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Abstract

Design and Evaluation of Distributed Wide-Area On-line Bix@l Storage Systems

by

Hakim Weatherspoon
Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor John Kubiatowicz, Chair

As the amount of digital assets increase, systems thatetisaidurability, integrity, and
accessibility of digital data become increasingly impottdistributed on-line archival storage sys-
tems are designed for this very purpose. This thesis expsmeeral important challenges pertaining
to fault tolerance, repair, and integrity that must be asleld to build such systems.

The first part of this thesis explores how to maintain durgbilia fault tolerance and
repair and presents many insights on how to do so efficieRylt tolerance ensures that data is
not lost due to server failure. Replication is the canonsmdution for data fault tolerance. The
challenge is knowing how many replicas to create and whestote them. Fault tolerance alone,
however, is not sufficient to prevent data loss as the lasiceewill eventually fail. Thus, repair is
required to replace replicas lost to failure. The systemtmanitor and detect server failure and
create replicas in response. The problem is that not aleséailure results in loss of data and the
system can be tricked into creating replicas unnecessaiily challenge is knowing when to create
replicas. Both fault tolerance and repair are required &wvemt the last replica from being lost,
hence, maintain data durability.

The second part of this thesis explores how to ensure thgrityteof data. Integrity
ensures that the state of data stored in the system alwagstseflhanges made by the owner. It
includes non-repudiably binding owner to data and ensuhagjonly the owner can modify data,
returned data is the same as stored, and the last write ineetin subsequent reads. The challenge
is efficiency since requiring cryptography and consisténdiie wide-area can easily be prohibitive.

Next, we exploit a secure log to efficiently ensure integritye demonstrate how the

narrow interface of a secure, append-only log simplifiesdiénsign of distributed wide-area storage



systems. The system inherits the security and integritpgnt@s of the log. We describe how
to replicate the log for increased durability while ensgroonsistency among the replicas. We
present a repair algorithm that maintains sufficient regilic levels as machines fail. Finally, the
design uses aggregation to improve efficiency. Althougtpknthis interface is powerful enough

to implement a variety of interesting applications.

Finally, we apply the insights and architecture to a prqietgalled Antiquity. Antiquity
efficiently maintains the durability and integrity of datehas been running in the wide area on 400+
PlanetLab servers where we maintain the consistency, ityaénd integrity of nearly 20,000 logs
totaling more than 84 GB of data despite the constant chuisenfers (a quarter of the servers
experience a failure every hour).

Professor John Kubiatowicz
Dissertation Committee Chair
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first version of the file system shown in Figlirel6.4. The shadkent is the mutable
log head; immutable extents are showninwhite. . . . . .. .. ... .....

8.1 Examplecreate() request using a Byzantine fault-tolerant quorum. (a) Antlie
attempts to create a secure log with a configuration thatides seven servers and
can tolerate two faulty serverd & 2 andn =7 > 3f). After an administrator
selects a configuration, the client submits theat e() request to all the servers
in the configuration. (b) Thereate() request succeeds after the client receives
positive acknowledgment from a quorum of serveys=(7—2=5). .. .. .. ..

8.2 Examplecreate() request using a Byzantine fault-tolerant agreement. (d) an
(c) are similar to the Byzantine quoruomeat () request and acknowledgment
in Figure[8..(a) and (b), respectively. However, Figurgabove illustrates that
Byzantine agreement protocols U3én?) messages over multiple rounds, whereas
Byzantine quorums us®@(n) over two rounds where the second round is often pig-
gybacked onto subsequent operations [A®E]. . . . . . . . . .. .. ... ...

8.3 Awrite is successful after a client receives positiveagvledgment from a quorum
of q storage servers. Two clients simultaneously submit caimftjovrites. During
repair, the system should initialize the new configuratmthe state reflecting the
latest successful write. In these two examples, the setat that can be observed
from the clients at timé = 3 is the same, but the latest successful write differs. In

(a), the client that wrote received a quorum of positive server acknowledgments

and, thus, is successful. In (b), the client that wrotgid not receive a quorum
of positive server acknowledgments so the write failedstine new configuration
must be initializedt@. . . . . . . ... ...

1

8.4 Example total order of sound operations. . . . . [

8.5 Latest soundness proof. From Figire 8]3(a), at tlméz the Iatest sound erte
wasc. Assume a quorum of servers (servers 1-7) acknowledged/irmg¢he latest
soundness proof (configuration parametees 9, q=7,r =5, andf = 2). This
figure shows the administrator’s view of the storage systetimee t = 3 after re-
ceiving replies from five servers (servers 1, 2, 5, 8, 9). Asswservers 1 and 2
are malevolent and can either send the latest or old prookangrs 8 and 9 are
out-of-date and did not receive the last proof. At least @m@es response out of
five (server 5) contains the latest soundness p@of(. . . . . . ... ... ...

8
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8.6 Local server state for log head and hash-verified extdhiacludes proven state
(with soundness proof) and pending state (without soursdpesof). Proven state
includes the latest soundness proof, blogknes, and data. Mapping is used to
connect extents into a secure log. Proven state is null whextent is first created,
whencr eat e(), snapshot (), orput () are pending; otherwise, itis not null. Pend-
ing data includes a pending soundness proof (certificatecanfiguration without
server signatures), bloakames and data. Pendingap is used byruncate(),
pendingmap points to the extent created durstgpshot (). Pending state is null
if no requests are pending. When a pending request gatheo$ @i soundness
the pendingproof field replaces the prootr eat e(), snapshot (), andput () re-
place blocknames, datdlocks, and mapping with the associated pending fields.
append() adds the pendingplock.names and pendindatablocks to blocknames
and datablocks fields, respectivelyt r uncat e(), however, removes blockames
and datablocks fields; additionally, it replaces the mapping fieldhathe pend-
ingmap field. . . . . . .

8.7 (a) To complete areate() request, a client must first request a new configura-
tion from the administrator. The client then sends the coméitjon along with the
signed certificate to storage servers listed in the confiura(b) To complete an
append() request, the client must only send a message to each stamage is the
configuration. . . . . . . .. L e e

8.8 When a storage server believes that repair is needehds s request to the admin-
istrator. After the administrator receive$ 2 1 requests from servers in the current
configuration, it creates a new configuration and sends rgedsaservers in the

[h40

set. The message describes the current state of the loggstservers fetch the Iogi

from members of the previous configuration. . . . . . ... ... ... ..

9.1 Distributed Directory System Architecture. . . . .. .. ... .. ... .... [150

9.2 The above query states that for a given object identilercs the location-pointers
where the remaining number of replicas are less than thenlatermark, thus trig-
geringarepairaudit . . . . . ...

9.3 Directory Data Recovery. a) Using its location-poiatand storage server avail-
ability database, the root monitoring server (MIT) knowattthere are two replicas
remaining. If the low watermark is three, then the root teigga repair audit. b) The
storage servers containing the remaining replicas (Hdraad Texas) cooperate to
refresh lostdatareplicas. . . . .. ... ... ... .. .. .. .. ... 0.

9.4 Expanding Radius Heartbeat. Heartbeats initiated ligrage server (e.g. middle
server) reach a greater number of additional servers astrédeat radius expands.
Heartbeats are a form of multicast and reach all serversdrsyistem when the
radiusislodN. . . . . . ..

(454

10.1 ITET path of an (&y eat e() /put () /snapshot () /renew() and (b)append()/truncate().

10.2 The pathofan (aepai r() . . . . . . . . i i e e e [1bo
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11.1 Aggregation increases system throughput by reducingpatation at the data source
and in the infrastructure. The base case shows the throtighpaiclient that stores
4 KB blocks (and a certificate) usimuit () operation, as in a traditional DHT. . . [de6

11.2 The throughput of the system scales with the numberesbustil resources at the
storage servers are saturated. Performing bulk writegtkaput () interface, the
cluster deployment becomes saturated with 48 data soutésing theappend()
interface, the sustained throughput is much lower becaaske guorum operation
adds only a small amount of data to the log. ..

11.3 Different operations have widely varying latency. Tdttency IS dependent on the
amount of data that must be transferred across the netwdriharamount of com-
munication with the administrator required. The latencyFCiDall operations (even
thenul | () RPC operation) exhibits a long tail due to load from otherelaied jobs
running onthe shared cluster. . . . . . ... ... ... ... ... ... ...

11.4 Increasing the deployment’s tolerance to faults resltice system throughput since
the system must transfer more data with each write operation . . . . . . . .. [170

11.5 The latency of operations on PlanetLab varies widghedding on the membership
and load of a configuration. As an example, this graphs phet€CDF of the latency
for appending 32 KB to logs stored in the system. The tablbligilgts key points
iNnthecurves. . . . . . . . 17

11.6 Quorum Consistency and Availability. (a) Periodicd®ahow that 94% of quorums
were reachable and in a consistent state. Up to 90% of failedks are due to net-
work errors and timeouts. (b) Server availability tracevehthat 97% of quorums
were reachable and in a consistent state. This illustragemtrease in performance
over (a) where timeouts reduced the percent of measureldlaleaguorums. . . . [1¥e

11.7 Number of servers with their Antiquity application gahle per hour. Additionally,
number of failures per hour. Most failures are due to rasgrthe unresponsive
Antiquity instances. As a result, a single server may regtAntiquity application

multiple times per hour if the instance is unresponsive. ...... .. 7
11.8 Number of replicas created over time due to storing neta dnd in response to
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Chapter 1

Introduction

The preservation of digital data over long periods of tima @hallenging endeavor. The
amount of such data is increasing as everything from busiaed legal documents, to medical
records, to news and literature, to photos, music and videedransitioning to digital formats.
Systems that store digital assets must ensure durabildyirgagrity of potentially irreplaceable
data, and allow users to retrieve data quickly when it is eded

A variety of approaches for archival storage have been @eghaOne recent trend is clear:
disks have begun to replace tape as the medium of choice rigrteym data preservatioh [Cor,
[GSKO3[GGLOB._ GCBO0Z]. Not only is the cost per bit of storage decreasing fasttir disk than
with tape, but also the on-line nature of disk-based artlsi@age leads to greater availability
and ease of automatic replication as media fails and haedalaanges. However, cheap on-line
disk-based storage is not a sufficient solution if disks alecated in the same machine room,
data center, or geographic area. Such a solution cannoat®ldisaster without loss of data. For
example, consider a solution that replicates data in phigiseparated data centers but all located
in the same city. If a disaster were to occur (e.g. flood cabgedurricane Katrina) then data would
be lost. Replicating data across the wide-area would helpent data loss for long-term storage.

Another trend that has appeared in literature but is notansally accepted is durabil-
ity through geographic-scale replica distribution [CB®E,[DKKT01,[HMDO% [MMGCO2[ DR,
[REGT03]. By “geographic scale”, we mean the spreading of replazaoss multiple states or conti-

nents. Advantages of this approach appear to include skitglamd resilience to correlated failures
such as local disasters. For example, a simulation of thbddite algorithm/{[CDHO0€] is able to

maintain 100% durability over the course of a year on PlasetlBBCT04] despite losing over a
third of the servers due to permanent server failure suclskdallure and permanent removal from



the network. Unfortunately, such widely distributed syssesuffer from new challenges of security
(including malicious components) and automatic managéifneliable adaptation to failure in the
presence of many individual components).

A geographically spread archival storage system needs &oléyetive and tolerant of the
wide-area environment: long latencies, limited accedsbiandwidth, increased transient failures
where data is intact on disk but not immediately available] malicious agents that attempt to
compromise servers and data. In particular, designing andrchival storage system that aggre-
gates disks of a large number of servers spread across teeaned, for long periods of time, is a
challenging pursuit, but a necessary one.

This thesis represents a step towards outlining and adadgetie challenges of a dis-
tributed wide-area on-line archival storage infrastreetuNe assume that such an infrastructure is
an essential layer for a variety of applications. We prodeeatidress two questions: First, how can
an archival infrastructure be constructed to provide diitgbintegrity, and efficiency? Second,
what is an appropriateterface between applications and an archival infrastructure? lyjinae
build such a system called Antiquity to verify the constioies and interface.

1.1 Overview

The task of a distributed wide-area on-line archival stersgstem is to ensure the dura-
bility and integrity of digital data.Durability means data stored in the system is not lost due to
permanent server failure such as disk failutetegrity means that the state of data stored in the
system always reflects changes made by the owner. We dismissriponents of durability and
integrity further in Sections1.1.1 ahd Th.2.

1.1.1 Maintaining Durability

In order to maintain durability, the following componentsed to be addressedault
toleranceandrepair.

Fault tolerance represents a data object’s ability to addepermanent server failure with-
out being permanently lost. It is characterized by an olsjecnfiguration which defines the type
of redundancy (replication or erasure-codes), number pfcgpiate replicas, and location of those
replicas. Both replication and erasure-codes duplicata ideorder to reduce the risk of data loss
and are considered redundancy. The difference is thatetjolh refers to the process of creating
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(a) Fault Tolerance (b) Repair
Figure 1.1: Example Maintaining Durability in a Distribdt&Vide-area On-line Archival Storage
System. (@) fault tolerance defines the system’s abilitplerate server failure without loss of data.
It includes choosing the type of redundancy (e.g. replicatir erasure-coding), number of replicas,
and where to store replicas. (b) Repair is the process dadciy replicas lost to server failure (such
as Louisiana). It includes detecting server failure andtimg new replicas (such as Georgia).

whole, identical, copies of data. Erasure-coding mapsaagect broken intanoriginal fragments
(pieces) onto a larger set nffragments 1§ > m) such that the original fragments can be recovered
from a subset of alh fragments. The fraction of the fragments required is calfedrate, denoted
ri. Data loss occurs when all replicas or a sufficient fractibftamments for erasure-codes are lost
due to permanent server failure. In addition to the type déinelancy, the number and location of
replicas or fragments are critical to an object’s abilitydterate failure. A fault tolerance algorithm
is a set of procedures used to parameterize the componeatsdaifject’s configuration. Once se-
lected, an object’s configuration is static and does notomspo permanent server failure; rather, it
tolerates them without data loss.

