server, then the

client could retrieve the requested block(s) from that one server. However, without a limit on the

111

Log Interface:

status = create(H(PK), cert);
status = append(H(PK), cert, predicate, data[]);
data[] = get blocks(extentname, blockname[]);

mapping = get map(extentname);

Table 6.2: Operations tocreate(), append(), and retrieve data viaget blocks() from a secure
log. A log is identified by the hash of a public key (H(PK)). Thecreate() andappend() op-
erations include a certificate. Further,append() requires a verifier of the previous state of the log
as a predicate. Theget blocks() operation requires two arguments because the system breaks
logs into extents and requires both the extentname and blockname. Theget map() retrieves the
mappings of a previous extentcounter to previous extentname.

number ofappend()’s that can be performed on a log, the size of the log can grow boundlessly large.

As a result, the storage system stores a log not as a sequence of log elements, but rather a sequence

of container objects calledextents. Extents are the units of storage and are independently maintained

by the storage system. Each extent stores a variable number of arbitrarily-sized application-level

log elements (blocks). Additionally, similar to the log itself, extents are self-verifying and use a

verifier to guard data and order-integrity. The use of extents to aggregate log elements into larger

containers was first proposed by Eaton et al. [EWK05]. We describe an implementation of extents

as part of a secure log in Chapter 7.

Extents introduce added complexity in computing the address of a block of data. Each

extent is assigned an integer corresponding to its positionin the chain. Also, each extent records the

mapping between counter and extent name for the previous extent.

To read data embedded in extents, the client must know the extent name, location of

server storing extent, and block name. However, the application only records the extent counter

and block name; it does not know the extent name at the time ofappend(). As a result, the

client library must first resolve the extent counter to extent name. In particular, the client library

first accesses the mappings stored in the log head viaget map() to determine the previous extent

name. We assume that a mechanism exists to locate the log heador any extent given the extent

name (Chapter 9). Next, the client continues retrieving andresolving extent counter to extent name

mappings until it locates the mapping that includes the desired extent holding the data. It then

uses theget blocks() operation to retrieve the requested blocks from that extent. To accelerate

the translation between counter and extent name, the clientlibrary caches the mappings. Also,

in implementation, each extent contains not just the mapping for the previous extent, but a set of

mappings that allow resolution in a logarithmic number of lookups.

112

Table 6.2 summarizes the log interface:create(), append(), andget() (get map()and

get blocks()).

6.3 Semantics of a Distributed Secure Log

The archival system replicates the log on multiple servers to provide durability. Durabil-

ity means that the log persists over time. The difficulty is maintaining consistency across the log

replicas so that new data can be added. The storage system should be capable of maintaining data

and append-order integrity of the log across the replicas despite arbitrary failure such as network

error, server failure, or simultaneously submitted and conflicting requests. As a result, consistency

across the log replicas must be maintained to ensure progress – ability to add new data to the log.

We discuss a consistency protocol in Chapter 8; in this section, however, we describe the client’s

view considering that the client interacts with multiple servers to complete a single operation.

An operation that modifies the log results in one of three states: sound, unsound, or

undefined. The result of an operation issoundif the client receives a positive acknowledgment from

a threshold of servers. A request succeeds and is “durable” if the result is sound. Durable means

that data exists over time in the storage system even as servers fail. On the other hand, the result of

an operation isunsoundif the client receives a negative acknowledgment from enough servers such

that positive acknowledgment from a threshold is no longer possible (e.g. sizeof(negative acks)≥

sizeof(server set)− threshold+1). A request fails if the result is unsound. The storage system does

not maintain unsound results, thus unsound writes are not durable. Finally, the result isundefined

if it is neither sound nor unsound. An undefined result means the client did not receive sufficient

acknowledgment from servers perhaps due to network or server failure. In this case of an undefined

result, a timeout occurs and the client does not know whetherthe request is sound or unsound. After

a timeout, the client performs aget cert() on all the servers and waits to receive acknowledgment

from a threshold. If the state stored in the system has changed (another client updated the log),

then the request is unsound. If theget cert() fails to receive acknowledgment from a threshold

of servers, then the client may trigger a repair audit that will determine the latest consistent state of

the log (repair audits are discussed in Chapter 8). The client continually sends the request, reads the

state of the system, and then triggers a repair audit until the request is either sound or unsound.

To illustrate the notions of sound, unsound, and undefined writes, assume a log is repli-

cated on seven servers. A threshold required for consistency and a sound response is five positive ac-

knowledgments. The number required for an unsound responseis three negative acknowledgments

113

���
���
���

���
���
���

Server 7

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Server 6 Server 4

Server 3

Server 2

Server 1

Server 5

A B

A C

A B

A B

A C

A B

A B

(a) Storage System

predicate
verifier

new
verifier

predicate
verifier

new

(c) Request Fails(b) Request Succeeds

A

VCA

append() append()

verifierVBA

VA V

B C

Figure 6.3: Semantics of a Distributed Secure Log. (a) A secure log with the valueA is initially
replicated onto seven servers. In (b), a workstation attempts toappend() the valueB, predicated
on A already being stored. The result of the request is sound since it reaches a threshold of servers
(servers 3-7). In (c), a laptop, which possesses the same private key as the workstation, simultane-
ously attempts toappend() valueC, predicated onA already being stored. The result of the request
is unsound since the predicate fails on a threshold of servers. Note that the two servers (server 1-2)
applyC since the predicate matches local state. However, the system should return valueB in any
subsequent reads.

(total minus a threshold plus one, 7−5+ 1 = 3). The initial value stored on all the log replicas is

A. Further, assume two clients, a workstation and laptop, simultaneously submit conflicting opera-

tions. The workstation attempts to append the valueB and receives five positive acknowledgments

and two negative, thus the response is sound since a threshold acknowledged positively. The laptop,

on the other hand, attempts to append the valueC and receives five negative acknowledgments and

two positive, thus the response is unsound. With this scenario, the storage system should maintain

the workstation’s appended valueB over time despite arbitrary server failure. Figure 6.3 shows this

example. Furthermore, in the above example, if the workstation receives one less positive acknowl-

edgment (four instead of five), possibly due to network transmission error, then the result would

be undefined and timeout. The workstation could read the latest replicated state of the secure log,

114

trigger a repair audit that will repair the distributed secure log if necessary, and resubmit the request

until it receives sufficient server acknowledgment.

Alternatively, if both the workstation and laptop requestsreceived unsound responses (e.g.

both received three negative acknowledgments), then the log replicas would be in an inconsistent

state since a threshold of the log replicas state do not agree. When the log replicas are in an incon-

sistent state no progress can be made, new data cannot be added to a threshold of the log replicas,

and the log replicas need to berepaired to a consistent state. Repair restores the log replicas to a

consistent state such that the latest sound write is the lastwrite stored by a threshold of log replicas.

A quorum repair protocol that ensures consistency and durability amongst log replicas is discussed

in Chapter 8.

6.4 Example uses of a Secure Log

To understand how a client can use a log, consider the examples of a tamper-resistant

syslog, secure file system, and a database log.

6.4.1 File System Interface

This example shows how a versioning file system stores data ina log shown in Figure 6.4.

Figure 6.4(a) shows an abstract representation of two versions of a versioning file system.

The second version is composed of some newly-written data and some data from the previous ver-

sion. The application first translates the file system into a Merkle tree [Mer88]. It divides the files

and directories into small blocks, typically 4–8 KB or less.Each block is named by a secure hash of

its contents. Applications can embed the secure pointers inapplication-level data to create complex

data structures [DKK+01, REG+03, QD02].

To store the file system into the log, the application uses thecreate() interface to initial-

ize the log. It then traverses the Merkle tree in a depth-firstmanner, using theappend() operation

to write data to the log. Figure 6.4(b) shows the operations and the contents of the log.

To read data, the application invokes aget blocks() operation with the name of the

desired block. By naming blocks individually, the interface supports random reads. The secure

pointers that name blocks also allow the application to verify data integrity. The application simply

compares the hash of the data retrieved from the log against the name by which it was retrieved.

The application verifies all data read by following chains ofsecure pointers.

115

V2

= Verifiable Pointer

R1:

I1: I2:

B1 B3 B4

I3:

R2:

B6B5B2

V1

(a) A versioning file system

Operation Log

create()
append(B1,B2)

B3 B1B2I1V1 R1 I2 B4

append(I1)
· · ·
append(V1)
append(B5,B6)

B3 B1B2I1V1V2 R2 I3 B6 B5 R1 I2 B4
· · ·
append(V2)

(b) Storing the file system in a log

Figure 6.4: (a) An abstract representation of a versioning file system with two versions. A version
can reference newly created data and data in previous versions. (V = version,R= root directory,I =
file inode,B = data block) (b) An application can write the file system to a log by traversing the tree
in a depth-first manner.

To make this file system example concrete, we map the block symbols to files and di-

rectories. We assume that a file or directory is stored as a single block and ignore inodes in this

example. In Figure 6.5, Vx, Rx, Ix, and Bx represent the root “/” directory, “docs” directory, “proj”

directories, and files, respectively. A single quote (’) represents new versions of a directory or a

file. To write new data, the file system appends the changed files and directories to the head of

the log in a depth first manner. For example, when the file system application wrote new versions

of the report and reqs documents (B5–report’ and B6–reqs’),it appended the new file versions to

the head of the log by callingappend(B5-report’) and append(B6-reqs’) Additionally, the

new directory versions that point to the new files are appended to the log (append(I3-proj2’),

append(R2-docs’), andappend(V2-/’)). To read a particular file, the file system application

reads the root of the file system stored at the head of the log and follows the pointers to the desired

file. For example, assume the client wants to read the “sched”file. The client first reads the root of

116

(b) Second version of file system

B5 − report’ B6 − reqs’

R2 − docs’

V2 − /’

I3 − proj2’I1 − proj1

V1 − /

R1 − docs

I2: proj2

B1 − budget B2 − sched B3 − report B4 − reqs

(a) First version of file system

Figure 6.5: A simple file system used as a running example. Mapsymbols to concrete file system.

the file system which is the first entry stored at the head of thelog, get head(). The root of the

file system is a directory and directories store pointers to children directory and files. Pointers are

an extent counter and secure hash. The file system application uses theget map()routine to map

the extent counter to extent name and caches the mapping. After resolving the mapping, the file

system reads the next directory callingget blocks(extent name, H(R2-docs’)). Similarly, the

file system does the same for “proj1” and “sched”. It extractsthe pointer from the parent directory,

maps the extent counter to extent name, then callsget blocks(extent name, H(I1-proj1’))

andget blocks(extent name, H(B2-sched’)).

6.4.2 Database Example

Similar to the file system example, a database can store data in a secure log. For example,

Figure 6.4 could also represent a database where data is stored as a B-tree.append() is used to

add data to the log after modifying or adding new entries. Similar to the file system example, the

pointers to database nodes and entries are extent counter and hash of the entry. Finally,get head(),

get map(), andget blocks() can be used to retrieve any block.

6.4.3 Tamper-resistant syslog

As a last example, a tamper-resistant syslog can be used by anoperating system to store

all access entries, which can be audited at a later date. The secure log ensures that entries have not

been altered or deleted.

117

Chapter 7

The Secure Log Interface

Thecreate()/append() interface should assure the integrity of data stored in a log. The

interface is sufficient to assure integrity when an entire secure log is stored unreplicated on a single

server. It ensures data is appended to the log in a sequentialfashion. It ensures the append-order

and data are verifiable. It ensures only entities that possess the private key canappend() data. It,

however, is not sufficient to ensure the durability of the log(the single server could permanently

fail).

For durability, the secure log is replicated with replicas distributed throughout the wide-

area. Furthermore, the entire secure log is not stored together, but rather broken into a sequence

of containers calledextents. Extents are the units of replication and storage. Even though a secure

log is replicated and broken into extents, its interface should still ensure the integrity of the log as

if it were stored whole, unreplicated, and on a single server(i.e. data is appended to the log in a

sequential fashion, theappend() order is verifiable, and only entities that possess the private key

canappend() data).

Given that a secure log is replicated and broken into extents, the challenge is implementing

a secure log interface that can be used to ensure both the durability and integrity of a distributed

secure log. We define such an interface in this chapter and show how a client library uses it to

interact with the storage system.

The rest of this chapter describes in more detail extents, the secure log interface, and

distributed secure logs. In Section 7.1 we discuss background and prior work. Next, in Section 7.2,

we describe how to use an extent aggregation interface to construct a secure log. We describe the

complete distributed secure log interface in Section 7.3. Finally, in Section 7.4, we discuss why this

interface is easier to implement in a secure way than others.

118

7.1 Background and Prior Work

In this section, we begin by reviewing the concepts behind self-verifying data. We then

discuss the designs of popular, first-generation distributed hash table (DHT) storage systems, focus-

ing on their similarities and the consequences of those decisions.

7.1.1 Self-verifying Data

Data is said to be self-verifying if it is named in a way that allows any client to validate the

integrity of data against the name by which it was retrieved.Therefore, names of self-verifying data,

serve ideally as identifiers in a distributed wide-area storage system. The self-verifying property

enables clients to request data from any machine in the network without concern of data corruption

or substitution attack. A malicious or compromised machinecannot deceive a client with corrupt

data—its attack is limited to denying a block’s existence.

Traditionally, data is made self-verifying via one of two techniques: hashing and embed-

ded signatures. These techniques were made popular by the Self-certifying Read-only File Sys-

tem [FKM00]. Hash-verified datais named by a secure hash of its content. A client can verify

hash-verified data by computing the hash of the returned dataand comparing it to the name used to

fetch the data. Hash-verified data is immutable—if the data changes, the hash-verified name of the

data changes too.

Additionally, Weatherspoon et al. extended the hash-basedapproach to name erasure

code fragments in a self-verifying manner [WK02] as discussed in Section 4.1.2. Clients can verify

either individual erasure code fragments or the full block of data by the same name. Distillation

codes [KSL+04] can be considered a generalization of this scheme.

Key-verified datais verified via a certificate that is signed by a user’s public key. The

certificate contains some token, such as a secure hash of the content, that securely describes the

data. To verify key-verified data, a client checks the signature on the certificate and compares the

data against the verifier in the certificate. Commonly, key-verified data is named by a hash of the

public key that signs the data’s certificate. With this approach, each key pair can be associated with

only a single object. To allow the system to associate multiple objects with a single key pair, other

schemes hash a combination of data, such as the public key anda human-readable name, to create

the name for the data. Key-verified data can be mutable—a client can associate new data with a key

by creating a new certificate.

Many systems employ Merkle’s chaining technique [Mer88] with hash-verified data to

119

Traditional interface:

put hash(H(data), data);
put key(H(PK), data);

data = get(h);

Table 7.1: First-generation distributed hash table (DHT) storage systems use a simpleput()/get()
interface. Theput hash() andput key() functions are often combined into a singleput() func-
tion. H() is a secure, one-way hash function;h is a secure hash, as output fromH().

combine blocks into larger, self-verifying data structures. Such systems embed self-verifying names

into other data blocks as secure, unforgeable pointers. To bootstrap the process, systems often

store the name of the root of the data structure in a key-verified block, providing an immutable

name for mutable data. To update data, a client replaces the key-verified block. See, for example,

CFS [DKK+01], Ivy [MMGC02], and Venti [QD02].

7.1.2 Distributed hash table (DHT) storage systems

Recently, researchers have used self-verifying data and the distributed hash table (DHT)

technology as a foundation for building distributed wide-area storage systems. Despite their in-

dependent development, many systems share important design features. In identifying common

design features, we have considered a number of popular, first-generation DHT storage systems in

the research literature including CFS [DKK+01], Ivy [MMGC02], OceanStore [REG+03], Total

Recall [BTC+04], and Venti [QD02].

First-generation DHT storage systems provide a simple interface for clients to interact

with the storage system. The interface, shown in Table 7.1, is often called aput()/get() interface

due to its similarity to the interface of a hashtable. Note, while we have shownput hash() and

put key() as distinct members of the interface, they are often implemented as a singleput()

function.

Systems tend to use self-verifying data and theput()/get() interface in a common man-

ner, illustrated in Figure 7.1. A client divides data into small blocks, typically 4–8 KB or less. It

computes the hash-verifiable name of each block and links theblocks together, using the names as

unforgeable references, to create a Merkle tree. Finally, the client stores all blocks of the tree in

the DHT system using theput hash() interface. If the system supports mutable data, the client

will typically use theput key() function to store a key-verified block that points to the rootof the

Merkle tree, providing an immutable name to the mutable data.

120

B2

= Verifiable Pointer

V1 V2

R1:

I1: I2:

B1 B3 B4

I3:

R2:

B6B5

Figure 7.1: Clients divide data into small blocks that are combined into Merkle trees. A key-verified
block points to the root of the structure. To update an object, a client overwrites the key-verified
block to point to the new root. (V = version,R= version root,I = indirect node,B = data block)

To read data, a client first retrieves and validates the key-verified root block of the data

structure using theget() function. It can then iteratively fetch and verify the otherhash-verified

blocks by following the chain of hash-verified names embedded in the tree.

Because each new hash-verified block of data has a unique name, DHT storage systems

naturally provide versioning capabilities. Some systems expose the versioning feature to the end

user [REG+03] while others do not. Using copy-on-write to provide efficient versioning has also

been implemented in other systems predating DHT storage systems [MT85].

One notable counterexample to these design patterns is the PAST [DR01] system. PAST

uses theput hash() call to store whole objects as hash-verified blocks. As a result, PAST cannot

incrementally update objects; instead, it stores new versions of an object as a single block using the

put hash() interface.

The design features shared among these implementations have a significant impact on

the behavior of the resulting systems. For example, theput()/get() interface forces the storage

infrastructure to manage data at the same granularity as theclient. While some applications, like off-

line data processing, handle data in large chunks, many interactive and user-oriented applications

tend to create and access relatively small blocks of data. Bysupporting fine granularity access,

these systems allow applications to fetch data without wasting scarce bandwidth at the edges of the

network retrieving data that is not needed or already cached. It allows applications to push data to

the infrastructure as soon as it is created, improving durability.

Coupling the infrastructure’s unit of management with the client’s unit of access, however,

has several disadvantages. Most relevant to our work, because each block is managed independently

121

in the infrastructure, to provide non-repudiable binding of owner to data, a client must create a

certificate for each block. To illustrate this problem, assume an application running on a 3 GHz

processor wishes to store 1 TB of data. If the data is divided into 8 KB blocks and the certificates

are created using 1024-bit RSA cryptography, it would take more thansix daysto create certificates

for the data1.

Other consequences, though secondary to our work, also impact the efficiency of the sys-

tem. For example, some of the indexing, management, and maintenance costs in the infrastructure

are independent of the block size. Thus, managing the small blocks created by the client increases

the load on the infrastructure. Also, because each application-level block is indexed independently,

clients must issue separate requests for each block they wish to read. Reading an object of even

moderate size can flood the storage system with requests.

7.1.3 Prior Aggregation Systems

The classical file system literature demonstrates repeatedly how aggregation can improve

efficiency of storage systems. For example, the Fast File System (FFS) [MJLF84] increases system

performance, in part, by aggregating disk sectors into larger blocks for more efficient transfer to

and from disk. XFS [ADN+95] further aggregates data into extents, or sequences of blocks, to

reduce the size of the metadata and allow for fast sequentialaccess to data. GoogleFS [GGL03]

aggregates data from a single file further still into 64 MB chunks, improving performance and per-

object maintenance costs for large files typical of their application domain.

More recently, the Glacier [HMD05] DHT storage system, has shown how aggregation

can reduce the number of objects that the system must index and manage. Glacier [HMD05] relies

on a proxy trusted by the user to aggregate application-level objects into larger collections. All

collections in Glacier are immutable and thus cannot be modified after they are created.

7.2 How to use an Aggregation Interface to Construct a SecureLog

In this section, we summarize a method for aggregating variable-sized application-level

blocks into ordered containers called extents. Furthermore, we show how to break a secure log into

an ordered sequence of extents.

1A 3 GHz Pentium-class processor can create a signature in 4 ms, as measured with the commandopenssl speed
rsa1024.

122

Breaking a secure log into extents serves two purposes. First, it allows a log to grow

without requiring the entire log to be stored together. Extents are the units of storage and are

independently maintained by the storage system. Second, extents aggregate log elements (blocks)

together improving system efficiency. Each extent containsan ordered collection of variable-sized

application-level blocks of data. Use of extents to aggregate blocks together into larger containers

was first proposed by Eaton et al. [EWK05]; we summarize the aggregation interface and show how

to construct a log from it.

A secure log broken into extents still maintains the integrity of the entire log. All data in

an extent belongs to the same log, and thus, is owned by a single principal. The sequence of blocks

within extents defines the append order of the extent. Moreover, the sequence of extents define the

append order of the entire log. Blocks, extents, and the entire log are all self-verifying via secure

hashes and Merkle chaining.

A log is composed of two types of extents. The log head is a mutable, key-verified extent;

all other extents are immutable, hash-verified extents. Thekey-verified log head is named by a

secure hash of the public key associated with the log. To verify the contents of the log head, a server

compares the data to the verifier included in the certificate (after confirming the signature on the

certificate). When the mutable extent at the log’s head is full, the system converts the extent into

an immutable hash-verified extent. A hash-verified extent isnamed by a function of the contents

of the extent. Specifically, the extent is named by the verifier in the extent’s most recent certificate.

A server can verify the integrity of a hash-verified extent bycomparing an extent’s contents to its

name (verifier).

7.2.1 Constructing a Secure Log

Table 7.2 shows thecreate()/append() secure log interface extended to include an ex-

tent interface. All mutating operations require a certificate signed by the client for authorization.

The certificate includes the verifier of the new version of theextent. The interface ensures that up-

dates are applied in a sequential manner by predicating eachoperation on the previous state of the

extent. Upon completion of the operation, the certificate isstored with the extent. Thesnapshot()

andtruncate() operations help manage the chain of extents. Theput() operation is an optimiza-

tion that allows a data source to write data directly to a hash-verified extent. Therenew() operation

extends the expiration time of an extent.

Three of the operations enumerated in Table 7.2—create(), snapshot(), andput()—

123

Interface for Aggregation:

status = create(H(PK), cert);
status = append(H(PK), cert, predicate, data[]);
status = snapshot(H(PK), cert, predicate);
status = truncate(H(PK), cert, predicate);
status = put(cert, data[]);
status = renew(extentname, cert);

cert = get cert(extentname);
data[] = get blocks(extentname, blockname[]);
extent = get extent(extentname);

mapping = get map(extentname);

Table 7.2: To support aggregation of log data, we use an extended API. A log is identified by the
hash of a public key (H(PK)). Each mutating operation must include a certificate. Thesnapshot()
andtruncate() operations manage the extent chain; therenew() operation extends an extent’s ex-
piration time. Theget blocks() operation requires two arguments because the system implements
two-level naming. Theextent name is either H(PK) for the log head or verifier for hash-verified
extents.

create new replicas. Each of these operations requires thatthe system contact the administrator for

a configuration, set of servers, to host the new replicas. Themost common operation,append(),

does not require any interaction with the administrator.

While the application still relies on the simplecreate()/append() interface, the client

library interacts with the storage system using the extended API. Figure 7.2 illustrates how the client

library uses the extended API. In this example, an application is writing the first version of the file

system shown in Figure 6.4 to the storage infrastructure. The client library passes mostappend()

requests from the application to the storage system. Periodically, however, to prevent the extent at

the log head from growing too large, the client library copies data to hash-verified extents using

the snapshot() operation. After data has been copied to a hash-verified extent, the library uses

truncate() to reset the log head. Whilesnapshot() andtruncate() are typically used together,

we have elected to make them separate operations for ease of implementation. Individually, each

operation is idempotent, allowing the library to retry the operation until successful execution is

assured. The library continues to use theappend(), snapshot(), andtruncate() sequence to

add data to the log.

124

Operation Log

create() ���������
���������
���������
���������

append(B1,B2)

���������
���������
���������
���������

B1I1B3B4 B2
append(I1)
append(B3,B4)

snapshot() ���������
���������
���������
���������

B1I1B3B4 B2B1I1B3B4 B2

truncate() ���������
���������
���������
���������

B1I1B3B4 B2

append(I2)

���������
���������
���������
���������

I2V1 B1I1B3B4 B2R1
append(R1)
append(V1)

Figure 7.2: This example illustrates how the client libraryuses the extended API to write the first
version of the file system shown in Figure 6.4. The shaded extent is the mutable log head; immutable
extents are shown in white.

7.2.2 Reading data from a Secure Log

To provide random access to any element in the log, the systemimplementstwo-level

naming. In two-level naming, each block is addressed not by a singlename, but by a tuple. The first

element of the tuple identifies the enclosing extent; the second element names the block with the

extent. Retrieving data from the system is a two-step process. The system first locates the enclos-

ing extent; then, it extracts individual application-level blocks from the extent. Two-level naming

reduces the management overhead incurred by the infrastructure by decoupling the infrastructure’s

unit of management from the client’s unit of access. The infrastructure needs only to track data

at the extent level, and the client can still address individual blocks. Both blocks and extents are

self-verifying.

When an application writes a block to the log, the block is stored in the mutable extent at

the head of the log. Because the log head is a mutable extent, the system can not know the name

of the hash-verified extent where the block would eventuallyand permanently reside. To resolve

this problem, each extent is assigned an integer corresponding to its position in the chain. When

data is appended to the log, the address returned to the application identifies the enclosing extent by

this counter. Each extent records the mapping between counter and permanent, hash-verified extent

name for the previous extent.

To read data embedded in extents, the client must know the extent name, location of

server storing extent, and block name. However, the application only records the extent counter

125

and block name since it does not know the extent name at the time of append(). As a result, the

client library must first resolve the extent counter to extent name. In particular, the client library first

accesses the mappings stored in the log head viaget map() to determine the name of the previous

extent. We assume that a mechanism exists to locate the log head or any extent given extent name

(Chapter 9). Next, the client continues retrieving and resolving extent mappings until it locates the

extent holding the data. It then uses theget blocks() operation to retrieve the requested blocks

from that extent. To accelerate the translation between counter and extent name, the client library

caches the mappings. Also, in implementation, each extent contains not just the mapping for the

previous extent, but a set of mappings that allow resolutionin a logarithmic number of lookups.

7.2.3 Other benefits of Aggregation

Aggregating blocks into extents and extents into a log improves the system’s efficiency

in several ways. First, breaking a log into extents enables servers to intelligently allocate space for

extents that may have a maximum size while the log itself can grow to be arbitrarily large. Second,

extents decouple the infrastructure’s unit of management from the client’s unit of access. As a

result, the storage infrastructure can amortize management costs over larger collections of data.

Third, two-level naming reduces the query load on the systembecause clients need to query the

infrastructure only once per extent, not once per block. Assuming data locality—that clients tend

to access multiple blocks from an extent—systems can exploit the use of connections to manage

congestion in the network better. Finally, clients writingmultiple blocks to the log at the same time

need only to create and sign a single certificate.

7.3 A Distributed Secure Log and Error Handling

A client library should communicate the result of an operation to applications. However,

determining the return value can be difficult since a secure log is replicated and replicas are dis-

tributed throughout the wide-area for durability. As a result of maintaining consistency across the

distributed log replicas, there are three possible return values: sound, unsound, and undefined. A

sound result is durable meaning it will persist despite server failure. An unsound result is a failure

and will not be maintained by the system. Finally, an undefined result has unknown status. An unde-

fined result is often not returned to the application. Instead the latest replicated state is obtained via

calling get cert() on the servers. If the less than a threshold of servers respond or the replicated

126

state is in an inconsistent state (e.g. concurrent write attempts), the client triggers a repair audit. If

the repair audit repairs the log to the latest sound write, and the request can be applied from that

write, then the request is resubmitted. This process of retrieving the latest replicated state, triggering

a repair audit, and resubmitting the request continues until the request is either sound or unsound.

In particular,append() andtruncate() operations follow this process until the request is either

sound or unsound. As a result, we do not discussappend() andtruncate() further. create(),

snapshot(), andput(), however, requires an extra step that first interacts with the administrator.

Thecreate(), snapshot(), andput() operations create new extents and communicate

with the administrator.create() creates a mutable log head.snapshot() andput() create im-

mutable hash-verified extents. Each of these operations require a set of servers called a configuration

to be allocated to host the new extent. When the administrator creates a configuration, it has three

possible responses: success, failure, or unknown, or success. If the administrator returns success

then a configuration signed by the administrator is returnedto the client. The signed configuration

contains the servers responsible for hosting the new extent. The administrator returns failure in two

situations. If no storage servers are allocated (e.g. perhaps the client has used its quota). Also,

if the extent already exists and has been repaired at least once. In either case, the error would be

returned to the client. If no response is received from the administrator possibly due to a network

transmission error, then the result is unknown. The requestcan be resent until the request succeeds

or fails; each request is idempotent.

The client sends the request (create(), snapshot(), or put()) along with the signed

configuration to the new storage servers. The result of this operation can be sound, unsound, or un-

defined similarappend() andtruncate(). If the result is sound (a threshold of servers responded

with success), then the new extent is durable and success is returned to the application. If however,

the request is unsound, then failure is returned to the application. A result is unsound if the extent

has existed for a while such that data has already been appended (perhaps another client) or the

extent has already been repaired at least once. Finally, if the request is undefined, the request is

continually resubmitted, latest state obtained (viaget cert()), and repair audit triggered.

7.4 Discussion

There are five reasons why implementing a secure log interface is easier to implement in

a secure way than other interfaces. Most reasons are relatedto the structure of the secure log itself.

First, since most of the log is immutable and stored in hash-verified extents, the order and

127

data integrity of those extent replicas are immediate – the extent name verifies both the order and

content of a hash-verified extent. It is not possible for a server to corrupt a hash-verified extent.

Second, the order and data integrity of the head of the log canbe verified using the verifier

contained in the certificate. This verifier ensures the orderand data integrity of the entire log. There

is only one sequence of appends that results in a particular verifier.

Third, the verifier provides a “natural” predicate that can be used to ensure the consistency

of a log. Each storage server checks that the predicate verifier matches local state before applying

any operation. Furthermore, the verifier contained in a new certificate can be used to ensure the

integrity of the subsequent state. The verifier is cheap to compute and update.

Fourth, the narrow interface to modify a log reduces the complexity of the handling errors.

Sound and unsound results return success or failure to the application. Undefined results require

more decision processing. The client library needs to decide to resubmit the request, obtain the

latest state of the log, or trigger a repair audit. Fortunately, the methods that modify the log are few

and the ways in which the log can be modified are even fewer.

Finally, a secure log decouples the infrastructure’s unit of management (extent) from the

client’s unit of access (data block). As a result, the storage infrastructure can amortize management

costs over larger collections of data.

128

Chapter 8

Dynamic Byzantine Quorums for

Consistency and Durability

The last chapter illustrated that the implementation of a secure log interface must account

for replicating the log. In particular, a design for replicated, log-based storage must ensure consis-

tency of the log head and durability of all log elements in thepresence of a variety of server and

network failures. Typical server failures that we may hope to tolerate include transient failure such

as reboot, permanent failure such as disk failure, and erroneous failure such as database corruption

and machine compromise. Furthermore, we hope to tolerate network failure that may include loss

of network connectivity such as temporary partition and transmission failure such as message drop,

reorder, delay, or corruption.

Our approach relies on dynamic Byzantine quorums. In general, Byzantine quorum pro-

tocols tolerate many server and network failures and maintain consistency over replicated state.

Basic Byzantine quorum protocols tolerate a threshold of faulty servers in a configuration, set of

storage servers that maintain replicated state; however, configurations are static and not allowed to

change. In particular, the level of protection against failure degrades overtime as faults accumulate.

This is because basic Byzantine quorum protocols can only tolerate a finite number of failures over

the lifetime of the system. Dynamic Byzantine quorum protocols, on the other hand, extend basic

quorum protocols and allow for reconfiguration; they allow the set of servers responsible for stor-

ing replicated state to change. As a result, dynamic Byzantine quorums can tolerate many failures

overtime (assuming a limited number of failures within a specific window of time).

In this chapter, we demonstrate how we use dynamic Byzantinequorums to write data

129

Configuration contents:

object id cryptographically secure name of object
client id hash of client’s public key: H(PK)
ssset[] set of storage servers: set of H(ssPK)
f fault servers tolerated
seqnum configuration sequence number
timestamp creation time of configuration
ttl time the configuration remains valid

Table 8.1: A configuration defines a set of storage servers that maintain a replicated log.

to a log in a consistent manner and to ensure the durability ofall log elements. The system can

make progress, add new data to the log, with up tof failures in a configuration. It can also create a

new configuration to assume responsibility for storing a portion of the log with up to 2f failures in

the old configuration. This construction is an improvement over previous constructions which only

allow up to f failures in a particular configuration.

The rest of this chapter describes the protocol requirements, assumptions, details, and

correctness. In Section 8.1, we discuss background and prior work. Next, in Section 8.2, we discuss

the protocol requirements. We list our assumptions in Section 8.3. We describe the quorum repair

requirements in Section 8.4. In Section 8.5, we present the protocol details. We show that the

protocol satisfies the requirements in Section 8.6. Finally, we discuss how a secure log makes

implementing the protocol easier in Section 8.7.

8.1 Background and Prior Work

Byzantine fault-tolerant quorum protocols can ensure consistency of replicated state. A

quorum protocol is executed over aconfiguration, set of storage servers that maintain replicated

state. The parameters that define a configuration are shown inTable 8.1. To update the replicated

state, aquorumof servers in a configuration must agree to the change. A quorum is a threshold of

servers and its size is defined by the number of servers in a configurationn and number of faulty

serversf the protocol should tolerate[MR97]. For example, a quorum might haveq= n− f servers

wheren > 3 f and can toleratef faulty servers. Figure 8.1 shows a client attempting to create a

log with a configuration that includes seven servers and can tolerate two faulty servers (f = 2 and

n= 7> 3 f). After an administrator selects a configuration, the client submits thecreate() request

to all the servers in the configuration. Thecreate() request succeeds after the client receives

130

Primergy

Server 4
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Server 3

Server 2

���
���
���

���
���
���

���
���
���

���
���
���

App

Server 1

Server 5

Admin

create()

signed_reply

create_ss_config()

Server 7

Server 6

(a) create() request

Primergy

���
���
���

���
���
���

���
���
���

���
���
���

Server 2

Server 1

signed_reply

Server 7

Server 6

Server 4

Server 5

Server 3

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

(b) create() acknowledgment

Figure 8.1: Examplecreate() request using a Byzantine fault-tolerant quorum. (a) A client at-
tempts to create a secure log with a configuration that includes seven servers and can tolerate two
faulty servers (f = 2 andn = 7 > 3 f). After an administrator selects a configuration, the client
submits thecreate() request to all the servers in the configuration. (b) Thecreate() request suc-
ceeds after the client receives positive acknowledgment from a quorum of servers (q = 7−2 = 5).

positive acknowledgment from a quorum of servers (q = 7−2 = 5).

Byzantine fault-tolerant agreement protocols similarly maintain consistency of replicated

state; however, they do so at a higher communication cost than Byzantine quorum protocols [AGG+05].

In the common case, Byzantine agreement protocols useO(n2) messages over multiple rounds,

whereas Byzantine quorums useO(n) over two rounds where the second round is often piggy-

backed onto subsequent operations [AGG+05]. Figure 8.2 shows a client creating a log using a

Byzantine agreement protocol.

Both Byzantine agreement and quorum protocols tolerate up to f faulty servers and ensure

consistency. However, traditional Byzantine fault-tolerant quorum (and agreement) protocols do not

allow changes to a configuration. They guarantee correctness only if no more thanf servers in a

configuration failduring the life of the system. This restriction is impractical for long-running

systems. Such systems need the ability to change the configuration over time. They must be able

to remove faulty servers from the configuration, replacing them with new servers. Some systems

may even wish to change the size, and thus fault-tolerance, of a configuration.DynamicByzantine

quorum protocols allow the system to change a configuration by performing arepair operation.

Martin and Alvisi [MA04] first defined a framework for dynamicByzantine quorum pro-

tocols that could maintain consistency across multiple configurations. In that work, they identify

two properties,soundnessand timeliness, that when satisfied, guarantee consistency in a dynamic

environment. Informally, soundness ensures data read by a client was previously written to a quo-

rum of servers; timeliness, on the other hand, ensures the data read is the most recent value written.

131

Primergy

Server 4
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Server 3

Server 2

���
���
���

���
���
���

���
���
���

���
���
���

App

Server 1

Server 5

Admin

create()

signed_reply

create_ss_config()

Server 7

Server 6

(a) create() request

Primergy

Server 3

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Server 7

Server 5

Server 6

Server 1

Server 2

Server 4

(b) multiple round agreement

Primergy

���
���
���

���
���
���

���
���
���

���
���
���

Server 2

Server 1

signed_reply

Server 7

Server 6

Server 4

Server 5

Server 3

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

(c) create() acknowledgment

Figure 8.2: Examplecreate() request using a Byzantine fault-tolerant agreement. (a) and (c) are
similar to the Byzantine quorumcreate() request and acknowledgment in Figure 8.1.(a) and (b),
respectively. However, Figure (b) above illustrates that Byzantine agreement protocols useO(n2)
messages over multiple rounds, whereas Byzantine quorums useO(n) over two rounds where the
second round is often piggybacked onto subsequent operations [AGG+05].

They call these propertiestransquorumproperties because they do not depend on quorum intersec-

tion between configurations [MR97]. Finally, they prove that transquorum properties are sufficient

to guarantee the consistency semantics provided by each of the protocols they consider.

The Martin and Alvisi protocol can invoke a repair protocol with up to f faulty servers in

a configuration; however, in implementation there is a non-zero probability that more thanf failures

can occur. In implementation, repair cannot be invoked whenit is needed most, when less than a

quorum of servers are available. Essentially, a quorum of servers in a configuration are required

to agree to trigger a repair protocol that will create a new configuration. Assumingf servers are

always faulty in a configuration, such a protocol often periodically triggers repair, but cannot “react”

to failures when necessary.

In this chapter, we extend the Martin and Alvisi dynamic Byzantine quorum protocol to

allow the servers to reactively invoke a repair protocol when less than a quorum is available.

8.2 Protocol Requirements

In this section, we outline the requirements of a dynamic Byzantine quorum protocol that

can invoke a repair protocol with less than a quorum of serverresponses in a configuration. The

requirements are consistency, durability, and liveness.

• Consistencymeans all successful writes can be totally ordered.

132

• Durability means no successful writes are lost.

• Livenessmeans new write attempts can eventually succeed; also, known asprogress.

A write attempt is a client issued operation to all the servers in a configuration requesting each server

modify its local state. In particular, clients submit writeattempts and servers can either accept or

reject the request (they can also ignore requests). A serverthat accepts the request invokes the write

operation on its local replica and replies accordingly. A client’s write attempt is successful after

receiving sufficient server accept responses. We discuss the base write protocol in Section 8.5.1.

8.3 Protocol Assumptions

We limit our assumptions to ensure consistency and durability of the secure log under the

broadest possible conditions. First, we assume clients perform operations on extents of the log as

defined in Table 7.2. Each extent has its own configuration defined and signed by an administrator.

The configuration includes the public key of each storage server which can be used to verify a

server’s response. Additionally, server public keys can beused to set up authenticated point-to-point

channels. Second, we assume servers are computationally bound so that cryptographic primitives

are effective. Further, we assume that servers have persistent storage that is durable through a crash

and subsequent recovery (transient failure). Finally, we assume an asynchronous timing model;

no assumptions are made about the duration of message transmission delays. Channels can drop,

reorder, and duplicate messages; however, channels are assumed to be fair, a message sent an infinite

number of times will be received an infinite number of times [ACT00].

We assume clients are correct, follow specification, exceptfor crashing and recovering.

Furthermore, we assume the administrator is correct and always available. We discuss our assump-

tions for the number and types of faulty servers tolerated below.

Server Fault and Attack Model

We assume that each server is either correct or faulty. Acorrect server follows its spec-

ifications. A Byzantinefaulty server, however, can deviate from its specification. Since Byzantine

failure is a generalization of all failures, we use a hybrid server fault model that breaks Byzan-

tine servers into three types of faulty servers: benign, unwitting stale, and malevolent (correct and

up-to-date, correct and out-of-date, and malicious, respectively).

A benignserver is correct and follows its specification except when suffering from tran-

sient or permanent failure: crashing and (potentially) recovering. We assume a benign server exe-

133

cutes a transient failure protocol that brings its state up-to-date after transient failure. The transient

failure protocol is discussed in Section 8.5.5. Anunwitting staleserver is correct but unaware that

its state is out-of-date. Possibly due to a network error such as a dropped message or a network par-

tition that caused the server to unknowingly miss some updates. As soon as an unwitting stale server

realizes its state is out-of-date (e.g. receiving a requestwith a later sequence number), it performs a

transient failure protocol to update its local state. Amalevolentserver exhibits out-of-specification,

malicious, non-crash behavior and may attempt to subvert protocols.

The problem is that a client cannot differentiate a malevolent server response from a

benign or unwitting stale server. A non-responsive malevolent server has the same symptoms as a

benign server that is unavailable due to a transient or permanent failure; no response is received in

both cases. Similarly, a malevolent server can have the samesymptoms as an unwitting stale server;

both can reply with out-of-date information whether intentional or unintentional. We consider both

symptoms, non-responsiveness and stale data, server attacks. Fortunately, malevolent servers are

restricted to these two attacks since malevolent servers cannot undetectably alter self-verifying data.

As a result, the protocol should be designed to tolerate bothattacks.

We assume at most 2f servers are faulty in a particular configuration with at mostf

malevolent servers.

8.4 Quorum Repair

In this section, we discuss the challenges for a quorum repair protocol. Quorum repair is

necessary to satisfy the durability requirement since we assume that eventually all servers perma-

nently fail. It transfers state to new servers during reconfiguration while maintaining consistency.

We use a quorum repair protocol adapted to our target operating environment. Specifically, the

algorithm ensures no successful writes are lost during reconfiguration with up to 2f faulty servers

in the old configuration where at mostf of those servers are malevolent. In particular, the quorum

repair protocol maintains the latest successful write across configurations.

8.4.1 Challenges

Repair is a protocol that creates a new configuration for a particular object and initializes

the new configuration to the latest successful write value ofthe old configuration. It is needed to

remove faulty servers, add new servers, change configuration parameters, and ensure new write

134

Time Config Servers
1 2 3 4 5 6 7 8 9

1 0 a a a a a a a a a
2 0 c c c c c c c b b
3 0 c c c c c X X b b

Reconfiguration 1 2 3 4 5 6’ 7’ 8 9

4 1 c c c c c c c c c
(a) c is last successful write before server failure

Time Config Servers
1 2 3 4 5 6 7 8 9

1 0 a a a a a a a a a
2 0 c c c c c c b b b
3 0 c c c c c X X b b

Reconfiguration 1 2 3 4 5 6’ 7’ 8 9

4 1 a a a a a a a a a
(b) a is last successful write before server failure

Figure 8.3: A write is successful after a client receives positive acknowledgment from a quorum of
q storage servers. Two clients simultaneously submit conflicting writes. During repair, the system
should initialize the new configuration to the state reflecting the latest successful write. In these two
examples, the server state that can be observed from the clients at timet = 3 is the same, but the
latest successful write differs. In (a), the client that wrote c received a quorum of positive server
acknowledgments and, thus, is successful. In (b), the client that wrotec did not receive a quorum of
positive server acknowledgments so the write failed, thus,the new configuration must be initialized
to a.

attempts can eventually succeed. The goal of repair is to ensure consistency, durability, and liveness

of a particular object across multiple configurations.

When selecting a quorum repair protocol for use in the wide-area, we must carefully

consider several issues. First, we must consider when to trigger repair. Because some failures, such

as power failures or network partitions, may knock out groups of servers, it is important that the

algorithm be able to tolerate large numbers of failures. We must also ensure that the conditions for

triggering repair do not allow a small group of malevolent servers to initiate needless repair.

During repair a new configuration is chosen to host the replicated log. The new configu-

ration must be initialized with the correct state of the log.It is critical that no successful writes are

lost and no failed writes are elevated to success status.