Repair is the process of replacing replicas lost to permasenver failure. It includes
the monitoring of servers and the creation of new replicasmfailure occurs. Each time repair is

invoked, aconfiguration chang®ccurs since a new set of servers is assigned the respaysibil

Loptimal erasure codes such as Reed-Solorhon [BE%[Pla97[[RVI7] codes produce= m/r (r < 1) fragments
where anymfragments are sufficient to recover the original data objdofortunately optimal codes are costly (in terms
of memory usage, CPU time or both) wheris large, so near optimal erasure codes such as Tornado jtdd8s 97,
[CMST9q] are often used. These require €Im fragments to recover the data object. Reducirgan be done at the
cost of CPU time. Alternatively, rateless erasure codeb sisd_T [Lub02], Online[[MayOp], or Raptof [Shd03], codes
transform a data object ofi fragments into a practically infinite encoded form.



storing replicas. The set of servers in the old and new cor#igun may overlap or could be com-
pletely disjoint. In particular, repair invokes a faultécdnce algorithm to select a new configuration
for the object. It then creates and stores replicas on neveiser

Fault tolerance and repair are two different sides of theeseoin. Fault tolerance algo-
rithms select a configuration to tolerate failure and areked in two situations: when the object is
initially inserted into the system and during repair.

Consider the following example to understand the intevadtietween fault tolerance and
repair. Initially, a fault tolerance algorithm selects afiguration that uses a replication redundancy
scheme to produce three total replicas for some objecth&umtore, the fault tolerance algorithm
selects three servers distributed throughout the wide-erestore replicas. Over time, if a server
storing a replica in Louisiana permanently fails, the relivould be lost (FigudeZl.1(a)). As a result
of the failure, a repair process is triggered to create a e@lica, which it then stores on a server in
Georgia (Figuré_Tl1(b)). Repair uses a fault tolerancerilgo to select a new configuration and
chooses a new server to host the new replica.

Threats to Durability

There are many threats to durability that complicate thetrantion of a distributed wide-
area on-line archival storage system. The main threat inda$e last copy of an object due to
permanent server failure such as disk failure. Bursts ofnpeent server failure such as those
observed on PlanetLab [CDHE,[BBC04] can leave a data object without any replicas. Efficiently
countering this threat to durability involves understaugdihe parameters of fault tolerance and
repair discussed in more depth in Hart I1.

Another threat to durability is the increase of costs dugdasient server failuresuch
as server reboot, network and power outage, and softwash.cfaansient server failure is when a
server returns from failure with data intact. For examplenBtLab experienced 21,255 transient
server failures in one year, but only 219 permanent failufesnsient server failure increases costs
unnecessarily if the system creates replicas in responsieetn. Avoiding this cost is difficult
because it is not possible to distinguish transient frormaeent server failure since they both have
the same characteristic. In particular, objects can bebfiustiored during a transient failure even
though the object is not immediately available. For ins¢arifcthe only copy of an object is on the
disk of a server that is currently powered off, but will soragde-join the system with disk contents
intact, then the object is durable but not currently avd@alAs a result, an object is unavailable



during both permanent and transient failure. Since trahserver failure does not decrease data
durability, creating replicas in response is not necesddrg dilemma is determining when to create

replicas without perfect knowledge of which failures arenp@nent or transient.

1.1.2 Maintaining Integrity

We say that the integrity of data is maintained if the statelaih stored in the system
always reflects changes made by the owner and cannot beddbgesror or malicious agents. We
assume each data object is owned by a single principle, vidrepresented by a public/private key
pair. Multiple devices such as a workstation and laptop n@ssess both keys.

We address three properties of integrityon-repudiation data integrity andorder in-
tegrity. These properties ensure that only the owner can modify detisrned data is the same as
stored, and the last write is returned in subsequent reasisectively.

Non-repudiably binding data to owner ensures that only ditygrossessing the owner’s
private key can modify data. It includes identifying the @wmof each data object and binding
owner to the data object and modifications. It ensures sed@not store and cannot present data
and changes made by any entity other than the owner. It isseagesince servers that initially
store replicas of a data object may not be the same servetatirastore the data object and receive
modifications.

Data integrity is achieved when returned data is the sam&esdsdata. Mechanics for
ensuring data integrity include associating a cryptogigily secure hasH INIS94] with each data
object. A cryptographically secure hash is a digest (akalchan, summary, or fingerprint) repre-
sentation of a data object that makes it difficult for erroriig network transmission, in storage, or
via a malicious attacker to corrupt or alter data withouedgon.

Order integrity refers to the property by which the last wiig returned in subsequent
reads. It defines a total order over all modifications to ai@#dr data object. As a result, each
server has the ability to accept or reject a modification tzenot be applied. For example, if
each modification is assigned a monotonically increasiggesce number, then a server can reject
modifications assigned a lower sequence number than ttst tateification accepted.

Consider the following usage scenario to understand theepties of integrity. First, as-
sume that an owner’s workstation batches updates and peilgd(e.g. once an hour) stores data
into a distributed wide-area on-line archival storage eayst Additionally, the owner occasionally

uses a laptop to store modifications directly to the storggtem without synchronizing with the
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Figure 1.2: Example Maintaining Integrity in a Distribut®dde-area On-line Archival Storage
System. (a) A data object with the valfas replicated onto four servers via a request by a worksta-
tion. In (b), the same workstation attempts to add v&@luaredicated o already being stored. The
request succeeds since it reaches a threshold of servarsigll Louisiana, and New York). The
request did not reach the Georgia server, however, posdildyto network transmission error or
transient failure. In (c), a laptop, which possesses thegaivate key as the workstation, attempts
to add valueC, predicated oA already being stored. The request fails since the prediadseon

a threshold of servers. Note that the server in Georgia ep@lsince the predicate matches local
state. However, the system should return vddue any subsequent reads.

workstation. The owner and data object are non-repudiablyn via a public/private key pair;
storage servers identify data objects via a public key amgawgtept requests signed by the associ-
ated private key. As a result, both workstation and laptepidentified as the same owner and are
the only entities allowed to modify the data object. Withstecenario, the storage system should
be capable of maintaining data and order integrity whiley @alcepting modifications signed by the
owner despite arbitrary failures such as network erroneserilure, or simultaneously submitted

and conflicting requests.

Challenges to Integrity from Replication

A distributed wide-area on-line archival storage systephicates data on multiple servers
to provide durability. However, maintaining the propest integrity over replicated data is chal-



lenging. Servers may store inconsistent data object eeptate. Cause of inconsistencies could be
due to server failure or network transmission error suchreged, reordered, or delayed messages.

It is even more challenging to maintain order integrity asralata object replicas. It
requires maintaining consistent state over a thresholthe&ervers storing a data object replica.
As a result, each storage server obeys a consistency prataddas the ability to accept or reject
modifications that cannot be applied to locally stored stdter example, a predicate might be
associated with each modification and the predicate mustmaatecure hash of the currently stored
state of the data object before applying modification.

Consider the following illustration to understand the cdewjty of maintaining integrity
over replicated data. In Figufel.2.(a), a new, empty, dajcowhich only includes a public key is
replicated on four storage servers. The owner’s workstaiges its private key to sign a request that
adds the valué to the data object. The request includes a secure hash oétihserver stateA)
to ensure the data integrity. Additionally, the requestudes a predicate indicating the previous
stored state is empty. The request succeeds and is appbdddar storage servers.

Later, in FigurdLR.(b), the workstation attempts to adde/8 to the data object, pred-
icated onA already being stored. The workstation creates a securedfidish new server staté\(
andB) to ensure the data integrity, cryptographically signsréwuest to non-repudiably bind it to
the owner, and submits it to the storage servers. The requesteds since it reaches a threshold of
servers (lllinois, Louisiana, and New York). The requestmibt reach the Georgia server, however,
possibly due to network transmission error or transiertifei

In Figure[I2.(c), a different instance of the owner, thedpp attempts to add valug,
predicated orA already being stored. This request fails on most of the sgrtlee predicate fails
sinceAis not the latest state. As a result, the request fails sitiseeahold did not apply the request.
Note, however, that the server in Georgia applies the régirese its state is out-of-date.

Finally, if reads are also performed on a threshold of serthen the value of the latest

write, B, will be returned in subsequent reads ensuring order iityegr

Threats to Integrity

The threat to integrity is data corruption on disk or durirgwork transmission and ma-
licious agents that attempt to subvert the system. Moreaeen a system replicates data, it must
ensure that replicas are kept consistent and queries ane@tsin a manner that reflects the true

state of the data. Effectively countering these threatsitegrity involve many techniques. Cryp-
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(a) Permanent Server Failure (b) Permanent Server Failure (c) Repair
Figure 1.3: Example Maintaining Durability and Integritpdgether in a Distributed Wide-area On-
line Archival Storage System. In (a) and (b), a server sgpdarreplica in Louisiana permanently
fails. In (c), during repair, the system should initializecthew configuration to the state reflecting
the latest successful writé, B.

tographic signatures bind data to owner preventing anyyeather than the owner from modify-
ing data. Cryptographically secure hashes ensure bitsareonrupted and that data returned is
the same as data stored. Finally, consistency protocols asiByzantine agreement and quorum
maintain consistency ensuring that the last write is retdrm subsequent reads. The challenge is
efficiency since requiring cryptography and consistenaphéwide-area can easily be prohibitive.

Alternatively, to make the problems associated with disted wide-area storage more
tractable, many systems eliminate the ability to modifyadatd store onlimmutabledata [CDH" 08,
[DKKF01,[HMD05 [DRO1]. Immutable data is read-only and cannohgea Ensuring data and or-
der integrity is immediate since the data object cannot gharCreating a secure hash one time
when the object is first created would be sufficient to ensaethe data returned at some later date
is the same as the original data stored. We explore maintpindth immutable data objects that
cannot change andutabledata objects that can be modified.

1.1.3 Putting It All Together

Combining both durability and integrity poses new chalestp distributed wide-area on-
line archival storage systems. The system must, in aggregetintain correct state of data objects
even as servers fail, store incorrect local state, or attéonpaliciously alter data. These challenges
are compounded by the additional requirements of wide;-éwag-term, and efficiency.

In Figure[IB, we return to the examples originally shown iguFesCL1 andTl2 to il-
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lustrate the combined requirements of durability and inteeg Recall a fault tolerance algorithm
chooses a configuration of four servers to store data olgptitas.B is the latest successful write
to a threshold of servers. Additionally, the server in Gepgjores incorrect state. Later, the server
in Louisiana fails as shown in FigukelL.2.(a) and (b). Durieggair, the system should initialize the
new configuration to the latest stafeB, shown in Figuré112.(c).

In summary, durability via fault tolerance and repair eesufata exists over long periods

of time and integrity ensures it correctly reflects changasl@only by the owner.

1.2 Challenges

A distributed wide-area on-line archival storage systefersfimproved durability and
increased accessibility but must overcome several dissaygas arising from the distributed en-
vironment. We address the challenges associated with itityrafault tolerance and repair, and
integrity.

1.2.1 Assumptions

To limit the scope, we make the following assumptions.

First, we assume that eventually all servers permanerit|yttiat servers are geographi-
cally spread across the wide-area, and that data persigisrithan the lifetime of any individual
server. As a result, the persistence of data is dependertteosystem’s ability to copy replicas
across the wide-area to new servers as old ones fail. Weefuagsume that wide-area access link
bandwidth is the critical resource and needs to be effigienilized when servers communicate and
replicas are created. All durability and integrity guaesas operate under these assumptions.

Second, while we do explore the effects of Byzantine (aabjjrfailures and some corre-
lated failures, we do not explore massively correlatedifag, which can result from virus, worm
attacks, etc. Such failures can be extremely catastrophiey cause permanent data loss on a
large fraction of disks. We assume, rather, that in aggeega&trvers behave correctly and there are
a limited number of permanent server failures during somegef time.

Third, we assume storage servers reside in professionahaged sites where sites con-
tribute servers, processor, non-volatile storage, andorktbandwidth. We assume server availabil-
ity, lifetime, storage capacity, and access link bandwidibrofessionally managed sites is sufficient
to support distributed wide-area on-line archival stoffgf€03]. It is the software that allows these
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servers and sites to cooperate to maintain data durabildyeasure the integrity of data.
Finally, we assume that a particular data object has a sovgher but multiple simultane-
ous writers. For example, an owner might be represented loyplicfprivate key pair and multiple

devices such as a workstation and laptop may have accestht&dys.

1.2.2 The Fault Tolerance Problem

Fault tolerance is the first key to ensuring data durabiliiile goal is to tolerate server
failure without loss of data. Fault tolerance algorithmssirahoose the type of redundancy, number
of replicas to create, and where to store replicas. We disthesthree components (redundancy,
number of replicas, and replica placement) of fault toleeafurther.