Consider the examples in Figure 8.3 to understand the challenges in initializing the state

of a new configuration, it shows the client’s view of the storage system. The log is replicated on nine

storage servers, can tolerate two faulty servers, and requires seven positive server acknowledgments

135

for a successful write (n = 9, f = 2, andq = 7, respectively.n = 4 f +1). Negative server acknowl-

edgments contain the latest write accepted by a server. Assume two clients, a workstation and a

laptop, simultaneously submit conflicting write attempts.Figure 8.3(a), at timet = 2, shows the

workstation attempting to writeb, predicated ona, to the log head. The workstation receives only

two positive server acknowledgments (servers 8 and 9) and seven negative (servers 1− 7), so the

request fails. At the same time, the laptop attempts to writec, predicated ona. The laptop receives a

quorum of positive server acknowledgments (1−7), and thus is successful. At timet = 3, servers 6

and 7 permanently fail. During repair, the system should initialize the new configuration to statec.

But, the configuration does not contain a quorum of responsive servers to confirm thatc was indeed

successful.

Compare this with the example shown in Figure 8.3(b) where both client write attempts

fail. Again, at timet = 2, the workstation attempts to writeb predicated ona, but receives posi-

tive acknowledgments from only three servers (7−9) and negative acknowledgments from the rest

(servers 1− 6), so the request fails. At the same time, laptop attempts towrite c predicated ona

which also fails. It receives positive acknowledgments from six servers (1− 6) and negative ac-

knowledgments from the rest (servers 7−9). In this example, both requests fail. When servers 6

and 7 permanently fail at timet = 3, the latest successful write is stilla. Comparing examples 8.3(a)

and 8.3(b), the state visible from the available servers at time t = 3 is the same in both examples;

however, the repair algorithm needs to initialize the new configuration to different values.

Note that in the above example, after one round of the client submitting a write request

and receiving responses, only the client knows that a write is successful. In the base write protocol

discussed in Section 8.5.1, however, there is a second roundwhere the client sends write success

confirmation to the servers. The client classifies a write as successful only after the second round

completes, after receiving a quorum of servers responding to the confirmation. We assume that the

client library only reports success to the application after completing the second round.

If, on the other hand, the client receives sufficient negative acknowledgments, then it re-

ports failure to the application. Alternatively, if the client library does not receive sufficient response

in either round, it times out. After timing out, the client library performs a quorum read. If the repli-

cated state changed (e.g. servers store another write), then the client library returns failure to the

application. If the quorum read fails (times out), then the client triggers a repair audit. The client

library repeats the sequence of sending write attempts, quorum reads, and triggering repair audits

until it is certain the write attempt succeeds or fails on a sufficient number of servers (e.g.q= n− f

positive or negative acknowledgments for success or failure, respectively). Section 7.3 describes

136

this sequence as well. In any case, the client library only reports success to the application after the

second round completes.

8.4.2 Triggering repair

It is not appropriate to assume that the client will always beon-line to monitor configura-

tions and trigger repair. Instead, the storage servers in the configuration must initiate repair when it

is required. We use areactiveapproach to triggering repair. A storage server requests repair in two

situations: when it believes betweenf +1 to 2f servers have failed or the replicated state iswedged

– cannot make progress because replicas are in an inconsistent state. At least 2f +1 storage servers

must agree that repair is needed before reconfiguration is initiated.

2 f +1 is the minimum number of servers required to trigger repair. If only f servers were

needed to trigger repair, thenf malevolent servers could waste system resources by triggering repair

continuously. Alternatively, if storage servers requested repair after onlyf servers failures, thenf

malevolent servers could force repair continuously simplyby being unresponsive. Furthermore,

a protocol could not guarantee that the latest successful write will be used in a repair with 2f or

less servers requesting repair. In particular, there is no way to guarantee thatf malevolent and

f unwitting stale servers are not used to initiate repair using an old value. Theorem 1 states this

observation.

Theorem 1. Given f servers may be malevolent and f correct servers may beout-of-date,2 f + 1

is the minimum number of servers required to trigger repair with the latest successful write.

Proof. Proof by contradiction. Assume that 2f servers is sufficient to trigger repair with the latest

successful write. Then in all cases, at least one out of 2f server repair requests contains the latest

successful write. However, this is not possible for all cases. In particular, 2f server responses may

include f malevolent servers responding with old values and anotherf servers that may be out-of-

date (f correct servers may be out-of-date since quorum protocols allow progress without response

from f servers). In the other direction, we again use proof by contradiction. Assume that 2f + 1

servers is not sufficient to trigger repair with the latest value. Then all 2f +1 repair requests contain

out-of-date information. However at mostf servers are malevolent and at mostf correct servers

are not involved in the latest successful write. As a result,this is not possible since at least one

correct server must be involved in the latest successful write, thus at least one server is correct and

up-to-date.

137

Soundness proof contents:

cert certificate
config configuration
sssigs[] 2 f +1 or more signatures

<H(cert+config)>ss priv

Table 8.2: A soundness proof can be presented by any machine to any other machine in the network
to prove that a write was sound. To provide this guarantee, the proof contains a set ofq storage
server signatures over an append’s certificate (Table 6.1) and the storage configuration (Table 8.1).

Operation Soundness Proof Configuration Servers
{cert seqnum, configseqnum} – sigs

create() {0, 0} – sigs{1, 2, 3, 4, 5, 6, 7} {1, 2, 3, 4, 5, 6, 7, 8, 9}
append() {1, 0} – sigs{1, 2, 3, 4, 5, 6, 7} {1, 2, 3, 4, 5, 6, 7, 8, 9}
repair() {1, 1} – sigs{1, 2, 3, 6’, 7’, 8, 9} {1, 2, 3, 4, 5, 6’, 7’, 8, 9}
append() {2, 1} – sigs{1, 2, 3, 6’, 7’, 8, 9} {1, 2, 3, 4, 5, 6’, 7’, 8, 9}
append() {3, 1} – sigs{1, 2, 3, 6’, 7’, 8, 9} {1, 2, 3, 4, 5, 6’, 7’, 8, 9}
repair() {4, 2} – sigs{1, 4’, 5’, 6’, 7’, 8, 9} {1, 2, 3, 4’, 5’, 6’, 7’, 8’, 9’}

truncate() {5, 2} – sigs{1, 4’, 5’, 6’, 7’, 8’, 9’} {1, 2, 3, 4’, 5’, 6’, 7’, 8’, 9’}
repair() {5, 3} – sigs{3’, 4’, 5’, 6’, 7’, 8’, 9’ } {1’, 2’, 3’, 4’, 5’, 6’, 7’, 8’, 9’ }
append() {6, 3} – sigs{3’, 4’, 5’, 6’, 7’, 8’, 9’ } {1’, 2’, 3’, 4’, 5’, 6’, 7’, 8’, 9’ }

Figure 8.4: Example total order of sound operations.

Instead of triggering repair reactively, other systems trigger repair in a proactive manner at

regular intervals [CL00]. Such systems require a quorum to trigger repair. Generally, these systems

are not able to trigger repair when it is needed most, when more than f servers have failed in the

repair interval. Reactive repair can be used in combinationwith proactive repair to supplement

this deficiency adding the ability to maintain consistency,durability, and liveness when more than

f servers fail. The key difference is a strictly proactive repair system requires at leastn = 3 f + 1

servers [MA04]; where as, a reactive repair system requiresat leastn = 4 f + 1 servers since the

system reacts afterf + 1 or more failures have been detected. Both proactive and reactive repair

systems require at leastr = 2 f +1 servers to trigger repair (Theorem 1).

8.4.3 Initializing a configuration after repair

To ensure that no successful writes are lost during repair, we base repair on asoundness

proof. Table 8.2 shows the contents of a soundness proof. It includes a certificate (Table 6.1),

configuration (Table 8.1), and a quorumq of server signatures over a hash of the certificate and

138

Time Config Servers
1 2 3 4 5 6 7 8 9

3 0 a/c a/c ? ? c ? ? a a

Figure 8.5: Latest soundness proof. From Figure 8.3(a), at time t = 2, the latest sound write was
c. Assume a quorum of servers (servers 1-7) acknowledged receiving the latest soundness proof
(configuration parametersn = 9, q = 7, r = 5, and f = 2). This figure shows the administrator’s
view of the storage system at timet = 3 after receiving replies from five servers (servers 1, 2, 5, 8,
9). Assume servers 1 and 2 are malevolent and can either send the latest or old proof and servers
8 and 9 are out-of-date and did not receive the last proof. At least one server response out of five
(server 5) contains the latest soundness proof (c).

configuration. It can be stored by and presented to any serveras proof that a write was successful –

sound.

A soundness proof contains enough information to determinethe latest sound write since

both the certificate and configuration contain a sequence number which defines a total ordering of

sound writes. Figure 8.4 shows an example total ordering of all operations on the head of a log.

The use of soundness proofs also enables repair with up to 2f faulty servers in a config-

uration while maintaining data consistency. By collectingthe most recent soundness proofs from

2 f + 1 servers in a configuration, we can be sure that we have retrieved a soundness proof from at

least one non-faulty server that participated in the last sound write (Theorem 1). Figure 8.5 illus-

trates that 2f +1 server responses contains the latest soundness proof fromat least one correct and

up-to-date server.

Other systems use the notion ofrepairablewrites to initialize new configurations [AGG+05].

Repairable writes arenot successful writes, rather replies from onlyf +1 servers (not the required

number of quorum replies). We did not use this solution sincef + 1 responses is not sufficient to

ensure that an old value is not used instead of the latest.

8.4.4 Certificates and Soundness Proofs

Table 8.2 shows the contents of a soundness proof (which includes the contents of a certifi-

cate and configuration, Table 6.1 and Table 8.1, respectively). The client increments the certificate

sequence number and signs the new certificate before invoking each operation. To create a sound-

ness proof, the client must receive a quorum of responses from the storage servers, where each

response is a signature over the secure hash of the new certificate and configuration. The set of

all soundness proofs defines a total ordering of all sound writes since it contains a unique pair of

sequence numbers from the certificate and configuration. This total order is sufficient to maintain

139

consistency [Sch90]. Furthermore, soundness proofs are used to maintain the durability of sound

writes. Section 8.6 proves the correctness.

8.4.5 The Repair Audit Protocol

Though only the storage servers can trigger repair, any component of the system can

request a repairaudit (e.g. client, storage server, administrator, periodic timer, etc.). When a storage

server receives a repair audit, it attempts to read the latest state (certificate and soundness proof)

from the other servers in the configuration. If a quorum responds and the data is in a consistent

state, the storage server takes no action. If, however, a quorum does not respond or the replicas are

in an inconsistent state (wedged), then the storage server will create a repair request, record it in

local stable storage, and submit it to the administrator. Ifthe server observes that it already stores a

signed repair request on its local disk, it will forward the same request to the administrator. Once a

storage server is in the repair state, it does not accept updates until a new configuration is created.

A minimum of 2f + 1 repair requests are required to trigger the repair protocol. This

ensures the latest sound value will be used in the repair (Theorem 1). Additionally, 2f +1 servers in

the repair state ensures no more writes will succeed in the current configuration [MA04]. If at most

f servers are malevolent, then at leastf +1 of the 2f +1 required server requests to trigger repair

are correct servers. As a result, at leastf + 1 correct servers will not accept new writes ensuring

progress cannot be made in the current configuration.

8.5 Protocol Details

In this section, we describe how components of the system interact to implement the

create(), append(), andrepair() protocols (Table 7.2). In the basic system there are three

components: the client, the storage servers, and an administrator. We require that all updates sub-

mitted to each storage server include a certificate signed bya private key that is known only to the

client. The storage servers are replicated state machines that store data, transform local state with

well defined procedures, and cryptographically sign acknowledgments testifying to that fact. Fi-

nally, an administrator is required to create configurations. The administrator is the authority on the

latest configuration for an object. A storage server will participate in the management of an object

when it observes that it is included in a configuration signedby the administrator. We assume that

the administrator is non-faulty.

140

Field Description

proof Certificate, configuration, and a quorum of server signatures.
block names[] Secure hash of data blocks (blocknames[i]=H(datablocks[i])).
datablocks[] Data.
mapping Previous extentcounter and extentname.

pendingproof Certificate, configuration, and no server signatures.
pendingblock names[] Secure hash of pending data blocks.
pendingdatablocks[] Pending data.
pendingmap Pending previous extentcounter and extentname.
pendingoperation create(), append(), truncate(), snapshot(), put()

Figure 8.6: Local server state for log head and hash-verifiedextents. It includes proven state (with
soundness proof) and pending state (without soundness proof). Proven state includes the latest
soundness proof, blocknames, and data. Mapping is used to connect extents into a secure log.
Proven state is null when an extent is first created, whencreate(), snapshot(), orput() are pend-
ing; otherwise, it is not null. Pending data includes a pending soundness proof (certificate and con-
figuration without server signatures), blocknames and data. Pendingmap is used bytruncate(),
pendingmap points to the extent created duringsnapshot(). Pending state is null if no requests
are pending. When a pending request gathers proof of soundness the pendingproof field replaces
the proof.create(), snapshot(), andput() replace blocknames, datablocks, and mapping with
the associated pending fields.append() adds the pendingblock names and pendingdatablocks to
block names and datablocks fields, respectively.truncate(), however, removes blocknames and
datablocks fields; additionally, it replaces the mapping field with the pendingmap field.

8.5.1 Base Write Protocol

The base write protocol works as follows. There are two rounds; however, the second

round is often sent with a subsequent operation. The client library does not report success to the

application until the second round completes successfully. First, a client submits a request to the

storage servers. The request includes a predicate verifier,new certificate that contains a new verifier

and new sequence number, and an associated client signature. When a storage server receives

the message, it checks the request against its local state. If the request satisfies all conditions,

the server stores the data to non-volatile storage and responds to the client with a signed positive

acknowledgment. The client combines signed positive acknowledgments from a quorum of servers

to create a soundness proof (quorum sizeq = 3 f + 1 and configuration sizen = 4 f + 1). Next, in

the second round, the client sends the soundness proof to theservers, often as part of a subsequent

operation. Each server stores the soundness proof to a stable storage and responds to the client. The

client can be certain the log has been written successfully after sending the soundness proof to all

servers and receiving responses from a quorum of servers. Section 8.6 proves the correctness of this

protocol.

141

Admin

T

AppApp

Storage

Time

Servers

Tcreate_config

App

quorum

(a) create() path

AppApp

Servers
Storage

quorumT

Time

(b) append() path

Figure 8.7: (a) To complete acreate() request, a client must first request a new configuration from
the administrator. The client then sends the configuration along with the signed certificate to storage
servers listed in the configuration. (b) To complete anappend() request, the client must only send
a message to each storage server in the configuration.

Figure 8.6 shows the local state stored by each server of the log head or hash-verified

extent. The pending fields are null if there are no pending requests. If the pending fields are

not null and remain unchanged for a specified amount of time, the server will query a quorum of

other storage servers in its configuration to gather the signatures required to construct a soundness

proof. When a server’s pending state stores sufficient signatures for a soundness proof, the server

updates the proven state with the pending state. It replacesthe proof field with the pendingproof

field. Thecreate(), snapshot(), andput() operations replace the blocknames, datablocks,

and mapping with the associated pending fields.append() appends the pendingblock names and

pendingdatablocks to blocknames and datablocks fields, respectively.truncate() removes

block names and datablocks fields; additionally, it replaces the mapping field with the pendingmap

field. Notice that only state that a server can locally prove is sent to the administrator in a repair

request.

8.5.2 Thecreate() Protocol

The create() protocol is used to create a new log by allocating space on servers in a

configuration. The protocol is illustrated in Figure 8.7(a). Note that thesnapshot() andput()

protocols are nearly identical to thecreate(). The difference is the type of extent created and

whether data blocks are included in the request.create() creates a mutable log head,snapshot()

andput() create immutable (read-only) hash-verified extents. Furthermore,create() does not

include any data blocks since the log head is initially empty. Whereas,put() contains data blocks

in the request andsnapshot() instructs servers in the new snapshot configuration to download the

142

data blocks from the servers in the log head configuration. Despite the differences between the

type of extent created and inclusion of data blocks in the request, the protocol between the client,

administrator, and servers are similar. As a result, we onlydiscuss thecreate() protocol in detail.

To begin thecreate() protocol, the client submits a request to the administratorto create

a new storage configuration. This request includes a certificate signed by the client that allows the

administrator to verify that the client is permitted to create a log. The administrator then chooses a

set of servers to manage the log and returns the configuration, signed by the administrator’s private

key, to the client. Next, the client sends the configuration and its original create certificate to all

of the storage servers listed in the configuration. When a storage server receives the message, it

allocates space for the log and stores the certificate and configuration to non-volatile storage. After

the data reaches stable storage, the storage server responds to the client with a signature over the

secure hash of the certificate and configuration. After collecting q = 3 f + 1 signatures, the client

combines the signatures to create a soundness proof for thecreate() operation.

At this point, the client knows thecreate() is sound, but the servers do not. As a result,

the client sends the soundness proof to all the servers and waits for acknowledgment. When the

servers receive the soundness proof, they record it to stable storage and respond to the client. A

server that is not expecting the soundness proof (e.g. missed the initial create() request due to

network transmission error), stores the proof to stable storage and responds to the client1. After

receiving acknowledgment from a quorum of servers, the client can be certain the log has been

created and will remain durable.

The client library reports success to the application afterthis second round completes. The

second round is often performed with subsequent operations. For instance,append(), truncate()

or any of theget() operations may include this soundness proof.

8.5.3 Theappend() Protocol

Theappend() operation adds data to the log, moving the replicated state from one con-

sistent,safestate to another. The protocol is illustrated in Figure 8.7(b). Note that thetruncate()

protocol is equivalent to theappend() except thetruncate() removes data blocks stored at the

log head and updates the mapping (previous extent counter toextent name mapping); whereas,

the append() adds more data blocks to the log head. As a result, we only discuss theappend()

protocol in detail.

1A certificate and configuration is the only state associated with acreate(). As a result, acreate() soundness proof
contains enough state to update a server that missed the initial create() request.

143

To begin theappend() protocol, the client creates and signs a certificate that describes

the changes to the log. The request describes the current state of the log and the next state of the log,

should theappend() operation succeed. The certificate also includes a sequencenumber that must

be greater than the number in the log’s current certificate. The client then sends the request—which

includes the data to be added, the certificate, and the previous soundness proof—to each storage

server.

Each storage server determines if the request can be applied. Success of the request is

predicated on several checks. The certificate must include avalid signature and sequence number.

The previous soundness proof contained in the request must match the current state recorded by the

storage server. If the conditions are met, the storage server writes the new data to the log on its local

store. It then responds to the client with a signature over the secure hash of the new certificate and

the current configuration. After collectingq = 3 f +1 signatures, the client combines the signatures

to create a soundness proof for the operation.

With this protocol, a storage server receives a soundness proof in the second round or in a

subsequent operation. If the client stops submitting operations or does not send the soundness proof

by itself, however, a storage server is left with a soundnessproof that is stale by one operation.

To obtain a current soundness proof, if a storage server doesnot receive the soundness proof in a

specified amount of time, it will query a quorum of storage servers in its configuration to gather

the signatures required to construct a soundness proof. It is important that storage servers store the

latest soundness proof since they use soundness proofs during repair. In Part IV, we will describe

the additional measures taken in the implementation to ensure that a current soundness proof is

available to the storage servers. Essentially, the implementation of the system stores the soundness

proof in a distributed hash table (DHT) before responding tothe client. Storage servers check the

DHT for soundness proofs before triggering repair.

If the client does not receive a sufficient number of responses, the client cannot be sure that

the write is sound and durable. As a result, the client library does not report success until it receives

acknowledgment from a quorum of servers after sending them the associated soundness proof. The

client library may be able to commit data to the log by retrying the operation. If the problem is

transient, such as a dropped message, retrying the operation is often sufficient. If, however, the

failure is due to inconsistent state among the replicas, then no progress can be made until a new

configuration is created by therepair() protocol. As described in Section 7.3, the client library

continues sending the request, reading the latest state of the system viaget cert(), and performs

repair audits until the request is either sound or the state of the system has changed indicating the

144

TTf f repair_audit

Repair
Audit

Storage
Servers

Time

Servers
Storage

Admin

quorum (new config)Tcreate_configT +1 repair_reqTf +1 upto 2 failures

Figure 8.8: When a storage server believes that repair is needed, it sends a request to the admin-
istrator. After the administrator receives 2f + 1 requests from servers in the current configuration,
it creates a new configuration and sends message to servers inthe set. The message describes the
current state of the log; storage servers fetch the log from members of the previous configuration.

request is unsound.

8.5.4 Therepair() Protocol

The repair() protocol is used to restore the replicated log to a consistent state on a

sufficient number of servers. It may be used when a client cannot make progress because replicas

of the log are in an inconsistent state or a quorum is not available due to server failures. Figure 8.8

shows the repair process.

A repair audit (Section 8.4.5) causes a storage server to check the replicated state and

availability of servers in a configuration. Repair audits can be triggered by any component, client,

storage server, administrator, periodic timer, etc. However, only storage servers in the latest config-

uration can trigger the actual repair protocol. Repair requests from storage servers not in the latest

configuration are ignored by the administrator.

Repair begins when the administrator receives signed repair requests from at least 2f +1

storage servers in the latest configuration. A repair request is a signature over the soundness proof

and current configuration. The signature is only valid if it is from a storage server in the latest

configuration.

When the administrator receives 2f + 1 repair requests, it creates a new configuration

to host the log. The administrator determines the current state of the log by extracting the latest

soundness proof from the 2f + 1 submitted requests. This is guaranteed to reflect the latest sound

write (Theorem 1). The administrator sends the new configuration and latest soundness proof to

the storage servers in the new configuration. Servers in the new configuration fetch the log (defined

145

in the soundness proof) from servers in the previous configuration. The administrator can reduce

the amount of data that must be transferred during repair by retaining servers across configurations.

After acquiring a copy of the log, a storage server in the new configuration responds to the adminis-

trator with a signature over the certificate (contained in the latest proof) and the new configuration.

After the administrator receives a quorum of responses fromservers in the new configuration, it can

create a soundness proof in the new configuration.

Next, the administrator sends the soundness proof to all theservers and waits for acknowl-

edgment. When the servers receive the soundness proof, theyrecord it to stable storage and respond

to the administrator. After receiving acknowledgment froma quorum of servers, the administrator

can be certain the log has been repaired.

The administrator continues to resend the message notifying a storage server that it has

been assigned to a configuration until one of two conditions is met. When the administrator receives

a reply from a quorum of servers in the new configuration, it can be certain that the configuration

can accept new requests. Alternatively, if the administrator receives 2f + 1 requests from servers

in the new configuration to repair the configuration, it restarts the repair protocol. Because a new

configuration has at most 2f faulty servers, the administrator is assured that one of these conditions

will be met eventually.

We explain how we relieve the administrator of notifying storage servers of their new role

in Part IV. Briefly, the administrator selects a server to coordinate repair. The coordinator contacts

all the servers in the new configuration, creates a soundnessproof, and informs the administrator

when repair is complete. As a result, the administrator is responsible for creating a new configura-

tion and the coordinator executes the remaining repair protocol.

8.5.5 Transient Server Failure Protocol

A server executes a transient failure protocol to update itslocal state to the latest sound

write. The protocol may be executed by a server at any time. For instance, a server may execute the

protocol periodically, after receiving evidence that its local state is out-of-date (e.g. after receiving

a more recent soundness proof in a request), or after returning from failure as part of the recovery

protocol.

The transient failure protocol has two steps. First, a server queries 2f +1 servers using the

get cert() interface with the option that the response includes the latest soundness proof stored by

the server and blocknames. 2f +1 replies are sufficient to discover the latest sound write assuming

146

at most 2f servers are faulty and at mostf of those faulty servers are malevolent. This first step can

be skipped if the server received a later soundness proof in arequest. Second, if the server’s state

is in fact out-of-date, it selects one of the servers that responded with the latest proof and uses the

get blocks() interface to fetch the missing blocks from that server. If theget blocks() fails, the

server can select another server that responded to theget cert() or one that signed the soundness

proof to fetch the missing blocks. Finally, the server’s state is up-to-date after executing both steps.

8.6 Protocol Correctness

We now demonstrate that the protocol presented in Section 8.5 satisfies the requirements

in Section 8.2. First, we show that sound writes define a totalorder satisfyingconsistency. Second,

we show that 2f + 1 servers that exist in a configuration are sufficient to trigger repair and ensure

durability. Finally, we show that write attempts can eventually succeed providingliveness.

8.6.1 Protocol Consistency

Theorem 2. Given a configuration size of n= 4 f + 1, quorum size of q= 3 f + 1, and 2 f faulty

servers with at most f malevolent, each sound write has a unique certificate and configuration

sequence number pair.

Proof. Proof by contradiction. Assume two clients submit a write attempt with the same sequence

number, but conflicting data (data and resulting verifier differ). Assume further that both clients

receive sufficient replies for a sound write implying a quorum q = 3 f +1 positively acknowledged

both client’s requests. This is not possible since the intersection between both write attempts is at

least 2f +1 servers which is greater than the number of malevolent servers f .

Theorem 2 proves that each sound write has a unique position in the set of sound writes.

The unique position defines a total order of sound writes, which is sufficient to maintain consis-

tency [LSP82, Sch90].

8.6.2 Protocol Durability

Theorem 3. Given a configuration size of n= 4 f + 1, quorum size3 f + 1, and2 f faulty servers

with at most f malevolent, sound writes exist as long as2 f +1 servers in a configuration exist.

147

Proof. 2 f +1 servers are sufficient to trigger repair protocol (Theorem1), which copies data up to

the latest sound write to a new configuration.

Theorem 3 proves that sound writes persist as long as they canbe repaired.

8.6.3 Protocol Liveness

As presented, the protocol ensures consistency and durability, but not liveness in the face

of continually conflicting write attempts. For example, it is possible that the replicated state contin-

ually needs repair starving write attempts from succeeding. However, the protocol does ensure that

write attempts eventually succeed. In the absence of conflicting writes and repair, we show from any

“wedged” state, the replicated state can be repaired and subsequent write attempts can eventually

succeed.

Theorem 4. Given a configuration size of n= 4 f + 1, quorum size3 f + 1, and2 f faulty servers

with at most f malevolent, write attempts eventually succeed.

Proof. Invoke repair. Repair installs a new configuration with the latest sound write (Theorem 1).

In the absence of conflicting writes, re-applying the write attempt against the new configuration will

succeed.

8.7 Discussion

In this section, we discuss how a secure log reduces the complexity of implementing a

dynamic Byzantine quorum.

First, self-verifying data in a secure log reduces server attacks. In particular, there are two

server attacks, not responding to queries and responding with old values. The protocol tolerates the

first attack by allowing writes to succeed without responsesfrom up to f servers. Additionally, the

protocol ensures consistency and durability tolerating upto 2f faulty servers that may respond with

old values.

Second, most of a secure log is stored as immutable (read-only) hash-verified extents

reducing the number of operations that modify state.snapshot() or put() can create a hash-

verified extent andrepair() is the only allowed operation after it has been created.repair()

changes the configuration but cannot change the contents of the extent.

148

Third, the secure log structure reduces the complexity of updating the replicated log. In

particular, the new local state stored by an up-to-date server is always derivable from applying the

request to the current local server state. For example, for an append(), the following field and

function are equivalent

pending_proof.certificate.verifier =
computeVerifier(pending_block_names[], proof.cert.verifier)

See Figure 8.6 for a description of a server’s local state andFigure 6.2 for a description of computing

the verifier.

Fourth, the secure log structure reduces the complexity of maintaining sound writes over-

time. Only the latest soundness proof and associated data ismaintained since the state of the latest

sound write can be derived from previous sound writes and data.

Finally, a secure log reduces the complexity of the transient failure protocol. A server

needs to only query the other servers to find the latest sound write, then fetch the missing blocks

from one of the up-to-date servers.

In summary, the secure log structure and narrow interface simplify designing a consis-

tency protocol such as a dynamic Byzantine quorum protocol.More importantly, the secure log

reduces the complexity of implementing the replicated state protocols that maintain the distributed

secure log. Each write or repair operation modifies the secure log in a well-defined manner where

invariants of the local and replicated state can be checked at each step of the protocol. Part IV

demonstrates that a secure log reduces the complexity of implementing, replicating, distributing

replicas, and maintaining consistency over replicas.

149

Chapter 9

Utilizing Distributed Hash Table (DHT)

Technology for Data Maintenance

A distributed wide-area on-line archival storage system requires a self-organizing mech-

anism to locate extents and trigger repair audits as serversfail. In this section, we describe the

architecture of an extent replica location and repair service (Part II) implemented as a distributed

directory. A distributed directory allows each server to bepart of the directory and collectively

provides a data maintenance service. At its core, a distributed directory is a level of indirection–

utilizing pointers within the network to achieve flexibility in data placement, locating extents, and

timely repair based on low watermarks. We describe all of thecomponents necessary to implement

a distributed directory: publishing and locating extent replicas, monitoring server availability and

triggering repair audits.

This distributed directory architecture has a large scope where all servers are eligible to

store replicas. As demonstrated in Section 4.3.1, a large scope reduces repair time since more servers

can assist in repair. The decrease in repair time increases durability since durability is inversely

proportional to repair time [PGK88]. The rest of this chapter describes the distributed directory

architecture and is organized as follows. In Section 9.1, wedescribe how servers use the distributed

directory to publish and lookup the location of extents. We describe how the distributed directory

monitors server availability and triggers a repair audit inSection 9.2. Finally, in Section 9.3, we

discuss the limitations of a distributed directory.

150

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

ID Space

(location−
pointer
replicas)

Extent

Extent

Extent

successor list

Replica

Replica

Replica

Figure 9.1: Distributed Directory System Architecture.

9.1 Publishing and Locating Extent Replicas

Publishing and locating extent replicas is a prerequisite for an on-line archival storage

system. It works by using a structured overlay that supportsKey-Based Routing [DZD+03] (KBR)

to route messages; such overlays include Bamboo [RGRK04], Chord [SMK+01], Pastry [RD01],

and Tapestry [ZHS+04]. KBR works by consistently hashing an identifier space over a set of servers.

Each of these servers is responsible for a continuous interval of the identifier space known as the

root. An identifier is assigned to each server using a secure hash function like SHA-1. For example,

in Bamboo and Pastry, the server whose identifier is numerically closest to the object’s identifier

(in the identifier ring), is responsible for the object. A server participating in the structured overlay

usually maintainsO(logN) state (i.e. routing table) and the path from a server to the root takes

O(logN) hops. Structured overlays often implement a distributed hash table (DHT) interface,put()

andget(), where the root server stores an object on aput() request and returns an object on a

get() request. We use the DHT interface to store and retrieve location-pointers.

Publish() is analogous to aput() operation into a DHT where the value stored by the

DHT is a location-pointer that maps the replica identifier tothe storage server storing the replica.

Lookup() is another operation.Lookup() is analogous to aget() operation from a DHT where

the values returned by the DHT are location-pointers.

ImplementingPublish() andLookup() using a structured overlay was first proposed

151

SELECT location-pointers
FROM p AS pointerDB
WHERE p.objId=objId AND

p.low_watermark >
(SELECT COUNT
FROM p2 as pointerDB,

s AS serverAvailDB
WHERE p2.objId=p.objId AND

p2.src=s.serverId AND
s.state=UP)

Figure 9.2: The above query states that for a given object identifier select the location-pointers
where the remaining number of replicas are less than the lowwatermark, thus triggering a repair
audit

by Tapestry [HKRZ02, ZJK01]. The abstraction is called Distributed Object Location and Routing

(DOLR). A distributed directory is different to a DOLR in twoways. First, a distributed directory

is optimized for maintenance and not routing. Second, we have extended the DOLR to efficiently

maintain large quantities of location-pointers over long periods of time.

9.2 Monitoring Server Availability and Triggering Repair A udits

To maintain extents, each storage server also serves as a monitoring server. Long term data

maintenance requires that each monitoring server know the number of available extent replicas of

each extent for which it is responsible. The goal of monitoring is to allow the monitoring servers to

track the number of available extent replicas and to learn ofextents that the server should be tracking

but is not aware of. When a monitoring servern fails the new servern′ that assumes responsibility of

n’s location-pointers begins tracking extent replica availability; monitored information is soft state

and thus can be failed over to a “successor” relatively transparently.

In a distributed directory, replicas for a particular extent are stored on different storage

servers and the DHT stores and maintains replica location-pointers. Namely, each extent replica

(for a particular extent) has the same object identifier1, but a different location. As a result, a

particular extent has a unique monitoring server called aroot that resolves replica location requests

and triggers a repair audit to replace replicas lost to failure. Figure 9.1 shows a directory system

architecture.

The root monitoring server stores the status of all storage servers in a server availability

1Each fragment for a particular extent has the same identifierif we use erasure codes [WWK02].

152

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

Master
MIT

Texas

ID Space

Stanford

Illinous

Harvard

(a) Threshold Reached

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

Master
MIT

Texas

ID Space

Stanford

Illinous

Michigan

Washington

Harvard

(b) Data Recovered

Figure 9.3: Directory Data Recovery. a) Using its location-pointers and storage server availability
database, the root monitoring server (MIT) knows that thereare two replicas remaining. If the
low watermark is three, then the root triggers a repair audit. b) The storage servers containing the
remaining replicas (Harvard and Texas) cooperate to refresh lost data replicas.

database. It updates the server availability database by receiving heartbeats from all storage servers;

this message includes a generation identifier that is randomly generated when the server is installed

or reinstalled following a disk failure. It interprets the lack of receiving a heartbeat as a storage

server failure signal. After receiving a failure signal, ittriggers a repair audit for every extent stored

on the newly down server where the number of available replicas is below the low watermark.

When a server returns from failure, sends a heartbeat, and its generation identifier has not changed,

the monitoring server can conclude that objects stored on that server are again accessible increasing

the available replicas for extents stored on the server.

To determine if a repair audit needs to be triggered, a monitoring server performs a join

between the location-pointer and server availability databases and selects all extents where the num-

ber of available servers is less than the low watermark. Figure 9.2 is an example of the database code

that a root monitoring server uses to determine it needs to trigger a repair audit. Every failure can

potentially cause a scan of the location-pointer and serveravailability database; as a result, scans

are run periodically to reduce load on the databases.

When the available replication level is below the low watermark, the root monitoring

server informs the remaining storage servers that a replicahas been lost via a repair audit. After

receiving a repair audit, the remaining storage servers cooperate to refresh the lost replica. Fig-

ure 9.3.(a) shows an example of a root monitoring server withtwo remaining available replica

153

location-pointers. If the low watermark is three, then the root monitoring server triggers a repair au-

dit since the number of available replicas is less than the low watermark. The root monitoring server

sends a repair audit to the remaining replica storage servers indicating that the number of replicas is

below the low watermark. Figure 9.3.(b) shows the remainingstorage servers cooperating to refresh

the lost replicas.

9.3 Discussion and Limitations

Designing a self-organizing and maintaining monitoring system is required for distributed

wide-area on-line archival storage. However, its design and associated costs need to be carefully

considered. We discuss implied assumptions and consequences below.

First, when using a distributed directory, we assume the storage due to location-pointers

is significantly less than storage due to data. The implication of this first assumption is that replicas

are large (e.g. 1MB) when using a directory; otherwise, if replicas were small (e.g. 8kB) and the

location-pointers were further replicated, then the storage system would maintain more data location

state than data itself. Furthermore, we assume the total number of replicas of all extents is greater

than the number of servers. The implication of this second assumption is that it is more feasible to

maintain a storage server availability database on every monitoring server than it is to republish the

location of every replica. For example, it is cheaper to perform an all-pairs ping than to republish2

every replica for a storage system with 1000 servers, 1TB of storage per server, 1MB extents, and

a replication factor of 10 (i.e. 10 billion total replicas or10 million replicas per server vs. 1000

servers). If either assumption is violated then a distributed directory should not be used.

Second, monitoring servers limits scalability. A distributed directory has to monitor allN

storage servers. It can still be efficient because replicas per server is assumed to be much greater

than the number of servers; however, care must be taken when designing a monitoring system. For

example, if each directory root monitoring server is also a storage server, than sending and receiving

heartbeats is the same as performing an all-pairs ping. The cost of an all-pairs ping per server is

dependent on the number of serversN, the heartbeat periodThb, and the size of a heartbeathbsz (i.e.
BWhb

N = N
Thb

·hbsz). The resultingN2 probe traffic may limit the system’s scalability.

An alternative implementation to update the server availability database is an all-pairs

multicast. Each storage server sends a heartbeat to its neighbors with expanding radius; that is,

servers at a further radius receive heartbeats less often than servers at a closer radius. The DHT’s
2A republish updates the location-pointers for a directory and prevents them from expiring.

154

log (N) hops

2 hops

1 hop

Figure 9.4: Expanding Radius Heartbeat. Heartbeats initiated by a storage server (e.g. middle
server) reach a greater number of additional servers as the heartbeat radius expands. Heartbeats are
a form of multicast and reach all servers in the system when the radius is logN.

routing tables are used to establish a unique spanning tree rooted at each server withO(logN)

out-degree per server. Each server periodically broadcasts a heartbeat message to its children in

the tree. The children rebroadcast the heartbeat to their children until it is received by all servers.

Heartbeats are received by a neighbor at radius-i with a periodpi = pi−1 ∗ f , wherep1 (the base

period) andf (the factor by which the periods grow exponentially) are configurable parameters.

Note that whenf is 1, all neighbors in the network receive heartbeats at the same rate, regardless of

their radius. Figure 9.4 shows an example of an expanding radius heartbeat. We use an expanding

radius heartbeat in Antiquity in Part IV.

155

Part IV

Antiquity: Prototype Implementation

and Evaluation

156

Chapter 10

Antiquity

Thus far in this thesis we have explored the design space for fault tolerant and repair

algorithms designed to efficiently maintain data durability. Furthermore, we have described an

architecture that applies these design principles to a log based on-line archival storage system. The

design is secure and expressive enough to support applications. In this part of the thesis we further

answer the question: is it possible to build a self-organizing and maintaining distributed wide-area

storage system that supports a secure append-only log? How does such a system perform?

To verify the design, we have built and deployed a secure distributed wide-area storage

system based on a log called Antiquity. Antiquity integrates the above design points into one cohe-

sive system. Antiquity, uses a distributed hash table (DHT)as an underlying layer to connect storage

servers. It optimally maintains immutable data by reintegrating extant replicas. Further, it efficiently

maintains order integrity of mutable data of the log head by implementing dynamic Byzantine quo-

rum and quorum repair algorithms for consistency and durability. Finally, it implements the secure

append-only log interface for usability.

Experience with the prototype shows that Antiquity’s design is robust. It has been running

for over two months in the wide-area on 400+ PlanetLab [BBC+04] servers maintaining nearly

20,000 logs containing more than 84 GB. Periodic random reads reveal that 94% of all replicated

logs are in a consistent state. 100% of the logs are durable, though 6% do not have a quorum of

servers available due to transient failures. This matches the expected number of consistent quorums,

assuming an average PlanetLab server availability of 90% and given that a quorum requires the

availability of five out of seven servers. The prototype maintains a high degree of consistency and

availability due to the quorum repair protocol despite the constant churn of servers (a quarter of the

servers experience a failure every hour).

157

10.1 Architecture Overview

The Antiquity prototype implementation combines the dynamic Byzantine quorum, quo-

rum repair, and aggregation discussed in Part III with faulttolerance and repair techniques discussed

in Part II. Chapter 9 discussed how the system utilizes self-organizing distributed hash table (DHT)

technology.

In review, the storage system supports a secure, append-only, log abstraction where a

single log is owned by a single principal identified by a cryptographic key pair. Only the owner

can append() to the log. The storage system stores the log as a sequence of container objects

called extents, where each extent stores a variable number of arbitrarily-sized application-level log

elements. To guard data integrity, individual log elementsand whole extents are self-verifying.

A log is composed of two types of extents. The log head is a mutable, key-verified extent;

all other extents are immutable hash-verified extents. The key-verified log head is named by a

secure hash of the public key associated with the log. To verify the contents of the log head, a

server compares the data to the verifier included in an associated certificate (after confirming the

signature on the certificate). A hash-verified extent is named by a function of the contents of the

extent. A server can verify the integrity of a hash-verified extent by comparing an extent’s contents

to its name.

An extent is the unit of storage and replication. The storagesystem maintains consistency

of key-verified extents and durability of both key- and hash-verified extents. Each server partici-

pating in the system serves as a storage server for extents. The storage server is implemented as

a state machine for each extent that it stores. To modify state, the storage servers implement the

API enumerated in Table 7.2. The system determines the true state of an extent using the quorum

protocols of Chapter 8. Finally, the Antiquity prototype efficiently maintains durability using fault

tolerant and repair algorithms discussed in Part II.

The prototype is implemented in 41,000 lines of Java code anduses BerkeleyDB to store

state to local disk. The client library is an additional 3,000 lines of code. All servers in the sys-

tem communicate via RPC using a custom library written in Java that takes advantage of Java’s

framework for asynchronous I/O. For cryptographic operations, the implementation uses GNU’s

multiprecision library with 1024-bit RSA keys.

The Bamboo DHT [RGRK04] underlies and connects the storage servers. We use the

DHT as a distributed directory; that is, the DHT does not store data, but rather it stores pointers

that identify servers that store the data. A distributed directory provides a level of indirection that

158

allows flexible data placement which can increase the durability and decrease the cost of repairing

a given replica [CDH+06, vS04]. The storage servers use the distributed directory to publish and

locate extent replica locations. Additionally, the storage servers also use the DHT in the traditional

manner as a storage cache to reduce load on storage servers and the administrator. In particular,

Antiquity uses the DHT as a cache for soundness proofs (proofthat a write is consistent and durable,

see Section 8.4.4) to ensure they are available for all interested parties.

The prototype also relies on the DHT to help monitor server availability to determine

when repair is necessary. Using the DHT as a distributed directory, it is not efficient to monitor the

availability of each extent separately. Instead, we use theDHT to monitor server availability and use

that metric as a proxy for extent availability. To monitor server availability, we use a scheme that

periodically broadcasts a heartbeat message through a spanning tree defined by the DHT’s routing

tables [CDH+06]. A monitoring server receives liveness information from each storage server with

a frequency depending on its distance in the spanning tree. Additionally, it sends a repair audit if it

fails to receive an expected heartbeat.

In our implementation, each server in the system also servesas agateway. A gateway

accepts requests from a data source and works on behalf of that source. It determines the configu-

ration, set of storage servers responsible to handle the request. Further, it multicasts the request to

the configuration and aggregates responses. The use of the gateway lowers the bandwidth require-

ments of the data source. Because all requests are signed andall data is self-verifying, inserting

the gateway in the path between the data source and the storage servers does not affect security.

If the data source believes a failure is due to a faulty gateway, it can resend the request through a

different gateway. To make the soundness proof available tostorage servers earlier, the gateway

combines responses from the storage servers to create a proof and publishes that proof in the DHT.

A soundness proof is proof that a write is consistent and durable.

The administrator, required by the design, is implemented as a single server. We take sev-

eral measures to limit the work that must be performed by the administrator. First, the administrator

does notcreatenew configurations. Instead, itverifiesconfigurations proposed by the gateways.

The administrator requires a configuration be created basedon the neighbor lists of the underlying

DHT, which is effectively random. It compares the proposed configuration against neighbor lists

from the underlying DHT before signing, and thus authorizing, the configuration. To limit the num-

ber of configuration queries that an administrator must handle, other machines in the system can

cache valid configurations. Finally, to avoid the burden of notifying servers of their membership in

a new configuration, the administrator sends notice of new configurations to the gateway that is han-

159

App

Gateway
Storage
Servers

Time

Coord

reqT create_configT respTquorumT

Gateway

App

Admin

CoordCoord

(a) create()/put()/snapshot()/renew() path

Coord

Servers
Storage

reqT

Gateway

App

Time

respTquorumT

Gateway

App
Coord

(b) append()/truncate() path

Figure 10.1: The path of an (a)create()/put()/snapshot()/renew() and (b)
append()/truncate().

dling the request that requires the new configuration. The gateway is responsible for informing and

multicasting the message to the new configuration. We run theadministrator server on a machine at

our site in Berkeley.

We discuss these components in more detail in the following sections.