First, redundancy is the duplication of data in order to oedilne risk of data loss. There
are two categories of redundancy: replication and erasod@ig. Replication involves creating
whole copies of data. The limitation with replication is thiaincreases the storage overhead and
maintenance bandwidth without comparable increase i faeldrance. In particular, a linear in-
crease in the replication level results in only a linear @ase in the number of failures that can
be tolerated. In contrast, erasure-coding involves bregplata into data fragments (pieces of the
data object) then creating new redundant fragments thatrdageie from other data and redundant
fragments. Only a fraction of all fragments are requiredemonstruct the original data object. All
fragments are the same size. Since a fragment may be as fasgetzole copy of the data object,
erasure-coding is a superset that includes replicatioasufe-codes have a better balance between
storage overhead, maintenance bandwidth, and fault tmleraWith a linear increase in storage,
the number of server failures tolerated often increasesrexially (e.g. when the number of frag-
ments required to reconstruct the object is greater thah dle demonstrate that erasure-coding
is more efficient than replication. However, the choice auredancy type is a designer decision
since replication is simple to use and coding is complex,thedsavings are not always worth the
increased complexity [RL05, WK02].

Second, fault tolerance is dependent on the number of espticeated. The number of
replicas must be configured to cope withbarst of failures. It is the size of burst of failures and
their probability of occurrence that results in the proligbbf data loss. If the size of a failure
burst exceeds the number of replicas, some objects maytbhé\ma result, one could conclude that
the highest possible value is desirable. On the other hedsinultaneous failure of even a large
fraction of servers may not destroy any objects, dependmigosv replicas are placed. Ultimately,
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the proper number of replicas to create is related to thdibass of permanent failures, but other
factors such as placement and access link bandwidth lireéd to be considered as well.

Finally, replica placement is the process in which servezssalected to store data repli-
cas. The goal of placement is to maximize durability. We shioat spreading replicas sets of
different objects over many servers increases durablliggs time is required to recover from fail-
ure since more servers can assist in repair. The decreaseair time increases durability since
durability is inversely proportional to repair timle [PGK|8&urthermore, we show that a variant of
a random replica placement that avoids blacklisted seamdseplaces duplicate sites is sufficient
to avoid the problems introduced by many observed corctlaitures.

Fault Tolerance Insights

The following is a summarized list of insights about fauletance. First, with the same
storage overhead, erasure-codes tolerate more failumagdplication. However, erasure-codes in-
crease the complexity of storage systems, thus designesswaigh efficiency of erasure codes
versus the simplicity of replication. Second, increasimg iteplication level helps cope with bursts
of failures. It is the size of burst of failures and probabilf occurrence that results in the proba-
bility of data loss. Third, less time is required to recovent failure when replica sets for different
data objects are spread over many servers so that moressearemssist in repair, thus increase
durability. Finally, random replica placement such as dra avoids blacklisted servers and re-
places duplicate sites, is sufficient to avoid the problerreduced by the many observed correlated
failures.

1.2.3 The Repair Problem

Repair is the other key to ensuring data durability. The gbadpair is to restore the level
of fault tolerance by refreshing lost redundancy befora dalost due to permanent failures. We
assume replicas are geographically spread, thus the cosgaifng new replicas requires wide-area
bandwidth, a critical resource. Monitored information,iethmeasures the number of available
replicas, is the basis for initiating repair. However, thisnitored information is imprecise since
replicas can be durably stored (e.g. exist on a server’s tisknot immediately available (e.g.
server powered off), hence transient failure. Transieidira does not decrease the number of
replicas that are durably stored, therefore it is not nergge create replicas in response to transient

failure to maintain a target level of durability. Furthemmapusers of many Internet applications can
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tolerate some unavailability. For example, requested @ataadable eventually, as long as it is
stored durably.

Ideally, replicas would be created in resposdy to permanent server failure. A hypo-
thetical system that can differentiate permanent fromsieant failures using an oracle could react
only to permanent failures. However, it is not possible tstidguish the two failure types using
only remote network measurements (epgng). Initiating repair after failure, whether permanent
or transient, is the method currently used by most existyistesns since they are limited to network
measurements. This method may serve as a solution but pmbescostly.

Transient failures are common in wide-area systems (e.g2531transient versus 219
permanent failures in one year on Planetllab [CDE]). Many replication algorithms waste band-
width by making unneeded replicas. For example, the inigalication algorithm used by many
distributed hash table (DHT) storage systems such as DHGa3], OpenDHTI[RGKO0S], and
PAST [DRO1] turned out to be costly [CDHE, WCSKU5]. The problem was that their designs
were driven by the goal of achieving 100% availability; tHecision caused them to waste band-
width by creating new replicas in response to temporaryf@d. Their designs and similar ones
(such as Total Recall [BT@04]) are more than what is required for durability.

Since we assume that wide-area bandwidth is a critical respa system should attempt
to minimize repair costs due to failure while maintainingaeget level of durability. A key tech-
nique to reduce repair costs is to reduce the number of eepliceated in response to transient
failures. One solution requires an increase in the time teafe failure. Such a solution does not
respond to many transient failures since a server thati¢nathg fails might return before a failure
is detected. However, durability is decreased since thadaw of vulnerability” is increased. The
larger failure detection time subjects data to loss fromitamdhl permanent server failure. Alter-
natively, instead of increasing the failure detection timeother solution increases the number of
replicas. The solution supplements the replication levigh wxtra replicas that areot required
for durability, but instead are required to be simultangousavailable before repair is initiated.
For example, assume the replication level required for getadurability is five replicas, then this
solution might add two more replicas for a total of seveniogsl Repair is invoked when four
replicas (or less) are available , thus this solution woddrivoked wherthree (or more) replicas
are simultaneously unavailable. In general, as the nunflrepbicas required to be simultaneously
unavailable increases, the probability that they are alailable due to transient failure decreases
exponentially. As a result, increased replication can lexlue decrease bandwidth usage due to

transient failures.
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The solution of using increased replication to reduce repasts depends on whether
data is mutable (data can change) or immutable, (data isoelgcand cannot change). For mutable
data, servers that return from failure need to either betepddar removed from the replica set if a
write occurred while the server was unavailable. To redapair cost, the system must estimate the
number of replicas that are required to be simultaneousdyaitable in order to initiate repair. This
estimate is based on system measurements such as averageasailability, lifetime, amount of
data, and bandwidth to support target durability level. iRanutable data, however, reintegrating
replicas from transient failures into replica sets miniesithe number of copies created incorrectly
due to transient failures. The result is that the systemopas some extra work for each object
early in its life creating replicas in response to transfaittires, but over the long term creates new
copies of the object only as fast as it suffers permanenir&sl Replicas created in response to
transient failure and reintegrated into the replica satlate the data object from future transient

failures.

Repair Insights

The insights of repair can be summarized as follows. Firgtalility is a more practical
and useful goal than availability for applications thatrstobjects (as opposed to caching objects)
for long periods of time. Since data is not lost during transifailures, which are common in
the wide-area, the cost (such as the number of replicasecrgatr unit time) can be reduced via
maintaining high durability versus high availability. $&cl, the main goal of a durability algo-
rithm should be to create new copies of an object faster thendre destroyed by permanent server
failures. The choice of how replicas are distributed amargess can make this task easier. Fi-
nally, extra replicas beyond what is required for durapiteéduce the cost due to transient failure
(e.g. number of replicas created). For mutable data, estigpithe number of extra replicas mini-
mizes unnecessary copying. For immutable data, reintagregturning replicas is key to avoiding

unnecessary copying.

1.2.4 The Integrity Problem

In addition to the durability requirements of fault tolecanand repair, storage systems
must maintain the integrity of data. The problem is we assanyeserver may behave in arbitrary,
Byzantine, ways. A server may be in an arbitrarily undefinedalicious state due to a network

error, storage corruption, software bug, or compromise.aAssult, a server may modify data in
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ways not authorized by the owner of the data, corrupt dataigkha during transmission, or by
not following protocol. For example, nearly a third of theRetLab servers were compromised in
December of 2003 when an attacker exploited a kernel vuilgyag|/WCSKOT].

Since we assume that any fraction of the servers may exhymamine behavior, it is
difficult to develop mechanisms and protocols that ensugeritegrity of data in this environment.
Specifically, ensuring the integrity of data includes eimguthree properties: non-repudiability,
data integrity, and order integrity. We discuss these threperties and viable solutions that ensure
them further below.

First, the non-repudiability property ensures that onky dlvner (or agent of the owner)
can modify mutable data. The approach most commonly prop@iseassuring this property is
to include a cryptographically signed certificate with edelia object. The certificate provides a
secure, non-repudiable binding between the data and iterovine certificate remains colocated
with the data, even as the data is replicated or transferred.

While this solution is conceptually simple, an efficient iempentation has proved elusive.
One impediment is the time it takes the client to sign all &f ¢ertificates. In fact, some designers
have rejected the solution by reasoning that the cost ofyming certificates is prohibitively ex-
pensive [EKMOD]. To illustrate this problem, assume an igpgibn running on a 3 GHz processor
wishes to store 1 TB of data. If the data is divided into 8 KBdii® and certificates are created
using 1024-bit RSA cryptography and a single processomitlvtake more thagix daysto create
certificates for the dath A hardware accelerator solution can reduce this signatestion time for
an increase in financial cost; for example, using six prawessres in parallel with cryptographic
co-processors per core can reduce the time by a factor ob&29gix days to six hours.

Instead of designing more expensive hardware solutionsever, we present a solution
that addresses the efficiency challenges described aboegpbyiting aggregation. For instance,
consider an application storing 1 TB of data into a systerndggregates data into 4 MB containers.
A client machine with a 3 GHz processor could create thefamtes inl7 minutesa reduction of
three orders of magnitude over a system that implementsttifcate-per-block approach. Further,
using the hardware accelerator solution described aboudweduce the time to create certificates
to one-half of one minute.

Aggregation by itself, however, is not a sufficient solutgnce clients should be able to

add data to the system without local buffering. The desigantshould aggregate small blocks of

2A single 3 GHz Pentium-class processor can create a signatut ms, as measured with the commanpenssl|
speed rsal024.



16

data into larger containers (to amortize the cost of crgadimd managing certificates) while simul-
taneously supporting incremental updates (to obviate ldztaring at clients) and fine-granularity
access (to allow clients to retrieve exactly the data thexdheMoreover, the design should allow
any member of the storage system to identify, in a secure andgepudiable fashion, the owner of
each piece of data stored in the system.

Second, a system ensures the data integrity property asabrgfurned data is the same
as stored. It is a straight forward application of a secughHanction to ensure data integrity of
strictly replicated data. Erasure-codes, however, areerdificult. To apply a secure hash when
erasure-coding is used, many systems either require ddte teconstructed from erasure-coded
fragments (e.g. DHash[Cal03]) or associate a cryptogcaphisigned certificate that includes a
secure hash of all fragments (e.g. Gladier [HMDO05]). Theopgm with the former solution is that a
storage server cannot locally verify the integrity of a freant. The problem with the latter solution
is that more bandwidth and storage may be required to steredtificate since the certificate may
be larger than a single fragment and each server must s@ettificate along with the fragment.
Additionally, significantly more processor time is requirt create a signature in addition to a
hash. We present an algorithm where each erasure-codeddngas well as the object itself, can
be self-verified by any component in the system using a ssegere hash.

Finally, consistency protocols such as Byzantine agreearahquorums ensure the order
integrity property that the last write is returned in subhsag reads. Maintaining order integrity is
challenging because a threshold of an object’s repliceeseneed to always be available and agree
on a value in the midst of arbitrary failure. Once a threshsldo longer available, other servers
need to be recruited and integrated into the replicaceetfiguration changelt is this configuration
change process while maintaining consistency that is diffi€revious solutions either do not allow
configurations to change or do not guarantee that succegstat are maintained as configurations
do change over time. We present a configuration change piotloat maintains order integrity

when configurations change even if a threshold is unavailabl

Solving the Integrity Problem with a Secure Log

Basing the design of a distributed wide-area on-line aetlstorage system on a secure
log can solve the integrity problem while incorporating i&ghts of fault tolerance and repair. Our
basic premise is that a secure log provides an ideal prienftiv implementing an archival storage

infrastructure. A log’s structure is simple and its sequptoperties can be verified [LKMSD4,
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IMRCT 97, [Mer88, [ MMGCOR[SKY8]. Only a single interfacagpend(), is provided to modify
the log, and all mutations occur at a single point—the logdhe@asystem can secure the log head
by requiring that allappend() operations be signed by the private key of the log owner. ¢hea
log element is named individually, random accgss() provides quick data retrieval. Although
simple, this interface is powerful enough to implement aetgirof interesting applications.

In ParfIIl, we show how to construct a Byzantine-fault-talet, efficient, and wide-area
archival system from a secure log. Such an archival systémteisded to be a component of a larger
application. While a secure log is conceptually simplelicaging the log in a distributed storage
system has proved challengirig [IMMGC02, RETE]. We describe a system design that combines
this log interface with three technologies: quorums, goomepair, and aggregation. Dynamic
Byzantine fault-tolerant quorums ensure consistency ®laly heads. Data integrity is assured at
both the block and container granularity. We provide datalility with an algorithm that repairs
qguorums when replicas fail. Finally, aggregation reduagsrounication costs while maintaining
fine-granularity access for clients.

The design of an archival storage system that exploits arsdog has the following
contributions. First, a secure-log based archival stogg@em maintains the integrity of data.
Second, a consistency protocol based on dynamic Byzamtutetblerant quorums that works well
in the wide-area. Third, a Dynamic Byzantine quorum repeitgzol that responds to failure and
continuously maintains replication and consistency. Ikinan operational prototype that combines

these features and is currently running in the wide area.

1.3 Architecture for a Solution: Antiquity Prototype

The conceptual insights and solutions described in Seffidhave been embodied in an
architecture that we have developed. The firstimplememtati this architecture is called Antiquity.
Antiquity supports a secure log abstraction, only the ovaidghe log can append new data blocks
to the head of the log. It efficiently stores the log as serf@fsand ensures the data and order
integrity overtime.