10.2 Gateways, Coordinators, Distributed Hash Tables, andProtocol

Details

To understand the performance of Antiquity, we must understand the complete path for

each request. First, a data source sends a request to a gateway via remote procedure call (RPC).

Second, the gateway multicasts the request to the storage servers and aggregates responses (possibly

contacting the administrator first for operations such ascreate()). Finally, the gateway forwards

the responses to the source as proof that the request is consistent and durable. Figure 10.1 illustrates

a typical path forcreate() andappend().

If many data sources use the same gateway, however, the gateway can become over-

160

Coord Coord

Storage
Servers

Coord

Time

 +1 upto 2 failuresTf f quorum (new config)Tcreate_configT +1 repair_reqTfrepair_auditT

Servers
Storage

Audit
Repair

Admin

Figure 10.2: The path of an (a)repair()

whelmed. Thus, for load balance in implementation, the gateway forwards the request to aco-

ordinator. The coordinator performs the multicast and aggregation. The coordinator is the root of

the identifier space. This implementation design decision was a response to observed overload of

gateways in implementation and has some negative consequences and benefits. The obvious con-

sequence is that a coordinator adds latency to a request. There are three benefits, however. First,

the coordinator effectively reduces the load of a gateway. The number of extents each coordinator

is responsible for is proportional to the number of servers.Each coordinator, identified as the root

of the identifier space, must multicast requests and aggregate responses for particular extents it is

responsible. Second, some of the added latency can be reduced since the coordinator is often a

storage server for the request since configurations are chosen based on the neighbor space. Finally,

recall that inserting the gateway and/or coordinator in thepath between the data source and storage

servers does not affect security since storage servers do not possess the source’s private key.

10.2.1 Path of acreate(), append(), andrepair()

We now review the path of acreate() andappend() as canonical examples that do and

do not involve the administrator. Figures 10.1.(a) and (b) illustrates these paths. Additionally, we

review the path of arepair() illustrated in Figure 10.2.

First, acreate() proceeds from the data source to a coordinator through a gateway. This

process involves a DHTlookup() andpublish() to locate and publish the coordinator. The coor-

dinator is the root of the identifier space. Next, the coordinator forwards the request to the admin-

istrator to create a configuration. After the administratorcreates a configuration and responds, the

coordinator multicasts thecreate() and configuration to the storage servers. The storage servers

sign that they received and applied the request. Next, the coordinator creates a soundness proof

161

Treq

create() scl + N (gw req)cl gw+[v+L]gw+ N (gw req)gw co+[v+2·L +P]co

append() scl + N (gw req)cl gw+[v+L]gw+ N (gw req)gw co+vco

Tcreateconfig

create() L + N (ad req)co ad +[v+s+2·D(ad req)]ad + N (ad resp)ad co

Tquorum

create() n·N (ss req)co ss+[2·v+2·D(ssreq)+s+P]ss+ N (ss resp)ss co+[n·v+P]co

append() n·N (ss req)co ss+[v+2·D(ssreq)+s]ss+ N (ss resp)ss co+[n·v]co

snapshot() n·N (ss req)co newss+[2·v+ D(ssreq)]newss+
N (oldss req)newssoldss+ D(oldss req)oldss+ N (oldss resp)oldssnewss+
[D(oldss resp)+s+P]newss+ N (ss resp)newss co+[n·v+P]co

Tresp

create() N (gw resp)co gw+ N (gw resp)gw cl +[n·v]cl

append() N (gw resp)co gw+ N (gw resp)gw cl +[n·v]cl

Table 10.1: Breakdown of latencies for all operations. Unless an operation is stated
explicitly, create() represents all operations that interact with the administrator such as
put()/snapshot()/renew(), and append() represents all operations that donot such as
truncate(). Total operation latency isTreq + Tcreateconfig + Tquorum+ Tresp for create() and
Treq + Tquorum+ Tresp for append(). For all time breakdownsN (X)a b = (αnet + Xβnet) and
D(X) = (αdisk+ Xβdisk) are the network (froma to b) and disk delays, respectively, whereα is
the latency,β is the inverse of the bandwidth (bytes per second), andX is the number of bytes.
Next, cl =client (or app),gw= gateway,co = coordinator,ad = administrator, andss= storage
server. Finally,s, v, L, and P are the times to sign, verify, DHTlookup(), and DHTpublish(),
respectively. Notice thatcreate() requires three signatures andappend() requires two.

from a quorum of the storage servers responses. The soundness proof certifies that thecreate()

is consistent and durable. Then, the coordinator publishesthe soundness proof in the DHT. Finally,

the coordinator sends the soundness proof included in a response to the data source via the gateway.

Figure 10.1.(a) shows the path ofcreate().

Second, the path of anappend() is similar to create() except the administrator is

skipped. Additionally, the DHTlookup() andpublish() can be skipped if the extent has recently

been read or written. As a result, anappend() is directly sent from the data source to the coordina-

tor via the gateway. The coordinator multicasts theappend() to the storage servers. Theappend()

includes a soundness proof from the previouscreate() operation. In general,append() includes a

soundness proof of the previous operation, which serves as apredicate for the newappend(). When

the storage servers receive anappend() request, they verify the request, and sign that they received

162

and applied the request. Next, the coordinator creates a newsoundness proof from a quorum of

storage server responses. The soundness proof certifies that theappend() is consistent and durable.

Finally, the coordinator simultaneously publishes the soundness proof into the DHT and sends it to

the data source via the gateway. Figure 10.1.(b) shows the path of append()

Finally, the path of a repair audit andrepair() includes a coordinator as well. The coor-

dinator, however, is often one of the storage servers since the coordinator is the root of the identifier

space and the storage servers in the configuration are chosenbased on neighbors in the identifier

space. Upon receiving a repair audit, the coordinator collects signed repair statements from the

storage servers in response to a repair audit. If 2f +1 or more signed repair statements are received,

the storage server forwards the repair statements to the administrator. The administrator creates a

new configuration and sends it to the coordinator to multicast to the new storage servers. The co-

ordinator can be skipped and the storage servers can communicate with the administrator directly.

We use the coordinator for increased efficiency to remove load from the administrator. Again, the

coordinator poses no security risk since it cannot sign configurations and the administrator can pick

a new coordinator if one is not being responsive. Figure 10.2shows the path of a repair audit and

repair().

10.2.2 Breakdown of latencies for all operations

In this section we discuss the notation and breakdown of latency for operations. Ta-

ble 10.1 shows the breakdown for operations that do and do notinvolve the administrator. Unless an

operation is stated explicitly,create() represents all operations that interact with the administrator

such asput(), snapshot(), andrenew(); append() represents all operations that donot such as

truncate().

The latency notation is as follows. Total latency for an operation that interacts with the

administrator such ascreate() is the sum ofTreq+ Tcreateconfig+ Tquorum+ Tresp, which represents

the time for a client to send a request, system to create a configuration, send and receive acknowl-

edgments from a quorum, and forward the result back to the client. An operation that does not

interact with the administrator such asappend() is similar to acreate() except it does not include

theTcreaeconfig term; as a result, the total latency isTreq+Tquorum+Tresp for append().

Each request includes a number of interactions with the network and disk. The network

and disk delays are represented with the following notation. N (X)a b = (αnet + Xβnet) is the net-

work delay from a servera to a serverb. α is the latency,β is the inverse of the bandwidth (bytes

163

per second), andX is the number of bytes. Similarly, for disk,D(X) = (αdisk+Xβdisk) is the disk

delay (α,β, andX have the same meaning as they do for the network notation).

The final set of notations represents the communicating components and time to perform

some auxiliary functionality. The communicating components include thecl = client (or app),gw=

gateway,co= coordinator,ad = administrator, andss= storage server. auxiliary routines include

the times to sign, verify, DHTlookup(), and DHTpublish() which are represented bys, v, L,

and P, respectively.

TheTreq term in Table 10.1 includes the time for a client to sign a request and send it to

the gateway of the storage system. The gateway verifies the request and performs a DHTlookup()

to locate the storage servers and coordinator. If a coordinator already exists, then the gateway

forwards the request; otherwise, it performs a DHTpublish() to announce that it has become the

coordinator followed by a DHTlookup(). Theappend() operation often does not need to perform

any DHT operations since servers cache the location of the coordinator and storage servers.

The Tcreateconfig term in Table 10.1 includes the time for the coordinator to identify the

list of neighbor servers to use in a configuration via a DHTlookup(). Furthermore, it includes the

time for the coordinator to forward the configuration creation request to the administrator. Next, it

includes the time for the administrator to verify the request, validate the neighbor list for the new

configuration, perform a disk read and write, and sign the newconfiguration. Finally, it includes

the time for the administrator to respond with the new configuration. Note that onlycreate()

operations interact with the administrator.

TheTquorumin Table 10.1 includes the time for the coordinator to multicast the operation to

all the storage servers in the configuration. Additionally,it includes the time for the servers to verify

the request, perform a disk read and write, sign its response, andpublish() its location (storage

servers invoke the DHTpublish() only for thecreate(), snapshot(), andput() operations).

Next, it includes the time for the coordinator to receive andverify the responses from a quorum

of servers andpublish() the resulting soundness proof. Notice, thatsnapshot() additionally

includes the time for the new snapshot servers to fetch the head of the log. This fetch includes the

time for the new snapshot server to contact a remote server storing the head of the log, time for the

remote server to read the data from disk, and time for the remote server to respond.

Finally, theTrespterm in Table 10.1 includes the time for the coordinator to respond to the

client through the gateway. Furthermore, it includes the time for the client to verify the soundness

proof contained in the response.

164

10.3 Summary and Discussion

The performance observed throughout Chapter 11 reflects theintrinsic properties of the

design.

One feature inherent in the design is the number of signatures required per operation.

The use of quorums keeps the number of required signatures low. The data source must sign a

certificate for each request that modifies the state of the log. Each storage server that handles such

a request must sign its response. Because thecreate(), snapshot(), andput() requests require

a new configuration, these operations also require the administrator to create one signature. Note,

the most common operation,append(), does not require the additional administrator signature.

The number of signatures required in Antiquity matches the number required of other systems that

tolerate Byzantine failure [REG+03]. In particular, operations that involve the administrator require

three signatures and those that do not involve the administrator require two.

Another integral aspect of the design is the number of messages transmitted to handle a

request. The quorum-based Antiquity system usesO(n) messages between coordinator and storage

servers; the storage servers do not exchange any messages. To obtain a new configuration for

create(), snapshot(), andput() operations, the gateway must send an additional message to the

administrator. The number of messages required in Antiquity compares favorably to other designs

based on Byzantine agreement protocols that requireO(n2) between servers.

Byzantine quorums also limit the number ofroundsof messages to complete a request.

Quorums require one round of communication; the coordinator sends a message to each storage

server, and each server responds. Byzantine agreement algorithms, on the other hand, require three

rounds of messages between storage servers. By limiting thenumber of rounds, the quorum-based

design reduces the number of network round trips.

Finally, the design maintains consistency and durability of the log even though a quorum

may not immediately be available. In particular, a quorum repair algorithm restores the log to

a consistent and available state. The consistency and durability come from the soundness proof

which ensures that a sound write is durable as long as 2f +1 storage servers exist(Theorem 1).

165

Chapter 11

Evaluation

In this chapter, we present results from testing the Antiquity prototype deployed on Planet-

Lab and a local cluster. We focus our evaluation on the primitive operations provided by the storage

system, but we also describe our experiences with a versioning archival back-up application.

11.1 Experimental Environment

We are currently running two separate Antiquity deployments. Both deployments are con-

figured to replicate each extent on a configuration of seven storage servers (except where explicitly

stated otherwise). Thus, each configuration can toleratetwo faulty servers in each configuration.

Both deployments are hosted on machines shared with other researchers, and, consequently, perfor-

mance can vary widely over time.

The first deployment runs on 60 nodes of a local cluster. Each machine in thestorage

clusterhas two 3.0 GHz Pentium 4 Xeon CPUs with 3.0 GB of memory, and two 147 GB disks.

Nodes are connected via a gigabit Ethernet switch. Signature creation and verification routines take

an average of 3.2 and 0.6 ms, respectively. This cluster is a shared site resource; a load average of 5

on each machine is common.

The other deployment runs on thePlanetLabdistributed research test-bed [BBC+04].

We use 400+ heterogeneous machines spread across most continents in the network. While the

hardware configuration of the PlanetLab nodes varies, the minimum hardware requirements are 1.5

GHz Pentium III class CPUs with 1 GB of memory and a total disk size of 160 GB; bandwidth is

limited to 10 Mbps bursts and 16 GB per day. Signature creation and verification take an average

of 8.7 and 1.0 ms, respectively. PlanetLab is a heavily-contended resource and the average elapsed

166

 0

 100

 200

 300

 400

 500

 600

 700

 800

 4 8 16 32 64 128 256 512

T
hr

ou
gh

pu
t K

B
/s

Update Size (KB)

Throughput (Cluster Deployment)

Base Case - 4 KB put()
Using Append Interface

Figure 11.1: Aggregation increases system throughput by reducing computation at the data source
and in the infrastructure. The base case shows the throughput of a client that stores 4 KB blocks
(and a certificate) usingput() operation, as in a traditional DHT.

time is often greater then 210.5 and 10.8 ms.

We apply load to these deployments using 32 nodes of a different local cluster. Each

machine in thetest clusterhas two 1.0 GHz Pentium III CPUs with 1.0 GB of memory, and two 36

GB disks. Signature creation and verification takes an average of 6.0 and 0.6 ms, respectively. The

cluster shares a 100 Mbps link to the external network. This cluster is also a shared site resource,

but its utilization is lower than the storage cluster.

11.2 Cluster Deployment

We first report on results from a deployment of Antiquity on the local storage cluster. In

addition to serving as a tool for testing and debugging, thisdeployment also allows us to observe

the behavior of the system when bandwidth is plentiful and contention for the processor is relatively

low.

Figure 11.1 shows how aggregation improves performance. Inthis test, a single data

source submits synchronous updates of various sizes to Antiquity. At the data source, aggrega-

tion reduces the cost of interacting with the system by amortizing the cost of creating and signing

167

 0

 2

 4

 6

 8

 10

 12

 14

 16

 8 16 24 32 40 48 56 64

T
hr

ou
gh

pu
t M

B
/s

Number of Testers

Throughput (Cluster Deployment)

Bulk Writes (1 MB) Throughput
Small Writes (32 kB) Throughput

Figure 11.2: The throughput of the system scales with the number of users until resources at the stor-
age servers are saturated. Performing bulk writes using theput() interface, the cluster deployment
becomes saturated with 48 data sources. Using theappend() interface, the sustained throughput is
much lower because each quorum operation adds only a small amount of data to the log.

certificates and transmitting network messages over more data. In the storage system, aggregation

reduces the number of quorum operations that must be performed to write a given amount of data

to the system. For comparison, we show the throughput of a data source that stores data using syn-

chronousput() operations with payload of 4 KB of application data, as in typical in a DHT. The

put() throughput is lower thanappend() operations of equivalent size becauseput() operations

require a new configuration be created by the administrator.

Figure 11.2 shows how the throughput of the system scales with load. In this test, mul-

tiple data sources, each with a distinct key pair and log, submit synchronous updates to the sys-

tem. In some tests, the source writes data to the log incrementally in 32 KB chunks using the

append()/snapshot()/truncate() interface; in other tests, the source writes data to the log in

bulk using theput() operation. In all tests, extents have a maximum capacity of 1MB. The graph

shows that, using theput() interface, throughput increases with the number of users upto 48 users.

With additional data sources, contention at the storage servers reduces throughput. We would ex-

pect this number to increase if we could spread the load across more servers and network links. The

throughput of sources using theappend() interface is substantially lower because each quorum

operation adds a relatively small amount of data to the log.

168

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

F
ra

ct
io

n
of

 O
pe

ra
tio

ns

Latency (ms)

CDF of Operation Latency (Cluster Deployment)

Null
Create
Append
Snapshot
Truncate
Put

Figure 11.3: Different operations have widely varying latency. The latency is dependent on the
amount of data that must be transferred across the network and the amount of communication with
the administrator required. The latency CDF of all operations (even thenull() RPC operation)
exhibits a long tail due to load from other, unrelated jobs running on the shared cluster.

Next, we measure the latency of individual operations. In this test, a single data source

issues a variety of operations, including incremental writes of 32 KB using theappend() interface

and bulk writes using theput() interface. Extents are configured to have a maximum capacity

of 1 MB. Figure 11.3 presents a CDF of the latency of various operations. Table 11.1 presents

a breakdown of the median latency times. The latency of different types of operations various

significantly. Theappend() andtruncate() operations are the fastest because they transfer little

or no data and do not require any interaction with the administrator. Thecreate() operation is

slightly slower because, though it contains no applicationpayload, it must contact the administrator

to obtain a new configuration. Finally, thesnapshot() andput() operations are the slowest; they

transfer large amounts of data and must contact the administrator to find a suitable configuration of

storage servers. The latency distribution of all operations exhibit a long tail due to load from other

unrelated processes running on the same machines; note, even thenull() RPC call can take longer

than one second. This delay is due to load from unrelated jobsrunning on the shared cluster.

Table 11.1 illustrates that interacting with the DHT consumes a significant fraction of

time. In particular,append() and truncate() interact with the DHT one time topublish()

the soundness proof, although this is necessary for repair.However, operations that create extents

169

Time (ms)
No Admin Admin

Phase truncate() 32 kBappend() create() snapshot() 1 MB put()

Treq

Signs Request 6.0 6.0 6.0 6.0 6.0
Send Request 1.8 4.2 1.8 1.8 81.6
Verify Request 0.6 1.0 0.6 0.6 13.1
DHT lookup() Locations (cached) 0.0 (cached) 0.0 13.2 13.2 13.2
DHT publish() Coordinator (cached) 0.0 (cached) 0.0 7.2 7.2 7.2
subtotal 8.4 11.2 28.8 28.8 121.1

Tcreateconfig

DHT lookup() Neighbors 6.6 6.6 6.6
Send Config Request 1.6 1.6 1.6
Verify Config Request 0.6 0.6 0.6
Create New Config 8.2 8.2 8.2
Sign New Config 3.2 3.2 3.2
Reply w/ New Config 1.6 1.6 1.6
subtotal 0.0 0.0 21.8 21.8 21.8

Tquorum

Send Request 1.8 6.6 1.8 1.8 157.4
Verify Request 0.6 1.0 1.2 1.2 13.7
Fetch Extent 98.4
Disk 4.1 5.9 4.1 61.9 61.9
DHT publish() Location 7.2 62.3 42.3
Sign Result 3.2 3.2 3.2 3.2 3.2
Send Reply 1.6 1.6 1.6 1.6 1.6
Verify Replies 4.2 4.2 4.2 4.2 4.2
DHT publish() Proof 7.2 7.2 63.3 63.3 63.3
subtotal 22.7 29.7 86.6 297.9 347.6

Tresp

Reply w/ Proof 1.7 1.7 1.7 1.7 1.7
Verify Proof 4.2 4.2 4.2 4.2 4.2
subtotal 5.9 5.9 5.9 5.9 5.9

Total – Median (Min) 37.0 (31.0) 46.8 (38.0) 143.1 (62.0) 354.4 (137.0) 496.4 (338.0)

Table 11.1: Measured breakdown of the median latency times for all operations. For all operations,
the client resides in the test cluster and the administratorand storage servers reside in the storage
cluster. The average network latency and bandwidth betweenapplications on the test cluster and
storage cluster is 1.7 ms and 12.5 MB/s (100 Mbs), respectively. The average latency and bandwidth
between applications within the storage cluster is 1.6 ms and 45.0 MB/s (360 Mbs). All data is stored
to disk on the storage cluster using BerkeleyDB which has an average latency and bandwidth of 4.1
ms and 17.3 MB/s, respectively. Signature creation/verification takes an average of 6.0/0.6 ms on
the test cluster and 3.2/0.6 ms on the storage cluster. Bandwidth of the SHA-1 routine on the storage
cluster is 80.0 MB/s. Finally, DHTlookup() and DHTpublish() take an average of 4.2 ms and
7.2 ms, respectively.

170

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5

T
hr

ou
gh

pu
t M

B
/s

Number of Faults Tolerated (f)

Throughput (Cluster Deployment)

Put Throughput
Append Throughput

Figure 11.4: Increasing the deployment’s tolerance to faults reduces the system throughput since
the system must transfer more data with each write operation.

(create(), snapshot(), put()) interact with the DHT over five times. Furthermore, multiple

DHT publish() operations to the same identifier often take longer than expected since (locally to

a DHT server)publish() sometimes competes with other BerkeleyDB operations for use of the

disk (e.g. BerkeleyDB log cleaning).

Figure 11.4 shows how the size of a configuration affects system throughput. In this

experiment, we vary the deployment to tolerate varying number of faults, f , in a configuration. For

each arrangement, the size of a configuration is 3f +1. When the size of the configuration increases,

the system must transfer more data with each write operation. The extra messages and bandwidth

reduce write throughput. As expected, because the quorum protocols requiresO(n) messages, the

throughput roughly decreases linearly with the number of faults tolerated. We would expect the

throughput to drop more quickly for designs based on Byzantine agreement because those protocols

requireO(n2) communication.

11.3 PlanetLab Deployment

Next, we report on results from a deployment of Antiquity on PlanetLab. For reasons

illustrated in Figure 11.5, the focus of our evaluation of the PlanetLab deployment is not on its

171

 0

 0.25

 0.5

 0.75

 1

 0 20 40 60 80 100 120

F
ra

ct
io

n
of

 E
ve

nt
s

Latency (s)

CDF of Operation Latency (PlanetLab Deployment)

Latency of Append Operations

Min 25% 50% 90% 95% 99% Max

1.08 4.41 10.2 63.1 124.5 302.1 615.9

Figure 11.5: The latency of operations on PlanetLab varies widely depending on the membership
and load of a configuration. As an example, this graphs plots the CDF of the latency for appending
32 KB to logs stored in the system. The table highlights key points in the curves.

performance but data maintenance over time. That graph plots the CDF of the latency of more than

800 operations that append 32 KB of data to logs in the systems. The accompanying table reports

several key points on the curve. Given the best of circumstances, the latency of anappend()

operation can be as low as one second. However, when configurations include distant or overloaded

servers or bandwidth is restricted on some path, the latencyincreases considerably. Because of the

characteristics of the PlanetLab testbed, many operationsare very slow.