We demonstrate that a narrow interface simplifies the desfignstorage system. In par-
ticular, Antiquity’s design and implementation combinles log interface with three technologies—
dynamic Byzantine fault-tolerant quorums, quorum repaird aggregation—to store replicated
logs, to enforce consistent append, to provide randomsacads, to ensure durability, and to
store and update the log efficiently.
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Experience with a deployment of the prototype shows thatgiity’s design is robust.
It has been running in the wide-area for over two months on+4@@netLab servers maintaining
nearly 20,000 logs containing more than 84 GB of unique d#&b of the logs are in a consistent
state. 100% of logs are durable, though 6% do not have a quofservers immediately available
due to transient failures. The prototype maintains a higjreke of consistency and availability
due to the quorum repair protocol despite the constant cbhiigervers (a quarter of the servers

experience a failure every hour).

1.4 Historical Perspective

This thesis is a product of the OceanStore propdsaldliy. OceanStore is an Internet-
scale distributed data store designed to securely providiéntious access to persistent information.
Unlike many previous distributed storage systems, Ocesa8bnstructs a reliable and secure stor-
age infrastructure from many untrusted servers. Data iegied via redundancy and cryptographic
techniques. Although many servers may be corrupted or commiped at a given time, the aggre-
gate behavior of the complete system provides a stableget@bstrate to users. The challenge for
OceanStore, then, is to design a system that provides apssige storage interface to users while
guaranteeing high durability atop an untrusted and cotigtahanging base.

In addition to providing the motivation for this thesis, @o&tore provides the design and
implementation experience necessary to investigate tidguns posed by this thesis. In particular,
Pond [REG 03] is the OceanStore prototype that precedes Antiquitgoritains many of the fea-
tures of a complete OceanStore system including locatidegendent routing via Tapestry [ZH®4,
[ZJKO1] and Bamboo[RGRK04], Byzantine fault-tolerant uggdaerialization and commitment,
push-based update of cached copies through an overlaycasiltietwork, and continuous archiv-
ing to erasure-coded form. Every Pond server implements ebthese subsystems as a stage, a
self-contained component with its own state and thread, pdukth is a good mechanism to modu-
larize and integrate the subsystems together. Stages coicateiwith each other by sending events.
Most importantly, Pond contains sufficient implementatoal integration of the OceanStore design
to give a reasonable estimate of the performance of a fulesysFor instance, in the wide-area,
Pond outperforms NFS on the read-intensive phase of theeindenchmark, but underperforms
NFS on the write-intensive phase. Microbenchmarks showwthige performance is limited by the
speed of erasure coding and threshold signature generation

Though experience implementing Pond (and its predecesstul® is necessary for this
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thesis, maintaining an integrated solution where eachystda® needs to be tolerant of attack
and restartable due to server failure is difficult. Inste&éd dully integrated solution, breaking
OceanStore into layers may be more attainable. In fact, ébere log interface implemented by
Antiquity is a result of breaking OceanStore into layerspémticular, a component of OceanStore
is the primary replica implemented as a Byzantine fault+eht agreement process. This primary
replica serializes and cryptographically signs all upslateéiven this total order of all updates, the
guestion is how to durably store and maintain the order?hEuriore, what should be the interface
to this underlying storage system? An append-only secgranswered both questions. The secure
log structure assists the storage system in durably maintathe order over time. The append-only
interface allows a client (such as OceanStore’s primarljcayto consistently add more data to the
storage system over time. Finally, when data is read fronstbeage system at a later time, the
interface and protocols ensure that data will be returnedtaat returned data is the same as stored.

Another aspect of OceanStore from which this thesis boriieviise notion of a respon-
sible party. A responsible party is financially responsifolethe integrity of data and selects sets
of servers to obey protocol and host data replicas. Supdlficthe responsible party seems to
introduce a single point of failure into the OceanStore giesWhile this is true to an extent, it is
a limited one. First, there can be more than one responsdiy m the system; the role of the
responsible party thus can scale well. Second, the redpensarty’s state can be stored in the
system. Thus, the durability of the state can be assureaiikether data object. If the responsible
party fails, a new one could be created using the state stords system. Third, the state of the
responsible party can be cached to reduce the query load &mélly, the responsible party can
be implemented as a replicated service to improve avathaliilrther. Antiquity implements the
responsible party as administrator which is consulted to create a secure log and select a set of
servers to store log replicas.

In summary, this thesis owes credit to the OceanStore grégpegroviding the initial
motivation and experience necessary to investigate, eaigl construct distributed wide-area on-

line archival storage systems.

1.5 Lessons Learned

In this section we discuss lessons learned from our experigwestigating this thesis.
First, mechanisms fodurability should be separated from mechanismslébency re-

duction For instance, erasure-resilient coding should be utilipe durability, while replicas (i.e.
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caching) should be utilized for latency reduction. The adizge of this organization is that replicas
utilized for caching aresoft-stateand can be constructed and destroyed as necessary to meet the
needs of temporal locality. Further, prefetching can bel useeconstruct replicas from fragments

in advance of their use. Such a hybrid architecture is st in Figurd—4]3. This is similar to
what is provided by OceanStole R0, [REG03].

Second, a random placement policy—that avoids blacklistéeders and duplicate sites—
-is sufficient to avoid many observed correlated failurebe Teason random is effective is that a
significant fraction of correlated failures involve a smmalimber of servers and are often predictable
(e.g. within same site) [INYGS06]. Furthermore, large datesl events that cause many servers to
fail simultaneously occur very infrequently and are unptble [NYGS06]; as a result, it is often
not possible to avoid these large correlated events. Sinst correlated failures are small (involve
few servers), however, they are not likely to destroy aladaplicas for a particular object and often
can be avoided with simple policies. In Sectlon4.3.2, we @estrate that a random placement
policy (with small optimizations) has similar performaniwea clairvoyant placement that knows
the future time that servers fail and can avoid correlatédréa

Third, Byzantine fault-tolerant agreement- and quorursedaprotocols ensure consis-
tency of replicated state; however, quorum-based pradao@ easier to implement than agreement.
The difference between the two is that Byzantine faultraoieagreement-based protocols use com-
munication between replicas to agree on a proposed ordefingguests; whereas, in Byzantine
fault-tolerant quorum-based protocols, clients chooseotider and contact replicas directly to op-
timistically execute operation§_ [CMI06]. It is the selection of an ordering in the mist of fail-
ure and attack that make agreement-based protocols diffccuhplement. For instance, neither
Pond [REG 03] or Castro and LiskoV JCL99] initially implemented vievhanges, which is re-
quired to tolerate failure. Quorum-based protocols on therchand do not require replicas to order
requests, instead clients provide the order. Reducing ity of implementation is the reason
Antiquity implements a quorum-based protocol instead cdigneement-based protocol.

Fourth, the use of an administrator significantly reducesdbmplexity of the overall
design of a distributed wide-area on-line archival storaggtem and reflects the design of other
storage systems (such as cluster based storage desigesjtordéige system can be audited for cor-
rectness and ensure that integrity of data is maintainex $hee administrator authorizes clients to
utilize storage resources and selects servers to obeycpt@ond maintain replicated state. Without
an administrator, designs such as Antiquity’s could becsignaificantly more complex and difficult

to implement.



21

Finally, storage systems should decouple the infrastreistwnit of management (e.g.
extent) from the client’s unit of access (e.g. data block3.aesult, the storage infrastructure can
amortize management costs over larger collections of dhtke wlients can access smaller blocks
of data. For instance, Pond maintains (replicated) longbinters to track the availability of every
fragment of every block. However, resource (computatidorage and bandwidth) consumption
maintaining location-pointers dominates resource comsiom used to maintain actual data. As
a result, Antiquity aggregates blocks into containersechéixtents and maintains metadata on an
extent basis reducing resource consumption significaRtlyther, the design supports incremental
updates (to obviate data buffering at clients) and fine«geaity access (to allow clients to retrieve
exactly the data they need).

1.6 Contributions

We make several contributions in this work.

First, we explore the parameterization space of fault tolerance gbrithms and asso-
ciated durability. We show that erasure-coding reduces the bandwidth costsitctain a target
level of durability when compared to replication. Alterneaty, for the same storage overhead and
bandwidth costs, erasure-coding can maintain a significaigher level of durability than repli-
cation. Further, we show durability is related to the disttion of failure bursts. Next, we show
that random placement is sufficient to increase durabilidyrgduced repair time and avoid many
correlated failures. Additionally, we present a unifiedwief existing wide-area storage systems
and evaluate the long-term maintenance costs of the systeimg a trace-driven simulation.

Second,we show how to reduce costs due to transient failuresWe demonstrate a
principled way to estimate the amount of extra replicatiequired to reduce repair costs due to
transient failures. Further, when data is immutable, weavstiat the system can limit the number
of unnecessary copies made due to transient failures byirgshat recovered copies are integrated
in place into the replica set. The result is that the systerfopas some extra work for each object
early in its life, but over the long term creates new copieshef object only as fast as it suffers
permanent failures.

Third, we show how a secure log can solve the data integrity problere demonstrate
how the narrow interface of a secure, append-only log sireplthe design of wide-area distributed
storage systems. The system inherits the security andiiyt@goperties of the log. We describe

how to replicate the log for increased durability while enrsyl consistency among the replicas. We
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present a repair algorithm that maintains sufficient regilim levels as machines fail. Finally, the
design uses aggregation to improve efficiency.

Finally, we describe the design and evaluation of Antiquity Prototye. Antiquity is an
implementation of a distributed on-line archival storagstesm that exploits a secure log interface.
It efficiently maintains the mutable log head and all othemintable components applying insights

and design points from exploring the fault tolerance, nepaid integrity problems.

1.7 Summary

As the amount of digital assets increase, systems thatestiseidurability, integrity, and
accessibility of digital data become increasingly impottaDistributed on-line archival storage
systems are designed for this very purpose. In this thesissxplore several important problems
that must be addressed to build such systems. We start ifilRéetre we explore how to efficiently
maintain durability via fault tolerance and repair. NextFar{IIl, we describe an architecture that
exploits a secure log to solve the integrity problem. We thgply the insights and architecture to a
Prototype called Antiquity in PaflV. Antiquity efficiegtimaintains the durability and integrity of
data. Finally, in Pailflv, we discuss related and future wadk @onclude.
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Chapter 2

Methodology

The software and algorithms of a distributed on-line ar@hétorage system allow servers
to cooperate in order to maintain the durability and intygof data. The behavior of the software
and algorithms, however, depends on the environment inhnthiey are used. An environment is a
set of circumstances and conditions under which a serveatgse For example, environments with
high disk failure rates or low network access link speedsenitadifficult for any system to maintain
durability [BRO3)].

To gain a deeper understanding and intuition about alguorithilesign decisions and as-
sociated costs, we use traces of both existing and syntvetis-area environment characteristics.
These characteristics vary by the rate and distributioneofnanent and transient server failures.
Additionally, they vary by access link bandwidth. The tdrgevironment characteristics are that of
servers residing in managed sites such as universitiegyamwies, etc.

To measure and compare algorithms, we use environmentatbasécs to drive a series
of simulations. We use traces of permanent and transiemérséilure to drive an event-based
simulator. A server is affected by three events in a tra@en, fail, crash. In the simulator, a
server is added and all content stored by the server is blaitd the time of g oi n in the trace.

A server is removed and all content stored by the server igailahle at the time of &ail or
crash. Furthermorecrash permanently removes all content stored by the server. Betivat are
not available in the trace are not available in the simulédad visa versa). Figufe2.1 illustrates a
server failure traces. Finally, in the simulator, each eehas unlimited disk capacity, but limited
link bandwidth.

A distributed wide-area storage algorithm maintains daitalility as servers fail. Each
algorithm is represented as a set of parameters. Paranmetkrde redundancy type, target repli-
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1109635207 join  219.243.200.37
1109635207 join  132.239.17.226
1111558805 fail 219. 243. 200. 37
1111559207 join  219.243.200.37
1112813519 crash 132.239.17.226

Figure 2.1: Example Server Failure Trace.

cation level, replica placement strategy, failure detectime, number of extra replicas beyond
replication level, and whether to reintegrate replicasair mhe simulator measures the cost that
storage algorithms incur to maintain data (e.g. cumulatweber of replicas created over length
of trace). Further, it measures the number of objects pesnthnlost. Together, cost and durabil-

ity metrics describe the effectiveness of a particular @tigm in maintaining data over a particular

server failure trace.

In general, simulation provides a way to study system algaic design alternatives in a
controlled environment. Simulation facilitates explgrisystem configurations that are difficult to
physically construct. Simulation can observe interadtithvat are difficult to capture in a live sys-
tem. Further, simulation can compare cost tradeoffs oxea.tFor example, Total Recgll [BT@4]
showed via simulation that lazy repair could mask trandiaitres by delaying triggering repair,
which reduced the cost of maintaining durability. Simuas drive our analysis and comparisons
in PartIl.

After simulating system behavior, we use the insights ghinem simulation to design,
implement, and deploy best approaches. We use both emuaateceal environments to measure
performance of a deployed system in Pait IV. We use a reabgeggnt running and storing data on
PlanetLabl[BBC 04] to evaluate the efficacy of proposed algorithms. Funtioee, we measure the
performance of the deployed system in alternative enviemtswhere we emulate different server
failure patterns such as the failure trace used in simulatio

The failure characteristics are described further in afil. In Sectioi 212, we describe

the simulation, emulation, and deployment environments.

2.1 Failure Characteristics

We use permanent and transient server failure charaatsrisim both real and synthetic

sources. First, we use PlanetLab [BB@] to create failure traces of an existing wide-area enviro
ment. PlanetLab is a large-(600 server) research testbed with servers located in mawgraities
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and companies from around the world. It is a distributedembibn of servers that have been moni-
tored for long periods of time. We use this monitored dataotwstruct a realistic trace of failures in
a mostly managed environment.

Furthermore, traces of PlanetLab server failures can heathinto two distinct intervals.
The first interval contains many correlated failures duedtftweare and disk upgrades, as well as
compromise of the system. The second interval containstasslated failure since system main-
tenance and operation had matured. We expect the secondalrite be more typical of a storage
environment.

Finally, for explanatory purposes, we also use a synthaditetthat makes some of the
underlying trends more visible. For example, we may inadhe length of the trace, increase the
failure density, or remove transient failures, etc.

The rest of this section is organized as follows. First weeulis the failure collec-
tion technology in SectionZ.1. Then we discuss the thadaré trace characteristics in Sec-
tionsZT P2 113, ardld2.1.4.

2.1.1 Analyzing the Behavior of PlanetLab

We use two different data sets to characterize the behatRianetLab: all-pairs pind[Str]
and CoMon project [PP06] plus PlanetLab Central [PCAR02]NGn+PLC) data sets. The all-
pairs ping data set characterizes the first interval of Rlafeoperations. The CoMon+PLC data
set characterizes the second interval. The differencedsgtithe two data sets is how and when the

data was collected. We explain further below.

All-Pairs Ping Data Set

The all-pairs ping data set provides failure data for thé finterval of PlanetLab opera-
tions. It spans from February 16, 2003 to June 25, 2005 arddes a total of 694 servers in that
time period. It collects minimum, average, and maximum pinges (over 10 attempts) between
all pairs of servers in PlanetLab. Measurements were takdrcallected approximately every 15
minutes from each server. The 15 minute ping period does a@am enough fidelity to detect
transient failures less than 15 minutes. Measurements takes locally from individual servers’
perspective, stored locally, and periodically archived e¢ntral location. Failed ping attempts were
also recorded.

To create a trace from the all-pairs ping data set, we needtarmine the times during
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Figure 2.2: Server Attrition of All-pairs Ping Data Set.

which servers transiently and permanently fail. The sé&weansition from available to unavail-
able defines a failure, which might be transient if the sere&urns later. We use at least a single
successful ping from at least one other server to deterrhiaeat server is available. On the other
hand, if there are no successful pings from any server, thesdrver is unavailable. This single
ping and server method of determining server availabiligswsed by Chun and Vahdai [CV03];
a single non-faulty path is sufficient for many routing altfons to allow servers to communicate.
For example, algorithms exist for servers to communicateeitmvorks with non-transitive connec-
tivity [And04], [FLRS05).

All-pairs ping does not measure permanent failure. Instiéateasures only the availabil-
ity of a server name (i.e. availability of an IP address) aottihe existence of data on a server. As
a result, all-pairs ping was used to produce an estimatedrugund on server lifetimes. We used
a technique described by Bolosky et al._ [BDEIT00] to estinthéeexpected server lifetime based
on server attrition. In particular, if servers have detaiistic lifetimes, then the rate of attrition is
constant, and the count of remaining servers decays lin€dre expected server lifetime (meaning
the lifetime of the servers IP address, not physical hardwiarthe time until this count reaches
zero [BDETOD]. We counted the number of remaining serveasdtarted before December 5, 2003
and permanently failed before July 1, 2004. The expecteceséfetime of a PlanetLab server is
951 days (Tabl€212(b)). FiguteP.2(a) shows the servetiattr Furthermore, we computed an

estimated lower bound of a server lifetime by supplementiegtrace with a disk failure distribu-
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tion obtained from[[PHO2] (TableZ3.2(b)). In our experinwgrhe expected lifetime of a server lies
between the upper and lower bound.

Another limitation of the all-pairs ping data set is no dat&sts between December 17,
2003 and January 20, 2004 due to a near simultaneous conggr@amd upgrade of PlanetLab. In
particular, Figuré€Zl3(a) shows that 150 servers existeBarember 17, 2003 and 200 existed on
January 20, 2004, but no ping data was collected in betweeddtes above.

CoMon+PLC data set

The CoMon+PLC data set provides failure data for the secotaivial of PlanetLab op-
erations. It is from March 1, 2005 to February 28, 2006 antligies a total of 632 servers. We use
historical data collected by the CoMon project to identifgnisient failures. CoMon has archival
records collected on average every 5 minutes that includesiptime as reported by the system
uptime counter on each server. We use resets of this countietéct reboots, and we estimate the
time when the server became unreachable based on the lasCtivion was able to successfully
contact the server. This allows us to pinpoint failures withdepending on the reachability of the
server from the CoMon monitoring site.

We define a disk failure to be any permanent loss of disk ciésitelue to disk hardware
failure or because its contents are erased accidentallgtentionally. In order to identify disk
failures, the CoMon measurements were supplemented wéiht éegs from PlanetLab Central.
This database automatically records each time a Plane#rabrss reinstalled (e.g., for an upgrade,
or after a disk is replaced following a failure). The machisd¢hen considered offline until it is

assigned a regular boot state in the database.

2.1.2 PlanetLab First Interval: Insights into Correlated Failures

Figure[Z3B shows the PlanetLab first interval trace chariatites using the all-pairs ping
data set. Figurle2.3(a) shows the (total and available) suoftservers versus time. It demonstrates
system growth over time. More importantly, it pictorialllhavs the number of servers that we
simulated at each time instance in our trace.

FiguredZB(b) and (c) show the frequency and cumulativgufracy for the sessiontime
and downtime, respectively. Note that the frequency usedethy-axis and cumulative frequency
uses the right. Asessiontimas one contiguous interval of time when a server is availablte

contrast, adowntimeis one contiguous interval of time when a server is unavkilaBessiontime
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Figure 2.3: PlanetLab first Interval Characteristics (@dlirs Ping). Sessiontime, downtimes, and
availability distributions.

and downtime are commonly referred in the storage liteeafsra time-to-failure (TTF) and time-
to-repair (TTR), respectively. Additionally, the averagssiontime and downtime is the mean-TTF
and mean-TTR (MTTF and MTTR), respectively. A servéifstime is comprised of a number of
interchanging sessiontimes and downtimes. The mean séssgowas 204.4 hours (8.5 days) and
mean downtime was 82.8 hours (3.5 days). Both the sessierimd downtime distributions were
long tailed and the median times were 3 hours and 0.75 haspectively.

The sessiontimes decreased dramatically between OctObdréhd March 2005 due to
multiple kernel bugs that caused chronic reboot of Plartetieavers (shown in Figute2.3(a)). The
chronic reboots within the last six months of the trace dedlihe total number of sessions with
mostly short sessiontimes. In particular, the median sasie decreased from 55.8 hours (2.3
days) between February 2003 and October 2004 to 3 hours &etrebruary 2003 and June 2005.

Despite the decrease in sessiontimes, we continue to usetPdd as an example wide-area system.

By doing so, we show how storage systems should adapt to ekavgr time without loss of data
or increase in communication costs.

Figure[ZB(d) summarizes the sessiontime, downtime, andrsavailability statistics.
Availability is dependent on the sessiontime and downtithis. the percent of time that a server is
up (i.e. total sum of the sessiontime divided by the lifetiondhe average sessiontime divided by
the sum of the average sessiontime and downtime) and isaemnivo the more commonly known

: MTTF 0 TRl
N -
expressionyrrermrrr  We measured that 50% of the servers have an availabilitypaf% or

cumulative frequency
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Dates 16 February 2003 — 25 June 2005
Number of hosts 694

Number of transient failures 23903

Number of disk failures 308

Transient host downtime (s) 2700, 297994, 507600

Any failure interarrival (s) 868, 3079, 6300

Permanent failures interarrival (s) 11702, 234965, 629045
(Median/Mean/90th percentile)

Table 2.1: PlanetLab First Interval Trace Characterigddbpairs Ping). Permanent and transient
server failure distributions.
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Figure 2.4: PlanetLab First Interval Trace Charactesstil-pairs Ping). Permanent server failure
interarrival distribution.

higher. However, 22% of the servers are available less thémndf the time.

Table[Z1 summarizes the permanent and transient failureégimne between failures.
As shown in Figuré_2Z]4, 25% of the permanent failures ocdusienultaneously due to multiple
server upgrades and a compromise of the system; the timebeth0% of permanent failures was
separated by three hours or less. Further, the permankméfaiterarrival distribution is long tailed
with 10% adjacent failures separated by at least eight dag®oe.

2.1.3 PlanetLab Second Interval: Insights into Matured Sytem and Operation

FigurelZ® shows the PlanetLab second interval trace deaistics using the CoMon+PLC
data set. In contrast to the first interval, the second iatdras similar average sessiontime, 194.0
hours (8.1 days) compared to 204.4 hours (8.5 days). Howtweaverage downtime is shorter,
29.0 hours (1.2 days) compared to 82.8 hours (3.5 days). &sudtfthe average server availability
is higher in the second interval, 0.87 compared to 0.70.heamore, in the second interval, 50% of
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| Distribution [ Mean(d) [ Stddev(d) [ Median(m) | Mode(m) | Min(m) | 90th(d) | 99th(d) | Max(d) |

Session 8.1 25.9 1305 45 5 19.0 39.7 365.0
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Figure 2.5: PlanetLab Second Interval Trace Charactesi¢CoMon+PLC). Sessiontime, down-

time, and availability distributions.

Dates 1 March 2005 — 28 Feb 2006
Number of hosts 632

Number of transient failures 21255

Number of disk failures 219

Transient host downtime (s)
Any failure interarrival (s)

1208, 104647, 14242
305, 1467, 3306

Permanent failures interarrival (s) 54411, 143476, 490047

(Median/Mean/90th percentile)

Table 2.2: PlanetLab Second Interval Trace Charactegi@ioMon+PLC). Permanent and transient

server failure distributions.

the servers are available at least 99% of the time and 2% cfaihvers are available less then 50%

of the time.

Table[Z2 summarizes the permanent and transient failme$rae period between fail-

ures. Notice in FigurE214, the shape of the curve for permtafiadiure interarrival times indicates

that an exponential distribution is a reasonable fit. The fitieag exponential distribution uses the

maximum likelihood estimation with a mean of 1.7 days (193,8econds).

2.1.4 Synthetic trace

We also generated synthetic traces of failures by drawiitgréainterarrival times from

exponential distributions. Synthetic traces have two fiend-irst, they let us simulate longer time

periods, and second, they allow us to increase the failunsitye which makes the basic underly-

cumulative frequency
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Figure 2.6: PlanetLab Second Interval Trace Charactesi¢€oMon+PLC). Permanent server fail-
ure interarrival distribution.

ing trends more visible. We conjecture that exponentiarifailure times are a good model for
disks that are independently acquired and operated at gginigally separated sites. Exponential
intervals are possibly not so well justified for transierilui@s due to network problems.

Each synthetic trace contains 632 servers, just like theefllab second interval trace.
The mean sessiontime and downtime match the values shovabldZ? and Figude3.5.(d). How-
ever, in order to increase the failure density, we extenteddngth to two years and reduced the
average server lifetime to one year.

2.2 Analyzing Algorithmic Solutions

This thesis uses a variety of methods to test the effectssené its techniques. These
methods show that significant efficiency gains can be rahlizelistributed wide-area storage sys-
tems via analysis, trace-driven simulation, and real imglstation of algorithms. For instance,
in Part[Il, we explain principled ways for choosing the redamcy type, number of replicas, data
placement, and repair strategies. Our methods are basedttomfalytical models and empirical
measurements. We describe our methods in the followingpsect

First, we present a unified view of storage algorithms in Bad®21. Next, we de-
scribe the metrics we use to measure the effectiveness lofsta@ge algorithmic parameterization
in SectionZ2ZZP. In Sectidn 2.2.3, we describe the subsysésponsible for collecting and ana-
lyzing each storage algorithmic solution. Then, in SeclgA4, we discuss the criteria to make

conclusions about algorithms. Finally, we describe théedght environments where the tests are
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General Parameters || Description

Redundancy type Replication or erasure-codes.

Replication level Number of replicas or fragments required to be available.
Rate of encoding Fraction of fragments required to read a data object.
Placement strategy || Policy used to select servers to store replicas (e.g. rapdom
Placement scope Number of servers eligible to stores replicas for a parsicabject.

Failure detection timg| Timeout used to determine a server is unavailable.

Repair Parameters || Description
Extra replicas Number of replicas created beyond replication level.
Reintegrate Reintegrate replicas returning from transient failure.

Table 2.3: Storage System Algorithm Parameterization

Parameter || Dhash | Dhash++| PAST | Pond | TotalRecall | Carbonite
Redundancy type repl erasure | repl erasure | erasure repl
Replication level 5 14 9 24 variable 3

Rate of encoding N/A 3 N/A 3 ~ N/A
Failure detection time| < 15 <15 <15 <15 <15 <15
Placement strategy || Random| Random | Random| Random| Random Random
Placement scope 5 14 9 N N N

Extra replicas 0 0 0 6 10 0
Reintegrate no no no no no yes

Table 2.4: Existing Storage System Parameterization
performed in Section2.2.5.

2.2.1 Algorithmic Solution Representation

Using a unified view of distributed wide-area storage systeme can measure and com-
pare the effectiveness of different algorithms. We assumaé éach algorithm is parameterized
based on general system parameters. These parametersate ogintain durability while reduc-
ing costs due to transient failure. We assume further tlestetiparameters are defined once for the
whole system and applied individually to each server and diject. The parameters are described
in Table[ZB.