Our deployment of PlanetLab focuses on how the design maintains data over time, es-

pecially as machines fail. We built a simple test application that writes logs to the system and

periodically checks that they are still available. Each logconsists of one key-verified extent (the

log head) and an average of four hash-verified extents (the number of hash-verified extents vary

uniformly with an average of four). Key-verified extents vary in size uniformly up to 1 MB; all

hash-verified extents are 1 MB. The average size of a log is 4.5MB (0.5 MB log head and 4 x 1MB

hash-verified extents). The test application stores 18,779logs (18,779 log heads and 75,085 hash-

verified extents) totaling 84 GB. After writing an extent to the system, this test application records

a summary of the extent in a local database. No data was lost, even though 10% of the servers

suffered permanent failures.

We perform various tests to measure the efficacy of the Antiquity deployment. First, we

172

measure the percent of extents with at least a quorum of replicas available and in a consistent state

in Section 11.3.1. This test is important since it measures the percent of extents where progress

can be made. Next, In Section 11.3.2, we measure the cost of maintaining secure logs in terms of

replicas created. In particular, we measure the average number of replicas created per unit time and

the total number of replicas created. This test measures thesystems ability to maintain sufficient

replication levels in response to server failure.

11.3.1 Quorum Consistency and Availability

In this section we measure the quorum consistency and availability. Our first experiment

uses an application to periodically read an extent. Every 10seconds, it selects at random an entry

from the database and attempts to contact a quorum of the servers hosting that extent. It reports

whether it was able to reach a quorum of servers. It also verifies that the replicas are in a consistent

state and that state matches what was written. Our second measurement uses a server availability

trace, server database log, and extent configuration to produce a similar consistency and availability

metric. The first experiment measures the expected application performance and includes inter-

mittent effects such as server load, network performance, etc.; whereas, the second measurements

ignore such effects and simply use server availability.

Figure 11.6.(a) shows the results of this first test. The x-axis shows the two month duration

of the test. The top curve shows the percentage of successfulquorum checks. A software bug

between May 13 through 23 caused over half the servers not to respond to RPC requests. Periodic

server application reboot temporarily masked the bug. But the performance continued to degrade

until the problem was solved on May 23. Over the life of the test (including the May 13 through 23

interruption), 94% of checks reported that a quorum of servers was reachable and stored a consistent

state of the extent. This figure matches a computed estimate for the number of valid configuration.

Using a monitor on the remote hosts, We have measured the average availability of machines in

PlanetLab to be 90%. Note, this figure indicates that the nodeis up, not necessarily that the node

can be reached over the network. Given that measurement, we would expect a quorum of 5 (out of

7) servers to be available 94% of the time.

The lower curve on the plot shows the percentage of checks that failed due to RPC failures,

network disruptions, and other timeouts. We attempt to reach a quorum through 5 different gateways

before marking a check failed. Our measurements show that upto 90% of the failed checks may

be caused by components outside of Antiquity. This percentage increases as the load on PlanetLab

173

increases. Furthermore, the high load causes a number of Antiquity processes to be terminated due

to resource exhaustion. Thus, the actual percentage of consistent quorums (shown next) is higher

than the 94% measured from the application.

Figure 11.6.(b) shows the results of the second test. The x-axis shows the two month

duration of the test. The top curve shows the percentage of extents where a quorum is available and

consistent as measured by a server availability trace, database log, and extent configuration. The

server availability trace ignores the software bug; as a result, until May 23, 100% of the extents had

at least a quorum available and consistent. After May 23, however, server churn increased, tripling

from 24 server failures per hour to 76. The cause for the increase in server churn is a watchdog

timer that restarts a server’s Antiquity application when it is unresponsive for over six minutes.

Figure 11.7 shows the number of servers available and serverfailures during each hour of the test.

11.3.2 Quorum Repair

Antiquity’s repair process is critical to maintain the availability of a quorum of servers for

each extent. Figure 11.8 plots the cumulative number of replicas created in the PlanetLab deploy-

ment. During the period of observation, Antiquity initially created a total of 657,048 extent replicas

(each of the 93,864 extents were initially created with 7 replicas). The replicas initially accounted

for 577 GB of replicated storage (84 GB of unique storage).

In order to maintain the availability of a quorum of servers,Antiquity triggers a quorum

repair() protocol when less than a quorum of replicas are available. Eachrepair() replaces at

least three replicas since that is the least number of unavailable servers required to triggerrepair()

with f = 2. The deployment experienced an average of 114 failures perhour (Antiquity application

failures). In response to failures, Antiquity triggeredrepair() 92 times per hour. As the number

of unavailable servers accumulated, nearly every failure triggered arepair(). Eachrepair()

replaced an average of four replicas. As a result, Antiquitycreated a total of 653,028 replicas due

to repair() during the two month period of observation which cost the system less than 0.31 KB/s

(320 Bps) per server due torepair(). Coupled with maintaining the availability and consistency

of up to 97% of the extents, this demonstrates that Antiquityis capable of maintaining sufficient

replication levels in response to server failure.

174

11.4 A Versioning Back-up Application

Finally, we have built a versioning back-up application that stores data in Antiquity. The

application translates a local file system into a Merkle treeas shown in Figure 6.4 and used in

similar previous systems [MT85, DKK+01]. The application records in a local database when data

was written to the infrastructure. It checks the local database before archiving any new data. This

acts as a form of copy-on-write, reducing the amount of data transmitted.

We stored the file system containing the Antiquity prototype(source code, object code,

utility scripts, etc.) in PlanetLab. The file system is recorded in 15 1-MB extents. The system has

repaired two of the 15 extents while ensuring both consistency and durability of the file system.

11.5 Experience and Discussion

Putting it all together, Antiquity maintained 100% durability and 97% quorum availability

of 18,779 logs broken into 93,864 extents. On average, when aserver failed, it took the system 30

minutes to detect and classify the server as failed (value oftimeout) and three hours to replace

replicas stored on failed server with less than a quorum of remaining replicas available. Once repair

completed for a particular extent, at least a quorum of servers was again available. Reflecting on

our experience, the structure of the secure log made this an easier task for three reasons.

First, maintaining the integrity of a secure log is easier than other structures since the

verifier for the log (and each extent) defines the order of appends and cryptographically ensures

the content. In particular, there is only one sequence of appends that results in a particular verifier.

This verifier is used as a predicate to ensure that new writes are appended to the log in a consistent

fashion. Furthermore, this verifier is used by the storage system to ensure that each replica stores the

same state. In the deployment, this verifier was a critical component used to ensure the consistency

and integrity of the log and all of its extents. Furthermore,it is cheap to compute, update, and

compare.

Second, a storage system that implements a secure log is a layer or middleware in a larger

system. The secure log abstraction bridges the storage system and higher level applications together.

In fact, the secure log interface implemented by Antiquity is a result of breaking OceanStore into

layers. In particular, a component of OceanStore was a primary replica implemented as a Byzantine

Agreement process. This primary replica serialized and cryptographically signed all updates. Given

this total order of all updates, the question was how to durably store and maintain the order? Fur-

175

thermore, what should be the interface to this storage system? An append-only secure log answered

both questions. The secure log structure assists the storage system in durably maintaining the order

over time. The append-only interface allows a client to consistently add more data to the storage

system over time. Finally, when data is read from the storagesystem at a later time, the interface

and protocols ensure that data will be returned and that returned data is the same as stored.

Finally, self-verifying structures such as a secure log lend themselves well to distributed

repair techniques. The integrity of a replica can be checkedlocally or in a distributed fashion. In

particular, we implemented a quorum repair protocol where the storage server replicas used the self-

verifying structure. The structure and protocol provided proof of the contents of the latest replicated

state and ensured that the state was copied to a new configuration.

176

 0

 0.25

 0.5

 0.75

 1

May 09 May 17 May 25 Jun 02 Jun 10 Jun 18 Jun 26 Jul 04 Jul 12

P
er

ce
nt

ag
e

Time (UTC)

Quorum Availability and Consistency (PlanetLab Deployment)

Percent of Quorums Available and Consistent
Percent of Failures Due to Timeouts

(a) Periodic Application Read

 0

 0.25

 0.5

 0.75

 1

May 09 May 17 May 25 Jun 02 Jun 10 Jun 18 Jun 26 Jul 04 Jul 12

P
er

ce
nt

ag
e

Time (UTC)

Quorum Availability and Consistency (PlanetLab Deployment)

Percent of Quorums Available and Consistent

(b) Server Availability Trace

Figure 11.6: Quorum Consistency and Availability. (a) Periodic reads show that 94% of quorums
were reachable and in a consistent state. Up to 90% of failed checks are due to network errors and
timeouts. (b) Server availability trace shows that 97% of quorums were reachable and in a consistent
state. This illustrates the increase in performance over (a) where timeouts reduced the percent of
measured available quorums.

177

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

May 09 May 17 May 25 Jun 02 Jun 10 Jun 18 Jun 26 Jul 04 Jul 12A
va

ila
bl

e
S

er
ve

rs
 a

nd
 F

ai
lu

re
s

pe
r

H
ou

r

Time (UTC)

Available Servers and Server Failure (PlanetLab Deployment)

Available Servers
Server Failures

Figure 11.7: Number of servers with their Antiquity application available per hour. Additionally,
number of failures per hour. Most failures are due to restarting the unresponsive Antiquity instances.
As a result, a single server may restart its Antiquity application multiple times per hour if the
instance is unresponsive.

 0

 200

 400

 600

 800

 1000

 1200

 1400

May09May17May25Jun02Jun10Jun18Jun26 Jul04 Jul12

C
um

ul
at

iv
e

R
ep

lic
as

 C
re

at
ed

 (
10

00
s)

Time (UTC)

Repair (PlanetLab Deployment)

total
create
repair

Figure 11.8: Number of replicas created over time due to storing new data and in response to failure.

178

Part V

Related and Future Work

179

Chapter 12

Related Work

This thesis focuses on wide-area distributed storage systems. It benefits from prior anal-

yses and experience of many prior systems. Table 12.1 illustrates a portion of the design space of

many systems that utilize replication. We discuss the systems and analyses further.

12.1 Logs

The log-structured file system (LFS) [MRC+97] used a log abstraction to improve the

performance of local file systems. Schneier and Kelsey [SK98] and SUNDR [LKMS04] demon-

strated how to use a secure log to store data on an untrusted remote machines. They do not address

how to replicate the log.

12.2 Byzantine Fault-Tolerant Services

Byzantine fault-tolerant services have been proposed to help meet the challenges of unse-

cured, distributed environments. FarSite [ABC+02], OceanStore [REG+03], and Rosebud [RL03]

aim to build distributed storage systems using Byzantine fault-tolerant agreement protocols [LSP82,

CL99]. Abd-El-Malek et al [AGG+05], Goodson et al [GWGR03], the COCA project [ZSv00],

Fleet [MRTZ01], and Martin and Alvisi [MA04] build reliableservices using Byzantine fault-

tolerant quorum protocols [MR97]. HQ Replication combinesboth Byzantine fault-tolerant agree-

ment and quorum protocols to reduce communication for the common case and order conflicting

updates. Martin and Alvisi define a protocol that allows the configuration to be changed with the

180

System Byzantine wide- mutable security durability consistency aggregation update maintenance
tolerance area efficiency efficiency

Antiquity Y Y Y Y Y Y Y Y Y
Pond [REG+03] Y Y Y Y Y Y N N N
Byzantine Agreement [LSP82, Sch90] Y ? Y Y Y Y N N ?
Castro/Liskov [CL99]
HQ Replication [CML+06] Y ? Y Y Y Y N Y ?
Byzantine Quorums [MR97] Y ? Y Y Y Y N Y N
CMU [AGG+05, GWGR03]
Dynamic Byzantine Quorums [MA04] Y ? Y Y Y Y N Y Y
COCA [ZSv00] Y ? ? Y Y Y ? Y ?
Chain Replication [vS04] N N Y N Y Y N Y Y
Secure Log [SK98, CPH01] N N Y Y ? Y ? Y N/A
Venti [QD02] N N Y ? Y ? N Y N/A
Rosebud [RL03] Y ? Y ? Y Y N N ?
Etna [MGM04] N Y Y N Y Y N Y ?
Carbonite [CDH+06] N Y N N/A Y N/A N N/A Y
Glacier [HMD05] N Y N N/A Y N/A Y N/A ?
OpenDHT [RGK+05] N Y ? N Y N N ? ?
Dhash [Cat03]
PAST [DR01]
TotalRecall [BTC+04] N Y ? N Y ? N ? Y
Myriad [LMPZ02], EMC [Cor], N ? Y ? Y ? N Y ?
Distributed DBs [DGH+87]
(i.e. Mirroring)
GFS [GGL03] N ? ? N ? ? Y Y Y
RAID [PGK88] N N Y N ? ? N Y Y
Harp [LGG+91]
Petal [LT96]

Table 12.1: System Comparison

help of an administrator. None of the agreement or quorum systems reactively trigger reconfigura-

tion.

12.3 Wide-area Distributed Storage Systems

Many researchers have used distributed hash table (DHT) technology to build wide-

area distributed storage systems. Notable examples are Carbonite [CDH+06], CFS [DKK+01],

Glacier [HMD05], Ivy [MMGC02],PAST [DR01], Total Recall [BTC+04], and Venti [QD02]. Car-

bonite and Total Recall optimize for the wide-area by reducing the number of replicas created due

to transient failures. Glacier uses aggregation to reduce storage overheads. Ivy uses a log structure

similar to Antiquity; however, the log is block-based instead of extent-based. None of these systems

implement a Byzantine consistency algorithm. Chain Replication [vS04] and Etna [MGM04] both

implement consistency protocols, but assume fail-stop failures.

12.4 Replicated Systems

Replicated systems like GFS [GGL03], Harp [LGG+91], Petal [LT96], RAID [PGK88],

and XFS [ADN+95] have been shown to reduce the risk of data loss. GFS and XFSalso use

aggregation. These systems target well-connected environments.

181

Distributed databases [DGH+87], distributed operating systems such as Amoeba [Tvv+90],

online disaster recovery systems such as Myriad [LMPZ02], and EMC storage systems [Cor] use

the wide-area replication to increase durability. Myriad and EMC replicate data between a primary

and backup site. Wide-area recovery is initiated after sitefailure; single disk failure is repaired

locally with RAID.

12.5 Replication analysis

The use of a birth-death data-loss model is a departure from previous analyses of reli-

ability. Most DHT evaluations consider whether data would survive a single event involving the

failure of many nodes [DKK+01, BR03, WK02]. This approach does not separate durabilityfrom

availability, and does not consider the continuous bandwidth consumed by replacing replicas lost to

disk failure.

Fault-tolerant storage systems designed for single-site clusters typically aim to continue

operating despite some fixed number of failures. These systems often choose the number of replicas

with an eye to a voting algorithm to ensure correct updates inthe presence of partitions or Byzantine

failures [LGG+91, CL02, GBHC00, SFV+04, LS00].

Our birth-death model is a generalization of the calculations that predict the MTBF for

RAID storage systems [PGK88]. Owing to its scale, a distributed system has more flexibility to

choose parameters such as the replication level and number of replica sets when compared to RAID

systems.

Blake and Rodrigues argue that wide-area storage systems built on unreliable nodes can-

not store a large amount of data [BR03]. Their analysis is based on the amount of data that a host

can copy during its lifetime and mirrors our discussion of feasibility. We come to a very different

conclusion because we are considering a stable system membership where data loss is driven by

disk failure. Blake and Rodrigues assumed a system with continual membership turnover.

FAB [SFV+04] and Chain Replication [vS04] both consider how the number of possible

replica sets affects data durability. The two come to opposite conclusions: FAB recommends a

small number of replica sets since more replica sets providemore ways for data to fail. Chain

replication recommends many replica sets to increase repair parallelism and thus reduce repair time.

These observations are both correct: choosing a replica placement strategy requires balancing the

probability of losing some data item during a simultaneous failure (by limiting the number of replica

sets) and improving the ability of the system to tolerate a higher average failure rate (by increasing

182

the number of replica sets and reconstruction parallelism).

Nath et al [NYGS06] demonstrates that most correlated failures are small, involve few

servers, and are predictable given the failure of a server (e.g. within the same site). Further, most of

these small correlated failure events do not cause data losssince they likely do not destroy all the

replicas for a particular objects. However, large correlated failure events that cause many servers

to fail simultaneously occur very infrequently and are unpredictable [NYGS06]. As a result, mod-

els used to estimate the number of replicas to create should consider correlated failures; however,

deployed systems that use simple replica placement strategies such as random (with small optimiza-

tions) are often sufficient to avoid most observed correlated failures.

12.6 Replicated systems

Petal [LT96], DDS [GBHC00], Map Reduce [DG04], xFS [ADN+95], and Harp [LGG+91]

all employ replication to deal with failures. They are designed for LANs where bandwidth is plen-

tiful and transient failures are rare. As a result they can maintain a small, fixed number of replicas

and create a new replica immediately following a failure.

Distributed databases [DGH+87] use wide-area replication to distribute load and increase

durability. These systems store mutable data and focus on the cost of propagating updates, a con-

sideration not applicable to the immutable data we assume.

Total Recall is the system most similar to our work [BTC+04]. We borrow from Total Re-

call the idea that creating and tracking additional replicas can reduce the cost of transient failures.

Total Recall’s lazy replication keeps a fixed number of replicas and fails to reincorporate replicas

that return after a transient failure if a repair had been performed. Total Recall must also use in-

trospection or guessing to determine an appropriate high water mark that Carbonite can arrive at

naturally.

Glacier [HMD05] focuses on durability despite correlated failures, while we aim to with-

stand only those bursts of failures that one would ordinarily expect with random uncorrelated fail-

ures.

Beehive [RS04] creates and places replicas of objects to meet a target lookup latency. The

techniques in this paper use replication to provide only durability; we rely on routing optimizations

to reduce latency [DLS+04].

Our systems store data in the DHT; an alternative is to store data on designated storage

servers and use the DHT to store pointers to those nodes [REG+03, K+00]. This arrangement

183

simplifies replica maintenance since much less data needs tobe maintained in the DHT.

Many systems use mirroring to maintain data durably in the wide area [Cor, PMF+02].

Data is replicated between a primary and backup sites and further replicated locally at each site

using RAID. Wide area recovery is initiated only after site failure; individual disk failure can be

repaired locally. The techniques presented in this paper are relevant since the amount of data to be

transferred after a failure is large compared to the wide area network link capacities.

12.7 Digital Libraries

Digital libraries such as LOCKSS [MRG+05] preserve journals and other electronic doc-

uments for significantly long periods of time. Durability ofdocuments is the primary goal and

availability is secondary. The documents are read-only andcannot be updated. The documents

are replicated at many sites to maintain durability. Many ofthe documents stored do not have an

“owner”; as a result, the system relies on voting to maintainthe integrity. This design is different

than a distributed wide-area on-line archival storage system where there is an owner for each doc-

ument. Furthermore, the document can be modified and the system ensures that the stored state

reflects changes made by the owner.

184

Chapter 13

Future Work

In this chapter, we revisit the assumptions and limitationsof the approach described in

previous chapters, discussing opportunities for future work that we hope to pursue in the future.

13.1 Proactive Replication for Data Durability

Wide-area storage systems replicate data for durability. Acommon way of maintaining

the replicas is to detect server failures and respond by creating additional copies. This reactive

technique can minimize total bytes sent since it only creates replicas as needed. However, it can

create spikes in network use after a failure. These spikes may overwhelm application traffic and can

make it difficult to provision bandwidth.

Most existing distributed wide-area storage systems use a reactive technique to maintain

data durability [BTC+04, CDH+06, DLS+04, HMD05, RGK+05]. The bandwidth needed to sup-

port this reactive approach can be high and bursty: each timea server fails permanently, the system

must quickly produce a new copy of all the objects that the server had stored [BR03]. Quick repli-

cation is especially important for storage intensive applications like OceanStore/Pond [REG+03],

OverCite [SLC+06], or ePOST [MPHD06] where data loss must be minimized. While reactive sys-

tems can be tuned to provide durability at low total cost [CDH+06], the need to repair quickly can

cause dramatic spikes in bandwidth use when responding to failures. In many settings, provisioning

for high peak usage can be expensive.

Proactively replicating objects before failures occur is an alternative to maintaining data

durability. In particular, proactive replication constantly creates additional redundancy at low rates.

This technique evens out burstiness in maintenance traffic by shifting the time at which bandwidth

185

is used. Instead of responding to failures, a proactive maintenance system operates constantly in the

background, increasing replication levels during idle periods. Operating proactively in this manner

results in a predictable bandwidth load: server operators and network administrators need not worry

that a sudden burst of failures will lead to a corresponding burst in bandwidth usage that might

overwhelm the network. Instead, any burstiness in network usage will be driven by the application’s

actual workload. The question is whether this method can still prevent data from being lost.

Tempo [SHD+06] proposed by Sit et al. is a proactive maintenance scheme.In contrast

to systems that use as much bandwidth as necessary to meet a durability specification (given ex-

plicitly [BTC+04] or in the form of a minimum replication level [DLS+04]), each server in Tempo,

a proactive replication system, operates under a bandwidthbudget specified by the server operator.

A budget is attractive because it is easy for the user to configure: bandwidth is a known, measur-

able and easily understood quantity. The servers cooperateand attempt to maximize data durability

within their individual budgets by constantly creating newreplicas, whether or not they are needed

at the moment. While systems that specify a number of replicas respond to failures by varying the

bandwidth usage in an attempt to maintain that replication level, proactive replication systems in-

stead effectively adjusts the available replication levelsubject to its bandwidth budget constraints.

Tempo showed that in a simulation based on PlanetLab measurements over a 40 week period, proac-

tive replication can maintain more than 99.8% of a 1TB workload durably using as little as 512 bytes

per second of bandwidth on each server. With 2K per second perserver, no objects were lost: this

amount of bandwidth is comparable to that used by reactive systems but proactive replication uses

this much more evenly.