As an example of the utility of these parameters, we desdhibeparameterization of
six existing wide area storage systems in Tdhlé 2.4: Carbdd@DH™06], Dhash [[DKK-01],
Dhash++[DLS04], PAST [DR0O1], Pond [REGO3], and TotalRecall[BTE04]. These storage
systems have been measured and deployed. Furthermorepdhaineterizations are described in
literature and many other notable storage systems areeddriom them. In Paflll, we demonstrate
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and evaluate the durability and cost of many storage algarjtarameterizations.

2.2.2 Metrics

Storage system algorithmic solution parameterizatioasr@asured and compared based
on durability and cost.

Durability is the probability that a data object exists afiesspecific amount of time. We
use many metrics to measure durability. For instance, iti@dé.2, we choose the replication level
based on the probability that an object is permanently toatparticular amount of time. Durability
is one minus this probability. Alternatively, in Sectiod ], we use a failure rate, number of times
a particular (fixed-size) data object fails per unit timer Ewample, we use the fraction of blocks
lost per year (FBLPY) as a failure rate. In the special caséenithe likelihood of failure remains
constant as time passes such as with an exponential faiktréodtion — the failure rate is simply
the inverse of the mean-time-to-failure (MTTF) for a partar data object.

Cost is the amount of resources used per time to maintailgettdurability or replication
level. In Chapter§l5 and 111 we measure the cumulative nunfo@pbicas created. This mea-
sures the total bytes sent to maintain a specific durab#itiditionally, we measure the bytes sent
due to monitoring. However, in many situations the amourtaridwidth used for monitoring is

significantly less than the bandwidth due to replica creatio

2.2.3 Statistics Gathering and Analysis

Gathering and analyzing statistics from simulation is irdrag. For instance, we count
the number of data objects permanently lost to measure ility:a®n the other hand, we count the
number of replicas created to measure cost. Additionaklymeasure the data availability since we
know the exact time data objects are available or not. Sitoulallows us to analyze particular
storage algorithms over particular failure traces. Thigassible since simulation can measure the
percentage of objects lost, availability of objects, areldimount of bandwidth needed to sustain
objects over time.

Similar to simulation, we measure object durability andtdasour deployed system.
However, the subsystem responsible for gathering and zinglyhese statistics is more complex in
the deployed system. The subsystem is broken into two parésit recorder and analyzer.

The event recorder subsystem is run by each server and hasoimponents. First, each

server maintains a generation identifier. This is a randombar created and stored to disk when the
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server is installed or reinstalled following a disk failufecond, periodically (every minute), a local
process on each server probes the local storage applidestng if the storage server application
is available. Third, each server maintains a database afiyostored object replicas. Finally, each
server logs the request and response of every request.

The analysis subsystem is run at a central location and kehrinto two components:
downloading and analysis. Periodically, once a day, théraksite contacts every server down-
loading their generation identifier, server applicationikability, list of object replicas, and log of
requests. Given the server event logs, the analyzing std@mgsmeasures the number of objects
lost, unavailable, and the cost to maintain objects in tistesy.

The analyzing subsystem has a caveat, it does not know wijette exist or not for
each moment. For example, if a server is available but hasvageeeration identifier, then the
central site knows all the object replicas stored on the elgegation have been lost. If, however,
the central site cannot contact a server, then it does nat kvitether the object replicas exist on
the server or not. In this case, the central site marks thesas unavailable and analyzes the logs
accordingly. If the server later becomes available, thetgegs are downloaded and the central site
uses the new server logs. Since the statistics are prodieéaiyg, the central site simply reruns the

analyzing routines over all the downloaded logs.

2.2.4 Algorithmic Solution Comparison Criteria

Ideally, a storage system will not permanently lose any dhjacts and the cost (humber
of replicas created) will be proportional to the rate of panent server failure. Real storage sys-
tems, however, are less than ideal. As a result, the efeewss of an algorithmic solution is based
on the difference between the ideal and measured durabilidycost. For instance, in Chapiér 5,
we compare the cost for each algorithm to an oracle that déareafitiate permanent and transient
server failures and only reacts to permanent failures. gJgiis method, we show that an algorithm
that reintegrates replicas returning from transient faiig nearly optimum. The algorithm initially
incurs a penalty for not distinguishing permanent and temtdailures, then creates replicas pro-
portional to the permanent failure rate. In general, gogdrithmic solutions are measurably closer

to an ideal system using an oracle.
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2.2.5 Environments

Simulation is the main method used to analyze algorithmsterAdimulating system
behavior, we use the insights gained from simulation togtesimplement, and deploy best ap-
proaches. The deployments are configurable: we are ableatagehthe parameterization of a
deployed system by changing the configuration file for eackese

We currently run two separate deployments discussed iffPlaBoth deployments are
parameterized to replicate each object on a configuraticsewén storage servers (except where
explicitly stated otherwise). Each configuration can tatetwo faulty servers and still have a ma-
jority. Both deployments are hosted on machines sharedatlithr researchers, and, consequently,
performance can vary widely over time.

We apply load to these deployments using 32 servers of argliffdocal cluster. Each
machine in theest clusterhas two 1.0 GHz Pentium 1ll CPUs with 1.0 GB of memory, and two
36 GB disks. 1024-bit RSA signature creation and verificatakes an average of 6.0 and 0.6 ms,
respectively. The cluster shares a 100 Mbps link to the eataretwork. This cluster is also a
shared site resource, but its utilization is lower than tbeage cluster.

Simulation

We use the failure traces to drive an event-based simuletdhe simulator, each server
has unlimited disk capacity, but limited link bandwidth. wiver, it assumes that all network paths
are independent so that there are no shared bottleneckheFitrassumes that if a server is avail-
able, itis reachable from all other servers. This is occasip not the case on PlanetLdb [FLR$05];
however, techniques do exist to mask the effects of partiateachable serverls TAnd04].

The simulator takes as input a trace of transient and dilréagvents, server repairs and
object insertions. It simulates the behavior of serversuddferent protocols and produces a trace
of the availability of objects and the amount of data sent stoded by each server for each hour
of simulated time. Each simulation maintains 1 TB of uniqe¢ad(50,000 data objects, each of
size 20 MB). Unless otherwise noted, each server is configuwith an access link capacity of 150
KBytes/s, roughly corresponding to the throughput activander the bandwidth cap imposed by
PlanetLab. The goal of the simulations is to show the peaggnof objects lost and the amount of
bandwidth needed to sustain objects over time.
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Emulation

The first deployment runs on 30 servers of a local cluster guthb Petabyte Storage
Initiative [UoQd]. Each machine in thpsi clusterhas one 1.0 GHz VIA processor with 1.0 GB
of memory, and up to 1 TB of disk space of which we can only z€ilb0 GB due to resource
sharing. Servers are connected via a gigabit Ethernetlswitg24-bit RSA signature creation and
verification routines take an average of 12.5 and 0.7 mseoéisgly. This cluster is a shared site

resource; a load average of 10 on each machine is common.

Real Deployment

The other deployment runs on tfdanetLabdistributed research test-bed [BBGA].
We use 400+ heterogeneous machines spread across mosentsin the network. While the
hardware configuration of the PlanetLab servers variesptimemum hardware requirements are
1.5 GHz Pentium Il class CPUs with 1 GB of memory and a totskdize of 160 GB; bandwidth
is limited to 10 Mbps bursts and 16 GB per day. 1024-bit RSAaigre creation and verification
take an average of 8.7 and 1.0 ms, respectively. PlanetLabésvily-contended resource and the
average elapsed time of signature creation and verificaiofien greater than 210.5 and 10.8 ms.

2.3 Discussion

To test solutions proposed in this thesis we often utiliznBiLab|[BBC 04], a surpris-
ingly volatile environment[[PEM06]. Even though it is noptgal for current enterprise storage
systems, an environment such as PlanetLab’'s—composedvefsérom multiple autonomous or-
ganizations that are geographically dispersed—may be wmmenon for many new distributed
systems such as the Global Information Grid (GIG) [Age] afil: In these new distributed sys-
tems, servers cooperate across the wide-area to provideesesuch as persistent storage. Systems
designed in this manner exhibit good scalability and reisde to localized failures such as power
failures or local disasters. Unfortunately, distributggtems involving multiple, independently-
managed servers suffer from new challenges such as se@ndtyding malicious components),
automatic management (reliable adaptation to failure enptfesence of many individual compo-
nents), and instability. In PlanetLab, for example, tyfckess than half of the active servers are
stable (available for 30 days or more)Y[PEMO06].

Providing secure, consistent, and available storage sethgstems that exhibit extremely



37

high levels of churn, failure, and even deliberate disapis a challenging problem and the sub-
ject of this thesis. Demonstrating techniques, designd,imaplementations that operate well in

these environments is a contribution that will lend itselbther distributed wide-area storage sys-
tem endeavors. This thesis, however, does not investigeetp-peer environments composed of

home users since bandwidth is not sufficient to durably stiata [BROB]; instead, we focus on
professionally managed environments where bandwidthfficisunt.
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Chapter 3

Fault Tolerance and Repair Overview

Wide-area distributed storage systems typically use aafidin to provide two related
properties: durability and availabilityDurability means that objects stored in the system are not
lost due to permanent server failure such as disk failuresredsavailability means that the system
will be able to return the object promptly. Objects, selfi@ined units of storage, can be durably
stored but not immediately available. If the only copy of dject is on the disk of a server that
is currently powered off, but will someday re-join the systaith disk contents intact, then that
object is durable but not currently available.

The threat to durability is losing the last copy of an objast tb permanent server failure.
We assume all content stored by a server is lost when it pexntignfails. Efficiently countering
this threat to durability involves two techniques: faulierance and repair. Fault tolerance ensures
that data is durable despite permanent failure. It is charaed by an object’s configuration, which
defines the type of redundancy (replication or erasureg)pdember, and location of replicas. For
example, creating three replicas of an object via repticagéind placing each replica on a disk that
fails independently of each other is a fault tolerant teghaithat can tolerate two failures. Fault
tolerant technigues do not respond to server failure; rathey are designed to tolerate them. Since
any particular fault tolerant technique can only tolerafmide number of failures, redundancy lost
due to permanent failure must be replaced eventually; wiker given time and failure, the object
would be permanently lost. Repair is the process that repleedundancy lost to permanent failure.

This part of the thesis explores fault tolerant and repaordthms designed to durably
store objects and at a low bandwidth cost in a system thateggtgs the disks of many servers
distributed throughout the wide-area. In particular, weks® answer two questions. First, given a
set of fault tolerant and repair algorithms what is the ais¢ed durability measured in percent of
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objects lost per unit time? Second, what is the cost of therigign as measured by replicas created
over time? Below, we highlight some of the insights discdsseChapter§l4 arid 5.

Fault tolerance is the first key to ensuring data durabilitye goal of fault tolerant algo-
rithms is to tolerate permanent disk failure without perergrobject loss. The storage system must
choose the type of redundancy. Both replication and erasges duplicate data in order to reduce
the risk of data loss and are considered redundancy. Thedfypedundancy, however, is more
of a designer decision since replication is simple but egpen(bandwidth and storage overhead)
and erasure-codes are more efficient but complex. In th8shee use the term replica to refer to
both replication and erasure-code schemes unless otleenwied. In addition to the redundancy
type, the storage system must choose how much replicatiosetothe proper amount is related to
the burstiness of permanent failures. Finally, the stosgtem must also choose where to store
replicas. Less time is required to recover from failure wheplica sets for different data objects
are spread over many servers thus allowing more serversist asrepair. The decrease in repair
time increases durability since durability is inverselpmortional to repair time [PGK8&8].

Repair is the other key to ensuring data durability. The g@dakpair is to refresh lost
replicas before data is lost due to permanent failures. doed information, which measures the
number of available replicas, is the basis for initiatingaie However, this monitored information
is imprecise since replicas can be durably stored but notediately available, hence transient
failure. Initiating repair after failure, whether permaner transient, is the method currently used
by most existing systems. This method may serve as a soligproves to be costly since creating
replicas in response to transient failure is not necesgamaintain durability. We demonstrate
how to minimize repair cost. The solution requires manyicaglto be simultaneously unavailable
before repair is initiated and depends on whether data ialfeibr not. For mutable data, servers
that return from failure need to either be updated or remdnad the replica set if a write occurred
while the server was unavailable. To reduce repair costsyseem must estimate the number of
replicas that are required to be simultaneously unavailbbfore repair is initiated. For immutable
data, however, reintegrating replicas from transientifa# into replica sets minimizes the number
of copies created incorrectly due to transient failurese fidsult is that the system performs some
extra work for each object early in its life, but over the Idegm creates new copies of the object
only as fast as it suffers permanent failures.

In the rest of this chapter we present an example for maingisiata durability that will
be used in the following chapters. We begin with a set of agsioms and model of the system.

Next, we present the redundancy and reconstruction mesrhani
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3.1 System Model

Fault tolerance and repair algorithms, along with a dataabgplica location and repair
servicework together to maintain data durability.

A replica location and repair service is used to locate anditoiodata object replicas and
trigger a repair process when necessary. An implementaffects the possible policies for fault
tolerance and repair. It knows for each object the locatiomach replica and number of total and
remaining replicas; therefore, it knows how to resolve object logatiequests and when to trigger
repair. The replica location and repair service abstragjives the storage system location indepen-
dence and allows different fault tolerance algorithms tinlg@emented. It may be a central service
where a database records the location of all object repdications and triggers repair if replicas
are unavailable; alternatively, it may be a distributececliory where responsibility is partitioned
among the servers.

Fault tolerance algorithms choose a configuration that eefthe type of redundancy,
number of replicas, and placement of each replica. It iskedowvhen an object is initially inserted
into the storage system and when an object is repaired.

Repair works by maintaining law watermark ¢ on the number of replicas. When the
number of replicas falls below thg, the replication level is increased at least back tgsome
repair algorithms increase the replication level higheF@804]). The data object replica location
and repair service tracks the number of available replicastaggers repair when the available

replicas is less than the low watermark.

3.2 Example

Consider the following example to understand the intepadbietween fault tolerance, re-
pair, and the replica location and repair service. Inijjal fault tolerance scheme uses a replication
redundancy algorithm to produce eight total replicas fonsmbject with a low watermariq of
seven replicas required to be available to satisfy somediatility constraint. Using a data place-
ment strategy, replicas are then distributed throughaaitwtite-area. Over time, suppose that, a
replica in Georgia permanently fails losing data and a cegl Washington transiently fails when
a heartbeat is lost (FiguEe_B.1(a)). As a result of the fagua repair process might create two new

replicas, one in Arizona and the other in Minnesota (Fiquii¥l8). Repair uses a fault tolerance

1The number of remaining replicas is the number of replicasriside on servers that are currently available.
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Figure 3.1: Example of Maintaining Data in a Wide Area Ster&ystem.

scheme to choose new servers to store the new replicas.

One might ask what if the server in Washington returns froiluria with data intact?
There are two possible solutions. First, the system coeilttegratethe extant replica into the
replica set. Reintegrating the extant replica reducestihiegbility of triggering repair due to future
transient failures since the replica set is larger. In thevatexample, reintegrating the Washington
replica into the replica set would result in nine instead ighetotal replicas; as a result, three
replicas instead of two would have to simultaneously faildssubsequent repair to be triggered.
If the returning replica needs to be updated, however, thefiis of reintegration can be reduced.
Systems that do not allow object updates — such as systeinsttihe immutable (read-only and
cannot change) data objects — retain the full benefits ofaegiation. On the other hand, the system
couldforgetabout the returning replica. If the object was mutable andptate occurred while the
Washington replica was unavailable, then reintegratiegsdrver may actually increase costs since
the replica needs to be updated.

In this part of the thesis we investigate fault tolerancealjms, when to trigger repair,

and how to perform repair.
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Chapter 4

Fault Tolerance

Fault Tolerance is the first key to ensuring durability. Itlefined by a configuration that
includes the type of redundancy, number of replicas, anditime of replicas. It also represents
a data object’s ability to tolerate permanent server failwithout permanent data loss where no
replicas exist anywhere. In Sectibnl4.1, we demonstratethieatype of redundancy is more of a
designer decision since replication is simple but expenéidandwidth and storage overhead) and
erasure-coding is more efficient but complex. Next, in $edf.2, we show the proper number
of replicas to create is related to the burstiness of perntdiadures. Finally, in terms of replica
placement in Sectiolp4.3, we show that less time is requoeédover from failure when replica
sets for different data objects are spread over many serVéts allows more servers to assist in
repair. The decrease in repair time increases durabilitgesdurability is inversely proportional to
repair time [PGK88]. Furthermore, we show that a randomicepgblacement strategy — such as
one that avoids blacklisted servers and replaces dupkitae — is sufficient to avoid the problems

introduced by many observed correlated failures.

4.1 Choosing Redundancy Type

Redundancy type is the first parameter that a fault toleralgmithm must choose. Re-
dundancy is the duplication of data in order to reduce thHeofsdata loss. We address two cate-
gories of redundancy: simple replication and erasurengpdrl he limitation with replication is that
it increases the storage overhead and maintenance bahdwittiout comparable increase in fault
tolerance. In particular, a linear increase in the reglcatevel results in only a linear increase in

the number of failures that can be tolerated. In contraaswEe-coding has a better balance between
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Figure 4.1: Fraction of Blocks Lost Per Year (FBLPY) for aeréterasure—encoded block. Disks fail
after five years and a repair process reconstructs dateaarbgurhe four-fragment case (top line) is
equivalent to simple replication on four servers. Incnegghe number of fragments increases the
durability of a block while total storage overhead remaiosstant. Notice, for example, that for a
repair interval of 6 months the four-way replication (tapel) loses 0.03 (3%) blocks per year while
the 64 fragments, any 16 of which are sufficient to reconsthmtom line) loses 10°® blocks per
year.

storage overhead and fault tolerance. With a linear inergastorage, the number of server failures
tolerated often increases exponentially (e.g. when thebeurof fragments required to reconstruct
the object is greater than one).

Erasure-coding provides redundancy without the overhéattiot replication[CEG 96,
[DEMOU, [RWEF01, [WKO02]. There are three types of erasure-codes: optinesr optimal, and
rateless. Optimal erasure-codes such as Reed-SoldmonBY lad7 [ [RVI7] encode an object
into n fragments any m of which are sufficient to reconstruct the objent € n). We callr =
T < 1 therate of encoding. A rate optimal erasure-code increases the storage cost by a factor
of % For example, am = % encoding might produce = 64 fragments, anyn= 16 of which are
sufficient to reconstruct the object, resulting in a totarxead factor of = I = 2 = 4. Note that
m= 1 represents strict replication, and RAID leve[5[PGK88j t& described bynf= 4, n=5).
Unfortunately, optimal erasure-codes are costly (in teohmmemory usage and/or processor time)

whenm is large, so near optimal erasure codes such as Tornado [ldd&s 97,[LMS™9¢] are
often used. These near optimal erasure-codes requigniftagments to recover the data object.
Reducinge can be done at the cost of increasing processor time. Atteeha rateless erasure

codes such as LT[[ubD?2], Onling [May02], or Raptor [SHo@8jdes transform a data object of
m fragments into a practically infinite encoded form. We assiine use of optimal erasure-codes
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unless otherwise noted.

Weatherspoon and Kubiatowicz illustrated that increasagnfientation provides greatly
increased durability]WK02] as shown in Figurel4.1. More artantly, erasure-resilient systems
use up to an order of magnitude less bandwidth than repticatetems to provide the same level of
data availability and durability[BSV08, BRD3, WKI02]. Hower, there are negative consequences
to using erasure-codes.

Erasure-codes and their checksum[WWKO02] are processensive to produce. For
example, the Pond_[RE®3] prototype performance was limited by erasure-codimgdypcing
erasure-encoded fragments contributed more than 72%9(56&.out of 782.7 ms for a 2MB up-
date) of the write latency. As a result, there is a tradeativeen CPU costs and networking effi-
ciency when considering the use of erasure-codes or réphicaAdditionally, if a metadata layer
individually accounts for each fragment, the layer can ¥loaded with location pointers. In order
to prevent this problem, fragments need to be aggregatedheg(e.g. extents) so their individual
cost can be amortized. Furthermore, repair is more comeptoaith erasure-codes since a complete
data object would have to be reconstructed to produce a rangnt for repair. This repair read
adds extra complexity and cost to the erasure encoded sysi@nwever, reconstructed data objects
can be cached to reduce costs (eliminate read requiremenipsequent repairs.

We compare replication and erasure-coding more deeply next

4.1.1 Erasure-coding versus Replication

In this subsection we demonstrate that systems based amex@sies use up to an order
of magnitude less bandwidth and storage than replicatiosystems with similamean time to data
loss(MTTDL). Furthermore, we show that employing erasure-soereases the MTTDL of the
system by many orders of magnitude over simple replicatidh the same storage overhead and
repair policy. For the following discussion, we assume a simplaiapodel where lost redundancy
is periodically refreshed. Later, in Chaplér 5, we will shibow to perform a more sophisticated
repair. We present this system model next followed by a cosgaof systems based on replication
and erasure-codes.

System Model

In this section, we make several simplifying assumptionsaimpare the durability and

overhead (storage and bandwidth) of systems that use erasding versus replication. First, we
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Figure 4.2: Disk Mortality Distribution [PH02].

assume the utilization of a collection ofdependentlyidentically distributedfailing disks—the
same assumption made by bgthCase for RAIJPGKS88] and disk manufacturers. Further, we
assume that failed disks are immediately replaced by nemkldaes. During initial placement or
repair, each replica (dragmenj for a given data object is placed on a unique, randomly sedec
disk. Finally, we postulate a global sweep and repair psac@$ie process scans the system, at-
tempting to restore redundancy by reconstructing eachagét and redistributing lost replicas
(or fragments) over a new set of disks. Notice that repaRAMDPGK88] istriggeredwhen a disk
fails, which is fundamentally different than sweep and nepMle consider storage systems that trig-
ger repair in Sectioi4l.2. Some type of repair is requireldemtise, data would be lost eventually
regardless of the redundancy. See Fidure 4.2 for a typissildlition of disk mortality. We denote
the time period between sweeps of the same data objesi@ch

We perform three comparisons. First, we fix both thean time to data losgMTTDL)
of the system and the length of thepair epoch Second, we fix the storage overhead and repair
epoch. Finally, we fix the MTTDL of the system and the storagerioead. Note that theaction of
blocks lost per yea(FBLPY) illustrated in Figur€4l1 is a rate of object lost dadhdependent of
the size of the system; whereas, MTTDL is the expected tinheswof any object, thus MTTDL of
the system is dependent on the MTTDL of an individual object the system size.

1we are ignoring other types of failures such as softwaregroperational errors, configuration problems, etc.
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For our analysis, we will use the following. We characteareerasure-encoded or repli-
cated system (denoted by in terms of total storagé, total bandwidth (leaving the source or
entering the destinatiorBW, and the total number of disk seeks required to sustain rapaif,
write, and readDyx. When comparing the two systems, we will assume that thee shee same
amount of unique data measured in number of objects, wheobjakts are the same size. Addi-
tionally, new objects are added to the system at a consteEnwi@.g. new data objects per second).
We do not compare reads when considering storage and bahdwédause the amount of band-
width required to read a data object is the same for both mgstéVe assume the use of optimal
erasure-codes such as Reed-Solomon where the object cacdmstructed fronm fragments and

mfragments is equivalent to one replica in storage and batttwequirements.

Fix MTTDL and Repair Epoch

Given a system size defined by the total number of data olj®ai® focus on answering
the question, what are the resources required to store ml@asystem long-term? We define the
notion of strong durability to be the expected MTTDL of logemnydata object is sufficiently larger
than the expected lifetime of the system. That is

MTT DLdata object
O

MT T DLsystem= > system lifetime

We are concerned with the usage of three different resotmgesintain strong durability:

storage, bandwidth, and disk seeks. The resources canibedlas follows:

Sc = total bytes stored in system

BV\& BV\&vwite + BV\&repair
DX = warite + Dxrepair

WhereS, is the total storage capacity required of the sysiefwherex is replication or erasure-
codes),BW is a function of the bandwidth required to support both veriéd@d repair of the total
storage every repair epoch, addis the number of disk seeks required to support repair, syréed
reads. The repair bandwidth is a function of the total by#gtaced due to server failure during a re-
pair epoch and the length of a repair epoch. We further dénwstorage bandwidth, and disk seeks.
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First, we compute the storage for both systems

Sepp = 0-R-O
0 1
Serase = a‘n‘OZO‘F‘O

WhereR is the number of replicas,= T is the rate of encoding, armlis the data object sizeR
and% are the storage overhead factors. Thus, storage is depgesrdéme data object size, storage

overhead factor, and number of data objects.

Next, we show that bandwidth and disk seeks can be expressedris of aDataRate the number
of original data objects written and repaired.

O-P(&)

S%

DR«=N-w+

Where the first term represents new writes and includes th#ao of users\ and the new data
object creation ratev. The second term represents storage being repaired, whesehe repair
epoch lengthP(ey) is the probability that an object is lost during the epochd @n P(e) is the

number of data objects that needs repair in system.

Bandwidth is the DataRate multiplied by the size of eachailfifenoted by) and storage overhead

factorR or % Additionally, an erasure encoded system needs to recmbstrcomplete data object



49

before creating a new fragment. Bandwidth can be derived|kms\s

BWep = BWeple + Bweplrepair
0-R:Orepi- P(&repr)
€repl
Orepl - P(erepl)>
€repl

= 0-R-N-w+

= 0-R: <N-W+
= 0-R:-DRep|

BV\érase = B\/\érasevrite + B\Aéraseepairwrile+ B\Aéraseepairread
n% -N- Ograse' P(€erase) n n% -M- Ograse’ P(€erase)
€erase €erase
- Ograse’ P(€erase) .
€erase

0 % - Ograse P(€erase (1+1)
€Cerase

. <N .. Qeraser P(Gerasd a H))

rase

Oecrase’ P(€erase) ) I’>

= 0-—-N-w+

0
‘N-w-+ 2 (n4+m)

Sl Sl Sl Sl Sl

- D +
< Rerase €erase

OeraseP(€erase)
- DRerase’ <1+ —_emse I’>

=

D Rerase

The bandwidth for replication is straightforward and degent on the write and repair rates mul-
tiplied by the size of each data object and storage overhaetdrf Bandwidth for erasure-codes
is similar to replication except there is an extra term fa@orestructing data objects due to repair.
The added cost of this extra repair read term is dependeriteoratio of new writesN - w in the

DataRatéDRgras9 to repair writes(%). If new writes dominate repair writes, then the repair

read term becomes less significant; otherwise, repair regldge the benefit of erasure codes.

Third, we compute the number of disk seeks required to supyites and repair.