Proactive replication with constant repair traffic is an interesting concept and deserves

further investigation. For instance, it could be used in domains where maintaining a constant data

repair rate might be as important as maintaining the minimum. For example, a storage system with

proactive repair can better ensure quality of service (e.g.response time) observed by applications

by dedicating a specified amount of the bandwidth budget for repair. Sensor networks that monitor

and store samples of their environment are another example.Proactive repair would allow designers

to better calculate expected lifetime of the sensor networkbased on expected power usage due to

proactive repair.

186

E.g. Sostenuto Constant−rate

Closed−loop
(Use monitor info)

Open−loop
(No information)

(1) schedule
(2) redundancy
(3) placement

(1) schedule
(2) redundancy
(3) placement

(1) schedule
(2) redundancy
(3) placement

Periodic Reactive

E.g. Most DHT’s

E.g. Folklore

Figure 13.1: Design Space for Repair Algorithms.

13.2 Closed-loop, Proactive Repair, for Data Durability

Both reactive and proactive repair schemes discussed are closed-loop systems, they mon-

itor the number of available replicas in order to decide which data object to repair. In particular,

closed-loop systems, sense and respond to the current stateof a system. For example many systems

monitor server availability and keep track of the set of replicas that are stored on each server. Once

repair is initiated, the storage system can make an informeddecision on the number of new replicas

to create.

Open-loop systems are an alternative. An open-loop storagesystem does not use any

monitored information. As a result, an open-loop system periodically creates new replicas regard-

less of the number of available replicas and whether any replicas have actually failed or not. The

simple analysis in Section 4.1.1 is an example of an open-loop system.

Servers in open-loop systems independently decides when tocreate an additional replica

for a data object and where to store the new replica. This “state-less” form of replication is poten-

tially easier to design and implement. However, to ensure some level of data durability, an open-loop

system uses the most resources of any algorithm proposed thus far. Figure 13.1 shows the design

space. Nevertheless, this state-less form of replication may be ideal in environments where commu-

nication required for monitoring and coordination is expensive. Such environments include sensor

networks. Open-loop storage systems could be used to durably store data with an expected and

constant communication cost.

187

13.3 Administrator Discussion

The dynamic Byzantine quorum protocol presented in Part IIIand evaluated in Part IV

relies on an administrator which is a potential vulnerability. The administrator is assumed to be

trusted, non-faulty, and always available. As a result, a violation of these assumptions could threaten

data durability or integrity.

There are three attacks a faulty or malicious administratorcan perform. First, a faulty

administrator may create configurations with many faulty storage servers for a data object. Such

configurations could ignore protocol preventing the clientfrom making changes to the data or pre-

venting data from being stored durably. Second, a faulty administrator may be unavailable for long

periods of time preventing necessary configuration changesfrom occurring. Configuration changes

are necessary to maintain data durability since a new configuration is required to replace failed

servers. Finally, a faulty administrator may assign disjoint configurations with the same configura-

tion sequence number. Disjoint configurations could createa fork consistency [LKMS04], disjoint

data modification paths where the client is unaware of the multiple paths.

Creating anadministrator replicated servicecan reduce or eliminate the above attacks.

Replicating the administrator into independent processesand requiring the administrator replicas

to agree to authorize and sign configurations would make the administrator appear to be a fail-

stop entity, either follows protocol correctly or producesno results. The administrator replicated

service could tolerate up tof faulty or failed administrator replicas and produce correct results. It

would produce no results with more thanf faulty or failed replicas. The system requires human

intervention with more thanf administrator replica failures since the service could notuphold any

guarantees.

13.4 OceanStore as an Application

The secure log interface is a primitive and its implementation is a component in a larger

system. Because of its simplicity, narrow interface, and provable properties, storage systems that

implement a secure log interface such as Antiquity can be built and deployed. The next phase is to

build a complete system layered on top of such a storage system. An interesting client of the storage

system could be OceanStore. OceanStore could utilize a storage system like Antiquity as a storage

service.

OceanStore can use the secure log interface to ensure that all updates are stored durably

188

and the order of updates are correctly maintained over time.The secure log interface and append-

only usage model is a good fit since OceanStore already serializes and cryptographically signs all

updates via a primary replica. The primary replica appears to the storage system as a fail-stop client

since it is implemented as a Byzantine Agreement process. Furthermore, OceanStore clients can use

the secure log interface to ensure data read from the storagesystem at a later time will be returned

and that returned data is the same as stored.

A storage system such as Antiquity can benefit other components of OceanStore as well.

In particular, OceanStore aggressively caches data via secondary replicas. Instead of disseminat-

ing updates to secondary replicas, OceanStore can send “notifications” of updates and secondary

replicas can pull new updates from the storage system as needed.

13.5 Summary

In this chapter, we summarized some of the more interesting and challenging areas of

future work related to distributed wide-area on-line archival storage systems. Of particular impor-

tance are notions of repair because repair affects the efficiency and correctness of the storage system.

Critical is deciding when to trigger repair, what information should be used, and other requirements

such as a signature from an administrator. Alternatively, we suggest that maybe the minimum total

cost of repair is not the most important consideration, rather a constant rate might be better. With a

constant repair rate, storage systems could give better quality of service guarantees to applications,

could be deployed in other environments such as sensor networks, and could lend themselves to

simpler systems to build and analyze. These diverse problems illustrate many unexplored issues

related to distributed wide-area on-line archival storage– an indicator of future research directions.

189

Chapter 14

Concluding Remarks

As the amount of digital assets increase, systems that ensure the durability, integrity, and

accessibility of digital data become increasingly important. Distributed on-line archival storage sys-

tems are designed for this very purpose. This thesis explored several important challenges pertaining

to fault tolerance, repair, and integrity that must be addressed to build such systems.

The first part of this thesis explored how to maintain durability via fault tolerance and

repair and presents many insights on how to do so efficiently.Fault tolerance ensures that data is

not lost due to server failure. Replication is the canonicalsolution for data fault tolerance. The

challenge is knowing how many replicas to create and where tostore them. Fault tolerance alone,

however, is not sufficient to prevent data loss as the last replica will eventually fail. Thus, repair is

required to replace replicas lost to failure. The system must monitor and detect server failure and

create replicas in response. The problem is that not all server failure results in loss of data and the

system can be tricked into creating replicas unnecessarily. The challenge is knowing when to create

replicas. Both fault tolerance and repair are required to prevent the last replica from being lost,

hence, maintain data durability.

The second part of this thesis explored how to ensure the integrity of data. Integrity

ensures that the state of data stored in the system always reflects changes made by the owner. It

includes non-repudiably binding owner to data and ensuringthat only the owner can modify data,

returned data is the same as stored, and the last write is returned in subsequent reads. The challenge

is efficiency since requiring cryptography and consistencyin the wide-area can easily be prohibitive.

Next, we exploited a secure log to efficiently ensure integrity. We demonstrate how the

narrow interface of a secure, append-only log simplifies thedesign of distributed wide-area storage

systems. The system inherits the security and integrity properties of the log. We describe how

190

to replicate the log for increased durability while ensuring consistency among the replicas. We

present a repair algorithm that maintains sufficient replication levels as machines fail. Finally, the

design uses aggregation to improve efficiency. Although simple, this interface is powerful enough

to implement a variety of interesting applications.

Finally, we applied the insights and architecture to a Prototype called Antiquity. Antiquity

efficiently maintains the durability and integrity of data.It has been running in the wide area on 400+

PlanetLab servers where we maintain the consistency, durability, and integrity of nearly 20,000 logs

totaling more than 84 GB of data despite the constant churn ofservers (a quarter of the servers

experience a failure every hour)..

191

Bibliography

[ABC+02] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur, J. Howell,

J. R. Lorch, M. Theimer, and R. P. Wattenhofer. Farsite: Federated, available, and

reliable storage for an incompletely trusted environment.In Proc. of OSDI, December

2002.

[ACT00] M. K. Aguilera, W. Chen, and S. Toueg. Failure detection and consensus in the crash-

recovery model.Distributed Computing, 13(2):99–125, 2000.

[ADN+95] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, and R. Wang. Serverless

Network File Systems. InProc. of ACM SOSP, December 1995.

[Age] National Security Agency. Global information grid (gig).

http://www.nsa.gov/ia/industry/gig.cfm. Last accessed September 2006.

[AGG+05] M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter, and J.Wylie. Fault-scalable

byzantine fault-tolerant services. InProc. of ACM SOSP, October 2005.

[AHK +02] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal, andA. Veitch. Hippodrome:

Running circles around storage administration. InProc. of USENIX FAST, January

2002.

[And04] D. Andersen.Improving End-to-End Availability Using Overlay Networks. PhD thesis,

Massachusetts Institute of Technology, 2004.

[BBC+04] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir, L. Peterson, T. Roscoe,

T. Spalink, , and M. Wawrzoniak. Operating system support for planetary-scale net-

work services. InProc. of NSDI, March 2004.

http://www.nsa.gov/ia/industry/gig.cfm

192

[BDET00] W. Bolosky, J. Douceur, D. Ely, and M. Theimer. Feasibility of a serverless distributed

file system deployed on an existing set of desktop PCs. InProc. of Sigmetrics, June

2000.

[BKK +95] J. Bloemer, M. Kalfane, M. Karpinski, R. Karp, M. Luby, and D. Zuckerman. An

XOR-based erasure-resilient coding scheme. Technical Report TR-95-048, The Inter-

national Computer Science Institute, Berkeley, CA, 1995.

[BR03] C. Blake and R. Rodrigues. High availability, scalable storage, dynamic peer networks:

Pick two. InProc. of HOTOS, May 2003.

[BSV03] R. Bhagwan, S. Savage, and G. Voelker. Understanding availability. InProc. of IPTPS,

February 2003.

[BTC+04] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. Voelker. Totalrecall: Systems

support for automated availability management. InProc. of NSDI, March 2004.

[Cat03] J. Cates. Robust and efficient data management for a distributed hash table. Master’s

thesis, MIT, June 2003.

[CDH+06] B. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon,M. F. Kaashoek, J. Kubi-

atowicz, and R. Morris. Efficient replica maintenance for distributed storage systems.

In Proc. of NSDI, San Jose, CA, May 2006.

[CEG+96] Y. Chen, J. Edler, A. Goldberg, A. Gottlieb, S. Sobti, andP. Yianilos. Prototype

implementation of archival intermemory. InProc. of IEEE ICDE, pages 485–495,

February 1996.

[CL99] M. Castro and B. Liskov. Practical Byzantine fault tolerance. InProc. of OSDI, 1999.

[CL00] M. Castro and B. Liskov. Proactive recovery in a byzantine-fault-tolerant system. In

Proc. of OSDI, 2000.

[CL02] M. Castro and B. Liskov. Practical byzantine fault tolerance and proactive recovery.

ACM Transactions on Computer Systems, 20(4):398–461, 2002.

[CML+06] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira. Hq replication: A

hybrid quorum protocol for byzantine fault tolerance. InProc. of OSDI, November

2006.

193

[Cor] EMC Corp. Symmetrix remote data facility.

http://www.emc.com/products/networking/srdf.jsp. Last accessed April

2006.

[CPH01] C. N. Chong, Z. Peng, and P. H. Hartel. Secure audit logging with tamper-resistant

hardware. InProc. of IFIP TC11 18th Int’l Conf. on Information Security and Privacy

in the Age of Uncertainty (SEC), pages 73 – 84, November 2001.

[CV03] B. Chun and A. Vahdat. Workload and failure characterization on a large-scale feder-

ated testbed. Technical Report IRB-TR-03-040, Intel Research, November 2003.

[Dab05] F. Dabek.A Distributed Hash Table. PhD thesis, Massachusetts Institute of Technol-

ogy, 2005.

[DF82] L. W. Dowdy and Derrell V. Foster. Comparative modelsof the file assignment prob-

lem. ACM Computing Surveys, 14(2):287–313, 1982.

[DFM00] R. Dingledine, M. Freedman, and D. Molnar. The freehaven project: Distributed

anonymous storage service. InProc. of the Workshop on Design Issues in Anonymity

and Unobservability, July 2000.

[DG04] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters.

In Proc. of OSDI, December 2004.

[DGH+87] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis,

D. Swindhart, and D. Terry. Epidemic algorithms for replicated database maintenance.

In Proc. of ACM PODC Symp., pages 1 – 12, 1987.

[DKK +01] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area cooperative

storage with CFS. InProc. of ACM SOSP, October 2001.

[DLS+04] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and R. Morris. Designing a dht

for low latency and high throughput. InProc. of NSDI, March 2004.

[DR01] P. Druschel and A. Rowstron. Storage management and caching in PAST, a large-

scale, persistent peer-to-peer storage utility. InProc. of ACM SOSP, 2001.

[DW01] J. R. Douceur and R. P. Wattenhofer. Large-Scale Simulation of Replica Placement

Algorithms for a Serverless Distributed File System. InProc. of MASCOTS, 2001.

http://www.emc.com/products/networking/srdf.jsp

194

[DZD+03] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica. Towards a common API

for structured P2P overlays. InProc. of IPTPS, February 2003.

[EWK05] P. Eaton, H. Weatherspoon, and J. Kubiatowicz. Efficiently binding data to owners

in distributed content-addressable storage systems. In3rd International Security in

Storage Workshop, December 2005.

[Fet03] C. Fetzer. Perfect failure detection in timed asynchronous systems.IEEE Trans. Com-

put., 52(2):99–112, 2003.

[FKM00] K. Fu, M. F. Kaashoek, and David Mazières. Fast and secure distributed read-only file

system. InProc. of OSDI, October 2000.

[FLRS05] M. Freedman, K. Lakshminarayanan, S. Rhea, and I. Stoica. Non-transitive connec-

tivity and DHTs. InProc. of USENIX Workshop on Real, Large Distributed Systems

(WORLDS), December 2005.

[GBHC00] S. Gribble, E. Brewer, J. Hellerstein, and D. Culler. Scalable, distributed data struc-

tures for internet service construction. InProc. of OSDI, October 2000.

[GCB+02] J. Gray, W. Chong, T. Barclay, A. Szalay, and J. vandenBerg. Terascale sneakernet:

Using inexpensive disks for backup, archiving, and data exchange. Technical Report

MSR-TR-2002-54, Microsoft Research, May 2002.

[GGL03] S. Ghemawat, H. Gobioff, and S. Leung. The google filesystem. InProc. of ACM

SOSP, pages 29–43, October 2003.

[GSK03] G. R. Ganger, J. D. Strunk, and A. J. Klosterman. Self-* storage: Brick-based storage

with automated administration. Technical Report CMU-CS-03-178, Carnegie Mellon

University, August 2003.

[GWGR03] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter. Byzantine-tolerant

erasure-coded storage. Technical Report CMU-CS-03-187, Carnegie Mellon Univer-

sity School for Computer Science, September 2003.

[HKRZ02] K. Hildrum, J. Kubiatowicz, S. Rao, and B. Zhao. Distributed object location in a

dynamic network. InProc. of ACM SPAA, pages 41–52, August 2002.

195

[HMD05] A. Haeberlen, A. Mislove, and P. Druschel. Glacier:Highly durable, decentralized

storage despite massive correlated failures. InProc. of NSDI, May 2005.

[jBH+05] F. junqueira, R. Bhagwan, A. Hevia, K. Marzullo, and G. M.Voelker. Surviving

internet catastrophe. InProc. of USENIX Annual Technical Conf., May 2005.

[K+00] J. Kubiatowicz et al. Oceanstore: An architecture for global-scale persistent storage.

In Proc. of ASPLOS, 2000.

[KFM04] M. N. Krohn, M. J. Freedman, and D. Mazières. On-the-fly verification of rateless

erasure codes for efficient content distribution. InIn Proc. of the IEEE Symp. on

Security and Privacy, pages 226 – 240, May 2004.

[KKM02] M. Karlsson, C Karamanolis, and M. Mahalingam. A framework for evaluationg

replica placemement algorithms. Technical Report HPL-2002-219, Hewlett Packard

Lab, 2002.

[KLL +97] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Panigrahy. Consistent

hashing and random trees. distributed caching protocols for relieving hot spots on the

world wide web. InProc. of ACM STOC, May 1997.

[KSL+04] C. Karlof, N. Sastry, Y. Li, A. Perrig, and J. D. Tygar. Distillation codes and their ap-

plication to DoS resistant multicast authentication. InNetwork and Distributed System

Security Conference (NDSS 2004), pages 37–56, February 2004.

[LGG+91] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira,and M. Williams. Replica-

tion in the harp file system. InProc. of ACM SIGOPS, 1991.

[LKMS04] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secureuntrusted data repository (sundr).

In Proc. of OSDI, pages 121–136, December 2004.

[LMPZ02] S. A. Leung, J. MacCormick, S. E. Perl, and L. Zhang.Myriad: Cost-effective disaster

tolerance. InProc. of USENIX FAST, January 2002.

[LMS+97] M. Luby, M. Mitzenmacher, M. Shokrollahi, D. Spielman, and V. Stemann. Practical

loss-resilient codes. InProc. of ACM STOC, pages 150–159, 1997.

196

[LMS+98] M. Luby, M. Mitzenmacher, M. Shokrollahi, D. Spielman, and V. Stemann. Analysis

of low density codes and improved designs using irregular graphs. InProc. of ACM

STOC, May 1998.

[LS00] W. Litwin and T. Schwarz. LH* RS : A high-availabilityscalable distributed data

structure using reed solomon codes. InProc. of ACM SIGMOD Conf., pages 237–248,

May 2000.

[LSMK05] J. Li, J. Stribling, R. Morris, and M. F. Kaashoek. Bandwidth-efficient management

of dht routing tables. InProc. of NSDI, May 2005.

[LSP82] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals Problem.ACM

TOPLAS, 4(3):382–401, 1982.

[LT96] E. K. Lee and C. A. Thekkath. Petal: Distributed virtual disks. InProc. of ASPLOS,

pages 84–92, 1996.

[Lub02] M. Luby. Lt codes. InProc. of FOCS Symp., pages 271–282, November 2002.

[MA04] J-P. Martin and L. Alvisi. A framework for dynamic byzantine storage. InProc. of the

Intl. Conf. on Dependable Systems and Networks, June 2004.

[May02] P. Maymounkov. Online codes. Technical Report TR2002-833, New York University,

New York, NY, November 2002.

[Mer88] R. Merkle. A digital signature based on a conventional encryption function. InProc.

of CRYPTO, pages 369–378. Springer-Verlag, 1988.

[MGM04] A. Muthitacharoen, S. Gilbert, and R. Morris. Etna:A fault-tolerant algorithm for

atomic mutable dht data. Technical Report MIT-LCS-TR-993,MIT Laboratory for

Computer Science, June 2004.

[MJLF84] M. McKusick, W. Joy, S. Leffler, and R. Fabry. A fast file system for UNIX. ACM

Transactions on Computer Systems, 2(3):181–197, August 1984.

[MMGC02] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen. Ivy: A read/write peer-to-peer file

system. InProc. of OSDI, 2002.

[MPHD06] A. Mislove, A. Post, A. Haeberlen, and P. Druschel.Experiences in building and

operating a reliable peer-to-peer application. InProc. of EuroSys Conf., April 2006.

197

[MR97] D. Malkhi and M. Reiter. Byzantine quorum systems. InProc. of ACM STOC, pages

569 – 578, May 1997.

[MRC+97] J. Matthews, D. Roselli, A. Costello, R. Wang, and T. Anderson. Improving the perfor-

mance of log-structured file systems with adaptive methods.In Proc. of ACM SOSP,

October 1997.

[MRG+05] P. Maniatis, M. Roussopoulos, T. Giuli, D. S. H. Rosenthal, and M. Baker. The lockss

peer-to-peer digital preservation system.ACM Trans. Comput. Syst., 23(1):2–50, 2005.

[MRTZ01] D. Malkhi, M. K. Reiter, D. Tulone, and E. Ziskind. Persistent objects in the fleet

system. InDISCEX II, 2001.

[MT85] S. J. Mullender and A. S. Tanenbaum. A distributed fileservice based on optimistic

concurrency control. InProc. of ACM SOSP, pages 51–62, December 1985.

[NIS94] NIST. FIPS 186 digital signature standard.

http://www.itl.nist.gov/fipspubs/fip186.htm, May 1994.

[NYGS04] S. Nath, H. Yu, P.G. Gibbons, and S. Seshan. Tolerating correlated failures in wide-

area monitoring services. Technical Report IRP-TR-04-09,Intel Research, May 2004.

[NYGS06] S. Nath, H. Yu, P. B. Gibbons, and S. Seshan. Subtleties in tolerating correlated failures

in wide-area storage systems. InProc. of NSDI, May 2006.

[OP02] D. Oppenheimer and D. A. Patterson. Benchmarking large-scale internet services. In

Proc. of SIGOPS European Workshop, September 2002.

[PCAR02] L. Peterson, D. Culler, T. Anderson, and T. Roscoe.A blueprint for introducing dis-

ruptive technology into the internet. InProceedings of the 1st Workshop on Hot Topics

in Networks (HotNets-I), 2002.

[PFM06] L. Peterson, A. Bavier E. Fiuczynski, , and S. Muir. Experiences building planetlab.

In Proc. of OSDI, November 2006.

[PGK88] D. Patterson, G. Gibson, and R. Katz. The case for RAID: Redundant arrays of inex-

pensive disks. InProc. of ACM SIGMOD Conf., pages 106–113, May 1988.

[PH02] D. Patterson and J. Hennessy.Computer Architecture: A Quantitative Approach, Third

Edition. Morgan Kaufmann, San Mateo, CA, May 2002.

http://www.itl.nist.gov/fipspubs/fip186.htm

198

[Pla97] J. Plank. A tutorial on reed-solomon coding for fault-tolerance in RAID-like systems.

Software Practice and Experience, 27(9):995–1012, September 1997.

[PMF+02] H. Patterson, S. Manley, M. Federwisch, D. Hitz, S. Kleiman, and S. Owara. Snap-

mirror: File system based asynchronous mirroring for disaster recovery. InProc. of

USENIX FAST, January 2002.

[PP06] K. S. Park and V. Pai. CoMon: a mostly-scalable monitoring system for Plan-

etLab. ACM SIGOPS Operating Systems Review, 40(1):65–74, January 2006.

http://comon.cs.princeton.edu/.

[QD02] S. Quinlan and S. Dorward. Venti: A new approach to archival data storage. InProc.

of USENIX FAST, January 2002.

[RD01] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing

for large scale peer-to-peer systems. InProc. of IFIP/ACM Middleware, November

2001.

[REG+03] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, andJ. Kubiatowicz. Pond:

the OceanStore prototype. InProc. of USENIX FAST, 2003.

[RGK+05] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker, I. Stoica, ,

and H. Yu. Opendht: A public dht service and its uses. InProc. of ACM SIGCOMM

Conf., August 2005.

[RGRK04] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling churn in a dht. InProc.

of USENIX, June 2004.

[RL03] R. Rodrigues and B. Liskov. Rosebud: A scalable byzantine-fault-tolerant storage

architecture. Technical Report MIT-LCS-TR-932, MIT Laboratory for Computer Sci-

ence, December 2003.

[RL05] R. Rodrigues and B. Liskov. High availability in dhts: Erasure coding vs. replication.

In Proc. of IPTPS, March 2005.

[RP06] S. Ramabhadran and J. Pasquale. Analysis of long-running replicated systems. In

Proc. of INFOCOM, April 2006.

http://comon.cs.princeton.edu/

199

[RS04] V. Ramasubramanian and E. G. Sirer. Beehive: O(1) lookup performance for power-

law query distributions in peer-to-peer overlays. InProc. of NSDI, March 2004.

[RV97] L. Rizzo and L. Vicisano. A reliable multicast data distribution protocol based on

software fec. InProc. of HPCS, Greece, 1997.

[RWE+01] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weatherspoon, and J. Kubiatowicz.

Maintenance free global storage in oceanstore. InProc. of IEEE Internet Computing.

IEEE, September 2001.

[Sch90] F. B. Schneider. Implementing fault-tolerant services using the state machine ap-

proach: A tutorial.ACM Computing Surveys, 22(4):299–319, 1990.

[SFV+04] Y. Saito, S. Frœlund, A. Veitch, A. Merchant, and S. Spence. FAB: building distributed

enterprise disk arrays from commodity components. InProc. of ASPLOS, pages 48–

58, New York, NY, 2004. ACM Press.

[SHD+06] E. Sit, A. Haeberlen, F. Dabek, B. Chun, H. Weatherspoon,R. Morris, M. F. Kaashoek,

and John Kubiatowicz. Proactive replication for data durability. In Proc. of IPTPS,

Santa Barbara, CA, February 2006.

[Sho03] A. Shokrollahi. Raptor codes. Technical Report DF2003-06-01, Digital Fountain, Inc.,

Fremont, CA, June 2003.

[SK98] B. Schneier and J. Kelsey. Cryptographic support forsecure logs on untrusted ma-

chines. InProc. of USENIX Annual Technical Conf., January 1998.

[SLC+06] J. Stribling, J. Li, I. G. Councill, M. F. Kaashoek, and R.Morris. Exploring the design

of multi-site web services using the OverCite digital library. In Proc. of NSDI, San

Jose, CA, May 2006.

[SMK+01] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scal-

able peer-to-peer lookup service for internet applications. InProc. of ACM SIGCOMM

Conf.ACM, August 2001.

[Str] Jeremy Stribling. Planetlab all-pairs ping. http://infospect.planet-lab.org/pings.

200

[Tvv+90] A. S. Tanenbaum, R. van Renesse, H. van Staveren, G. J. Sharp, S. J. Mullender,

J. Jansen, and G. van Rossum. Experiences with the Amoeba distributed operating

system.Communications of the ACM, 33(12):46–63, 1990.

[UoC] Berkeley University of California. Petabyte storageinfrastructure project.

http://elib.cs.berkeley.edu/ storage/psi.

[vS04] R. van Renesse and F. B. Schneider. Chain replicationfor supporting high throughput

and availability. InProc. of OSDI, May 2004.

[WCSK05] H. Weatherspoon, B. Chun, C. W. So, and J. Kubiatowicz. Long-term data main-

tenance in wide-area storage systems: A quantitative approach. Technical Report

UCB//CSD-05-1404, U. C. Berkeley, July 2005.

[WK02] H. Weatherspoon and J. Kubiatowicz. Erasure coding vs. replication: A quantitative

comparison. InProc. of IPTPS, March 2002.

[WMK02] H. Weatherspoon, T. Moscovitz, and J. Kubiatowicz.Introspective failure analysis:

Avoiding correlated failures in peer-to-peer systems. InProc. of Intl. Workshop on

Reliable Peer-to-Peer Distributed Systems, October 2002.

[WWK02] H. Weatherspoon, C. Wells, and J. Kubiatowicz. Naming and integrity: Self-verifying

data in peer-to-peer systems. InProc. of Intl. Workshop on Future Directions of Dis-

tributed Systems, June 2002.

[YNY +04] P. Yalagandula, S. Nath, H. Yu, P. B. Gibbons, and S. Seshan. Beyond availabil-

ity: Towards a deeper understanding of machine failure characteristics in large dis-

tributed systems. InProc. of USENIX Workshop on Real, Large Distributed Systems

(WORLDS), December 2004.

[ZHS+04] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubiatowicz.

Tapestry: A resilient global-scale overlay for service deployment. IEEE Journal on

Selected Areas in Communications, 22(1):41–53, January 2004.

[ZJK01] B. Y. Zhao, A. D. Joseph, and J. D. Kubiatowicz. Tapestry: An infrastructure for fault-

tolerant wide-area location and routing. Technical ReportUCB//CSD-01-1141, U. C.

Berkeley, 2001.

201

[ZSv00] L. Zhou, F. Schneider, and R. van Renesse. Coca: A secure distributed on-line cer-

tification authority. Technical Report 2000-1828, Department of Computer Science,

Cornell University, Ithaca, NY USA, 2000.

202

Appendix A

Durability Derivation

In this appendix we describe the mathematics involved in computing themean time to

data loss(MTTDL) of a particular erasure encoded block.

Considering the server failure model and repair process as described in Section 4.1.1, we

can calculate the MTTDL of a block as follows. First, we calculate the probability that a given

fragment placed on a randomly selected disk will survive until the next epoch as

p(e) =

∞
Z

e

l pd(l)
µ

l −e
l

dl (A.1)

=
1
µ

∞
Z

e

pd(l)(l −e)dl (A.2)

wheree is the length of an epoch,µ is the average life of a disk, andpd(l) is the probability

distribution of disk lives. This equation is derived similarly to the equation for the residual average

lifetime of a randomly selected disk. The terml−e
l reflects the probability that, given a disk of

lifetime l , a new fragment will land on the disk early enough in its lifetime to survive until the next

epoch. The probability distributionpd(l) was obtained from disk failure distributions in [PH02],

augmented by the assumption that all disks still in service after five years are discarded along with

their data.

Next, givenp(e), we can compute the probability that a block can be reconstructed after

a given epoch as

pb(e) =
n

∑
m=rn

(

n
m

)

[p(e)]m[1− p(e)]n−m (A.3)

wheren is the number of fragments per block andr is the rate of encoding. This formula computes

203

the probability that at leastrn fragments are still available at the end of the epoch.

Finally, the MTTDL of a block for a given epoch size can be computed as

MTTDLblock(e) = e·
∞

∑
i=0

i[1− pb(e)][pb(e)]
i (A.4)

= e·
pb(e)

1− pb(e)
. (A.5)

This last equation computes the average number of epochs a block is expected to survive times the

length of an epoch.

204

Appendix B

Glossary of Terms

• Availability: Seedata availabilityor server availability.

• Byzantine failure: an arbitrary fault that occurs during the execution of a protocol. It en-

compasses those faults that are commonly referred to as ”crash failures” and ”send-receive

omission failures”. When a Byzantine failure has occurred,the system may respond in any

unpredictable way, unless it is designed to have Byzantine fault tolerance.

These arbitrary failures are a superset of many failures andmay be loosely categorized as

follows:

– a failure to take another step in the protocol, also known as acrash failure.

– a failure to send or receive some message, also known as send-receive omission.

– a failure to correctly execute a step of the protocol.

– arbitrary execution of a step other than the one indicated bythe protocol.

Steps are taken by processes, the abstractions that executethe protocols. A faulty process

is one that at some point exhibits one of the above failures. Aprocess that is not faulty is

correct.

• Byzantine fault tolerance: ability to defend against (or cope with) Byzantine failure and

still satisfy the specification of a protocol. For instance,correctly functioning components

of a Byzantine fault tolerant system will be able to reach thesame group decision regardless

of Byzantine faulty components. There are upper bounds on the percentage of unreliable

components, however. Such algorithms are commonly characterized by their resilience,f ,

205

the number of faulty processes with which an algorithm can cope. Many classic agreement

problems, such as the Byzantine Generals Problem, have no solution unlessf < n
3, wheren

is the number of processes in the system. See alsoByzantine failure.

• Byzantine process:a faulty process that at some point exhibits one of the Byzantine failures.

See alsoByzantine failure.

• Byzantine server: SeeByzantine process.

• Checksum:a digest or summary representation of a data object used to check whether errors

have occurred during network transmission or in storage. The simplest form of checksum

simply adds up the bits in the data object; however, such a scheme cannot detect a number of

errors such as reordering of the bytes in a data object, inserting or deleting zero-valued bytes,

and multiple errors which sum to zero. To provide protectionagainst errors and security

against malicious agents requires use of acryptographic hashfunction.

• Cryptographic Secure Checksum:Seecryptographic secure hash function.

• Cryptographic Secure Hash: a secure digest or summary representation of a data object

used to check whether errors have occurred during network transmission or in storage. The

additional security properties are collision resistance and uninvertibility. Collision-resistant

means it should be hard to find two different data objectsX andY (X! = Y) such that hash

H(X) = H(Y). Uninvertible means that given only the secure hash of a data object,H(X)

for example, it is computational infeasible to compute the data object,X. These security

properties makes it difficult for error or a malicious attacker to corrupt data without detection.

• Configuration: Set of servers responsible for storing replicas for a particular data object.

• Crash failure: A process that either follows protocol correctly, producescorrect results, or

produces no results. For example, permanently failed server. This is the same as a fail-stop

failure. See alsoByzantine serverandcrash server.

• Crash process:a process that correctly follows specified protocol or permanently fails.

• Crash-recovery failure: A transient failure where a process eventually returns withstate

intact or a permanent failure where a process does not ever return. See alsocrash-recovery

process, permanent server failure, andtransient server failure.

206

• Crash-recovery process:A process that fails andpotentiallyrecovers (aka benign process).

See alsocrash-recovery failure, permanent server failureandtransient server failure.

• Crash-recovery server:Seecrash-recovery process.

• Crash server: Seecrash process.

• Data: An opaque sequence of bytes.

• Data availability: fraction of time a data object is available. The fraction of time a system

can promptly return a requested data object.

• Data durability: probability that a data object exists after a specific amountof time. See also

data failure rate.

• Data failure rate: number of times a particular (fixed-size) data object fails per unit time.

For example, the fraction of blocks lost per year (FBLPY) is afailure rate. In the special case

when the likelihood of failure remains constant as time passes such as with an exponential

failure distribution, the failure rate is simply the inverse of the mean-time-to-failure (MTTF)

for a particular data object. See alsodata durability.

• Data fault tolerance: ability to tolerate server failure without loss of data. It includes choos-

ing the type of redundancy, number of replicas, and where to store replicas. See alsoconfig-

uration, redundancy, data repair, andserver failure.

• Data fault tolerance algorithm: set of procedures used to define the components of an

object’s configuration. See alsoconfiguration, data fault tolerance;

• Data fragment: An original or encoded piece of a data object. Erasure-coding maps a data

object broken intom original pieces (fragments) onto a larger set ofn pieces (n > m) such

that the original pieces can be recovered from a subset of alln pieces. The pieces that are not

original are encoded. Since a piece may be as large as the whole data object, fragment and

replica are often used interchangeably. See alsodata replica, redundancy, replication, and

erasure-coding.

• Data integrity: ensures data stored into and returned from the storage system are the same.

• Data repair: the process of replacing replicas lost to server failure.

207

• Data replica: A whole copy of a data object. See alsodata fragment, redundancy, replica-

tion, anderasure-coding.

• Disk: A non-volatile storage substrate often directly attached to a server.

• Downtime: one contiguous interval of time when a server is unavailable. Commonly referred

in the storage literature as a time-to-repair (TTR). See also sessiontimeandlifetime.

• Durability: Seedata durability.

• durable means a data object exits. It is not possible to distinguish available from durable in

a networked system limited to remote probing since data objects can exist but not be imme-

diately available: if the only copy of a data object is on the disk of a server that is currently

powered off, but will someday re-join the system with disk contents intact, then that data

object exists but is not currently available. See alsodata availability.

• Erasure-coding: Erasure-coding maps a data object broken intomoriginal fragments (pieces)

onto a larger set ofn fragments (n> m) such that the original fragments can be recovered from

a subset of alln fragments. The fraction of the fragments required is calledthe rate, denoted

r. Optimal erasure codes such as Reed-Solomon [BKK+95, Pla97, RV97] codes produce

n = m/r (r < 1) fragments where anym fragments are sufficient to recover the original data

object. Unfortunately optimal codes are costly (in terms ofmemory usage, CPU time or both)

whenm is large, so near optimal erasure codes such as Tornado codes[LMS+97, LMS+98]

are often used. These require (1+ε)m fragments to recover the data object. Reducingε can

be done at the cost of CPU time. Alternatively, rateless erasure codes such as LT [Lub02],

Online [May02], or Raptor [Sho03], codes transform a data object ofm fragments into a prac-

tically infinite encoded form. Data loss occurs a sufficient fraction of fragments are lost due to

permanent server failure. Erasure-codes often provide redundancy without storage overhead

of strict replication. See alsoredundancy, rate of encoding, storage overhead.

• Failure: Seepermanent server failureandtransient server failure.

• Fault tolerance: Seedata fault tolerance.

• Fault tolerance algorithm: Seedata fault tolerance algorithm.

• Fail-stop: A process that either follows protocol correctly, producescorrect results, or pro-

duces no results. For example, permanently failed server. This is the same as a crash failure.

208

• Failure rate: Seedata failure rate.

• Fragment: Seedata fragment.

• Immutable: Cannot change. Read-only. For example, an immutable data object is read-only

and cannot change. See alsomutable.

• Integrity: state of data stored in the system always reflects changes made by the owner. It

includes non-repudiably binding owner to data and ensuringthat only the owner can modify

data, returned data is the same as stored, and the last write is returned in subsequent reads.

See alsonon-repudiation, data integrity, andorder integrity.

• Lifetime: time between when a component first enters and last leaves a system. In terms

of sessiontime it is the time between the beginning of the first session and end of last ses-

sion. For example, a server’s lifetime is comprised of a number of interchanging session and

downtimes.

• Mean-time-between-failure (MTBF): the average time between failures, the reciprocal of

the failure rate in the special case when failure rate is constant. Calculations of MTBF as-

sume that a system is ”renewed”, i.e. fixed, after each failure, and then returned to service

immediately after failure.

• Mean-time-to-failure (MTTF): average sessiontime.

• Mean-time-to-repair (MTTR): average downtime.

• Memory: A volatile storage substrate often directly attached to a server.

• Mutable: subject to change or alteration. For example, a mutable dataobject can change. A

mutable data object is readable and writable data object. See alsoimmutable.

• Node: a basic unit used to build systems. For example, in a distributed system, a server is a

particular type of node. A server satisfies remote requests and/or participates a in peer-to-peer

network. See alsoserver.

• Non-repudiation: Cannot deny

• Object: Seedata.

• Object availability: Seedata availability.

209

• Object durability: Seedata durability.

• Order integrity: defines a single sequence of writes where each write has a unique sequence

number and writes can be ordered based on sequence number (aka total order). For example,

in the absence of new writes order integrity often ensures data returned from a storage system

was the most recently written data.

• Permanent failure: Seepermanent server failure.

• Permanent data loss: data can no longer be retrieved or reconstructed from information

within the system. See alsodurability.

• Permanent server failure: loss of data stored by a server. Examples include disk crash,

server reinstallation or departure from network without return. Permanent server failure re-

sults in loss of redundancy durably stored. Seedata durabilityandtransient server failure.

• Rate of encoding:size of the original data object divided by the encoded size.For example,

the ratio between the number of fragments required to reconstruct the whole data object and

the redundancy (total number of original and encoded fragments).

• Redundancy:duplication of data in order to reduce the risk of permanent data loss. The total

number of whole copies or unique pieces of data. See alsoreplicationanderasure coding.

• Replica Location and Repair Service: A service used to locate and monitor data object

replicas and trigger a repair process when necessary. See alsodata repair.

• Repair: Seedata repair.

• Replica: Seedata replica.

• Replication: duplication of data to reduce the risk of permanent data lossvia creating whole,

identical, copies of data. See alsoredundancyanderasure-coding.

• Server: a node that satisfies remote requests and/or participates ina peer-to-peer network. A

server often is a computer with processor(s), memory, smallnumber of disk drives, and a set

of networking ports.

• Server Availability: The percent of time a server is capable of responding to requests. The

cumulative sessiontime divided by lifetime is a common measure of server availability, which

is equivalent to the more commonly known expression in the storage literature MTTF
MTTF+MTTR.

210

• Server failure: Seepermanent server failureandtransient server failure.

• Sessiontime:one contiguous interval of time when a server is available. Commonly referred

in the storage literature as a time-to-failure (TTF). See alsodowntimeandlifetime.

• Storage overhead:The total number of whole copies. Or the ratio between the redundancy

(total number of original and encoded fragments) and the number of fragments required to

reconstruct the whole data object.

• Time-to-failure (TTF): Seesessiontime.

• Time-to-repair (TTR): Seedowntime.

• Transient failure: Seetransient server failure.

• Transient server failure: Loss of server availability. Examples include server reboot, net-

work and power outage, and software crash where server returns from failure with data intact.

Transient server failure does not decrease data durability; however, it does cause data to be-

come unavailable. Transient server failure does not (conceptually) affect systems primarily

concerned with data durability; however, it is not possiblefor systems to perfectly distinguish

transient from permanent server failure.

	List of Figures
	List of Tables
	I Defining Scope of Problem
	Introduction
	Overview
	Maintaining Durability
	Maintaining Integrity
	Putting It All Together

	Challenges
	Assumptions
	The Fault Tolerance Problem
	The Repair Problem
	The Integrity Problem

	Architecture for a Solution: Antiquity Prototype
	Historical Perspective
	Lessons Learned
	Contributions
	Summary

	Methodology
	Failure Characteristics
	Analyzing the Behavior of PlanetLab
	PlanetLab First Interval: Insights into Correlated Failures
	PlanetLab Second Interval: Insights into Matured System and Operation
	Synthetic trace

	Analyzing Algorithmic Solutions
	Algorithmic Solution Representation
	Metrics
	Statistics Gathering and Analysis
	Algorithmic Solution Comparison Criteria
	Environments

	Discussion

	II Maintaining Data Durability Through Fault Tolerance and Repair
	Fault Tolerance and Repair Overview
	System Model
	Example

	Fault Tolerance
	Choosing Redundancy Type
	Erasure-coding versus Replication
	Complexity of Erasure-Codes and Self-Verifying Data

	Choosing the Number of Replicas to Create
	System Model
	Generating a Markov Model
	Creation versus Failure Rate
	Choosing rL

	Choosing Where to Store Replicas
	Increasing Durability Through Repair Parallelism with Scope
	Placement Strategies, Failure Predictors, and Durability

	Summary

	Repair
	Reducing Transient Costs with Monitoring and Timeout-based Failure Detectors
	Failure detectors
	Evaluation of Timeout-based Failure Detectors

	Reducing Transient Costs with Extra Replication
	Estimator Algorithm
	Evaluation of Extra Replication

	Reducing Transient Costs with Reintegration
	Carbonite details
	Reintegration reduces maintenance
	How many replicas?
	Create replicas as needed
	Reintegration and Erasure-coding

	Summary

	III Exploiting a Secure Log for Wide-Area Distributed Storage
	Secure Log Overview
	Overview
	Storage System Goals
	System Model
	Assumptions

	Secure Log Details
	Semantics of a Distributed Secure Log
	Example uses of a Secure Log
	File System Interface
	Database Example
	Tamper-resistant syslog

	The Secure Log Interface
	Background and Prior Work
	Self-verifying Data
	Distributed hash table (DHT) storage systems
	Prior Aggregation Systems

	How to use an Aggregation Interface to Construct a Secure Log
	Constructing a Secure Log
	Reading data from a Secure Log
	Other benefits of Aggregation

	A Distributed Secure Log and Error Handling
	Discussion

	Dynamic Byzantine Quorums for Consistency and Durability
	Background and Prior Work
	Protocol Requirements
	Protocol Assumptions
	Quorum Repair
	Challenges
	Triggering repair
	Initializing a configuration after repair
	Certificates and Soundness Proofs
	The Repair Audit Protocol

	Protocol Details
	Base Write Protocol
	The create() Protocol
	The append() Protocol
	The repair() Protocol
	Transient Server Failure Protocol

	Protocol Correctness
	Protocol Consistency
	Protocol Durability
	Protocol Liveness

	Discussion

	Utilizing Distributed Hash Table (DHT) Technology for Data Maintenance
	Publishing and Locating Extent Replicas
	Monitoring Server Availability and Triggering Repair Audits
	Discussion and Limitations

	IV Antiquity: Prototype Implementation and Evaluation
	Antiquity
	Architecture Overview
	Gateways, Coordinators, Distributed Hash Tables, and Protocol Details
	Path of a create(), append(), and repair()
	Breakdown of latencies for all operations

	Summary and Discussion

	Evaluation
	Experimental Environment
	Cluster Deployment
	PlanetLab Deployment
	Quorum Consistency and Availability
	Quorum Repair

	A Versioning Back-up Application
	Experience and Discussion

	V Related and Future Work
	Related Work
	Logs
	Byzantine Fault-Tolerant Services
	Wide-area Distributed Storage Systems
	Replicated Systems
	Replication analysis
	Replicated systems
	Digital Libraries

	Future Work
	Proactive Replication for Data Durability
	Closed-loop, Proactive Repair, for Data Durability
	Administrator Discussion
	OceanStore as an Application
	Summary

	Concluding Remarks
	Bibliography
	Durability Derivation
	Glossary of Terms