Drepl fr RNW_FR%GS“DI)

O-P(€repl)

Derase = N-N-w+n- Corace

The above equation states that the number of disk seekseddgaidependent on the number of
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replicas (or total number of fragments), throughput, syss&ze, repair epoch, and the number of
replicas (or fragments) needed to reconstruct the datatobje

Finally, a replicated system can be compared to a similaueeeencoded system with the following
bandwidth, storage, and disk seek ratios

S(epl

Serase ( )
B 0-R-D r
Bxepl - RC)rzf:eP(%raS@ = 1+r ‘R—=R-1 (42)
rase . % . DRerase<1+ ﬁ . I’>

(As writes begin to dominate repairs)
Drepl _ R DRrepI
Derase N DRerase

R-r (43)

We make the abstract numbers concrete using the followingnpeters as appropriate. Bolosky
et. al [BDET00] measured that an average workstation prmit&ﬂ{]'—? of data. We associate a
workstation with a user and assume thereMie 224 users. Witho = 8kB size data objects, each
user writesw = 17,676 new data objects per hour. Further, assume we €ierel0'’ total data
objects and wish for th®1T T DLsystem™> 1000 years. Hence, the mean time to failure of a particular
data object would need to be P0/ears M T T DLgata object= 107° years). As a consequence of the
former parameters and using the analysis described in [R¥Fand reprinted in AppendXIA, we
solve for a repair epoch length and number of replicas amdaiad compute thatep = €erase= 4
months,R= 22 andr = 2721 = % satisfy above constraints, respectively.

Applying these parameters to equatiénd B, 4.2[aid 4.3edrpe the following result

Seepl

= 11
Serase
BV\‘epl

= 73311
BWerase
Drepl
R = 11
Derase

These results show that a replicated system requires updodan of magnitude more bandwidth,
storage, and disk seeks as an erasure encoded system ofrtbesiga. Erasure-codes are more
complicated to use, however. For instance, a data objectsneebe reconstructed before a new
fragment can be created for repair.
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Fix Storage Overhead and Repair Epoch

The same formulas from above can be used to verify duralmfityystem calculations
presented in[[CEG96,[RWET01]. For example, using the parameters above and assunding ii
failures, we set repair time @ep = €erase= four months,R = two replicag, and rate = 2721- Both
the replicated and erasure encoded systems have the saarerdpgiorage overhead of a factor
of two. Using AppendiA, we compute tHdT T DLgata objectOf @ data object replicated onto two
servers as 74 years and M T DLyata objeciOf @ data object using a ra%erasure-code onto= 64

servers as 9 years! It is this difference that highlights the advantafjerasure-coding.

Fix MTTDL and Storage Overhead

As a final comparison, we can fix the MTTDL and storage overlieddbeen a replicated
and erasure encoded system. This implies that the storagleasdwidth for writes are equivalent
for these two systems. In this case erasure encoded systasidenrepaired less frequently, and
hence, requires less repair bandwidth.

For example, to devise a system with= 1000 data objects where the expected time to
lose any data object is 1000 yeak T T DLsystem= 1000 years), we would want the expected time
to lose a particular data object to NET T DLgata object= 10° years. A replicated system could meet
the above requirements usiRg= four replicas and a repair epochef, = one month. An erasure
encoded system could meet the same requirements using:%ﬁ = %1 erasure-code and a repair
epoch ofegrase= 28 months. As a result, the replicated system uses 28 times bamdwidth than
erasure encoded system for repair.

If, instead, the system storé3 = 10!’ data objects (as described in subseciion #.1.1)
with the same expected time to lose any data object as abbl@ DLsystem= 1000 years), then the
expected time to lose any data object ShoulMJeT DLgata objece= 10?%years. Using a factor déur
storage overhead (like in the previous example), the ezauroded system meets the requirements
using anr = g = %1 erasure-code and a repair epoclegise= 12 months, but a replicated system
with R = 4 replicas would have to repair all data objects almost irilst@nd continuously.

Discussion

The previous section presented the advantages of erasdirge but there are some

caveats as well. We highlight three issues: intelligentdsirfg, caching, correlated failures.

2In sectiofZIIR = 22 to attain the same durability
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Figure 4.3: Hybrid Update Architecture: Updates are seiat ¢entral “Archiver”, which produces
archival fragments at the same time that it updates livdaapl Clients can achieve low-latency
read access by utilizing replicas directly.

Each client in an erasure-resilient system sends messagekatger number oflistinct
servers than in a replicated system. Further, the erassiient system sends smaller “logical” data
objects to servers than the replicated system. Both of tissses could be considered enough of a
liability to outweigh the results of the last section. Wewass two measures could be employed to
offset these negative qualities of erasure-coding. Ftetage servers can be utilized by a number
of clients; this means that the additional servers are sisymlead over a larger client base. Second,
intelligent buffering and message aggregation can redvedead of maintaining many fragments.
Although the outgoing fragments are “smaller”, aggregathem together into larger messages and
larger disk blocks can reduce the consequences of fragrizentThese techniques were implicitly
assumed in our exploration via metrics of total bandwidtbregye overhead, and disk seeks in the
previous subsection.

Another concern about erasure-resilient systems is tleatitiie and server overhead to
perform a read has increased, since multiple servers musirtiacted to read a single data object.
The simplest answer to such a concern is that mechanisntsifability should be separated from
mechanisms folatency reduction Consequently, we assume that erasure-resilient codithdpevi
utilized for durability, while replicas (i.e. caching) Wibe utilized for latency reduction. The

advantage of this organization is that replicas utilizedciching aresoft-state(do not need repair)
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and can be constructed and destroyed as necessary to maetetteof temporal locality. Further,
prefetching can be used to reconstruct replicas from fragsne advance of their use. Such a hybrid
architecture is illustrated in FiguEe3.3. This is similarvhat is provided by OceanStoie TR0,
REG™03].

Finally, the assumption that failures anelependenandidentically distributeds not true
in general. Server failures may be correlated because thag sietwork routers, software bugs,
configuration problems, operating systems, suffer fromesattack, etc.. The rate of failure may be
elevated in regions of the network that share common adtrati@n or unstable hardware elements.
Studies have shown that human errors and network problezmaajor causes for server failures in
the same sitd [OP02].

We list three possible techniques to address the indepeadaiiure assumption. First,
greater redundancy gives data a greater chance of surwamglated failure[[HMDOB]. Second,
sophisticated measurement and modeling techniques ceulsdal to choose a set of servers that are
maximally independent during fragment disseminat,lWMKIZ]. Finally, distributing
fragments to geographically diverse locations eliminatdarge class of correlations caused by
natural disasters, denial of service attacks, and admatiist boundaries. We show in Sectlon413.2
that random replica placement such as one that avoids takiservers and replaces duplicate
sites, is sufficient to avoid the problems introduced by ttamyrobserved correlated failufes

4.1.2 Complexity of Erasure-Codes and Self-Verifying Data

There are negative consequences to using erasure codemtitular, erasure codes are
more processor intensive to compute than replication aquineaggregation and caching to main-
tain their efficiency. As a result, it is desirable to use ctatgpreplication to increase latency
performance and erasure codes to increase durability. hakenge is finding synergy between
complete replication and erasure coding. Also, maintgisiystems built using erasure codes is dif-
ficult because erasure coded fragments cannot be verifiatl@nd in isolation, but instead have
to either be verified in a group or through higher level olgect

We identify an important challenge when building systemseblaon erasure codes. In
particular, data integrity associated with erasure cods.contribute a naming technique to al-
low an erasure encoded document to be self-verified by céindtservers. Later, in Pdrllll, we
demonstrate how to use this self-verifying property to rrmaimthe integrity of data.

SMassively correlated attacks such as virus or worm attaakdimultaneously destroy large fractions of the system
are out of scope of this thesis.
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Identifying Erasures: When reconstructing information from fragments, we mustalid failed
or corrupted fragments (callegtasure$. In traditional applications, such as RAID storage sesyver
failed fragments are identified by failed devices or unatgkele read errors. In a malicious environ-
ment, however, we must be able to prevent adversaries fresepting corrupted blocks as valid.
This suggests cryptographic techniques to permit the gatifin of data fragments; assuming that
such a scheme exists, we can utilize amycorrectly verifiedragments to reconstruct a block of
data. In the best case, we could start by requestirfgagments, then incrementally requesting
more as necessary. Without the ability to identify corrdpi@gments directly, we could still re-
guest fragments incrementally, but might be forced to tradrial combination of all returned

fragments to find a set ofi that reconstructs our data; that {§) combinations.

Naming and Verification: A dual issue is thenamingof data and fragments. Within a trusted
LAN storage system, local identifiers consisting of tuplesesver, track, and block ID can be used
to uniquely identify data to an underlying system. In fabg tnode structure of a typical UNIX
file system relies on such data identification techniquesa diistributed system with malicious or
compromised servers, however, some other technique mustdukto identify blocks for retrieval
and verify that the correct blocks have been returned. Balevdemonstrate that a secure hashing
scheme can serve the dual purpose of identifying and vegf@gbth data and fragments. We illus-
trate how data in both its fragmented and reconstructedda@an be identified with theame secure

hash value

An Erasure Coding Integrity Scheme: We demonstrate how a cryptographically-secure hash,
such as SHA-{[NIS94] can be used to generatsiagle, verifiable naméor data object and all of
its encoded fragments.

The scheme works as follows. For each encoded data objecatresée a binary veri-
fication tree[Mer8B] over its fragments and the data objesetfi as shown in Figure4.4.(a). The
verification tree is produced by computing a hash over eagmnient, concatenating the correspond-
ing hash with a sibling hash and hashing again to produceteehigvel hashetc. This process
continues until it reaches the topmost hash (H14 in the f)jguirkis topmost hash is concatenated
with a hash of the data, then hashed one final time to prodgbebally-unique identifier (GUID)
The GUID is a permanent pointer that serves the dual purpsiemtifying and verifying a block.
Figure[Z4.(b) shows the contents of eadrification fragment We store with each fragment all

of the sibling hashes to the topmost hash, a totgllajn) + 1 hashes, where is the number of

40ther cryptographically-secure hashing algorithms witkvas well.
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(b) Verification Fragments

Figure 4.4: (a) Verification Tree: is a hierarchical hashrabhe fragments and data of a block.
The top-most hash is the blockBUID. (b) Verification Fragments: hashes required to verify the
integrity of a particular fragment.

fragments.

On receiving a fragment for re-coalescing (i.e. reconsitnga data object), a client veri-
fies the fragment by hashing over the data of the fragmentatenating that hash with the sibling
hash stored in the fragment, hashing over the concatenatiwhcontinuing this algorithm to com-
pute a topmost hash. If the final hash matches the GUID for lthekpthen the fragment has been
verified; otherwise, the fragment is corrupt and should beatided. Should the infrastructure return
a complete data block instead of fragments (say, frarachg, we can verify this by concatenating
the hash of the data with the top hash of the fragment haslthest H14 in FigurEl4) to get the
GUID. Data supplemented with hashes as above may be coedgklf-verifying

Other erasure-coding verification schemes have been mdpddowever, all schemes
are significantly more complex and expensive than simplécegjpn. For example, a verification
scheme for rateless erasure-coding has been prodosed #]FWite advantage of rateless erasure-
coding is each fragment produced during repair is uniquéh(Wigh probability) from all other
fragments that exist. Whereas, in (near) optimal erasod@g, fragments produced during repair
may be duplicate of other fragments that already exist. @tterl system must carefully track the

unique fragments that exist to avoid creating duplicatgrfrants during repair. Another verification
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scheme associates a cryptographically signed certificéteeach fragment that includes a secure
hash of all fragments (e.g. Glaciér [HMDO05]). The problenerisating and verifying signatures is

significantly more expensive then hashes.

More Complex Objects: More complex structures may be constructed from self-yiagf data

objects. For example, placing GUIDs into blocks and enapttiem is a building block to construct
complex objects. The resulting structure is a tree of blpekth original data at the leaves. The
GUID of the topmost block serves much the same purpose asoale iim a file system, and is
a verifiable name for the whole complex object. We verify agividual data block (a leaf) by

verifying all of the blocks on the path from the root to thefle@though composed of many blocks,
such a complex object is immune to substitution attacksusex¢he integrity and position of each
block can be checked by verifying hashes. Complex objectisseave in a variety of rolls, such
as documents, directories, logs, etc. In Paft lll, we dernmnates how to use very high integrity

self-verifying structures such as a secure log.

4.2 Choosing the Number of Replicas to Create

The second parameter that a fault tolerance algorithm niestse is the replication level.
The choice depends on a target durability level (e.g. prilihabf data loss after a specific amount
of time), distribution of permanent failure bursts, andabdity or rate of creating additional redun-
dancy. Given these parameters, a system designer musechiwappropriate number of replicas to
create to meet the target level of durability. In particufar the characteristics of the system, the
number of replicas must be high enough so that the probabilia burst of failures that destroys
all replicas is sufficiently rare. Calculating the replioatlevel is the subject of this section.

Replication alone, however, is insufficient to maintainaddtrability since all servers
eventually permanently fail. Over time, permanent seradufes decrease the number of replicas
that exist. To compensate for this attrition, the systemtrals® use a repair mechanism to create
new redundancy to account for lost redundancy. The nexi®e@Z1) discusses the selection of

replication level. Additional details of the repair prosese discussed in Chapfér 5.

4.2.1 System Model

In this section, we assume a replicated system since it isre@msunderstand and the

intuition, derivations, and results are equivalent to asere-encoded system. The key difference
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Figure 4.5: Example repair process. The replica locatioth i@pair service coordinates repair
process: new servers prioritize downloading new replitaisially, there are four servers and four
objects (A thru D) withr_ = 3 for each object. (a) Server 1 fails. The replica locatiod epair
service selects a new server, server 5, to download lostaspl(b) Before any repair completes,
server 2 fails. The replica location and repair servicectelserver 6 to download lost replicas and
communicates new download priority to server 5 (A,D,C iadtef A,C,D since D has less replicas
that exist than C). (c) All repair completes. Notice thatembjreplica C on server 5 and B on server
6 waited for an entire servers worth of repairs to complefereghey completed.

is that data is lost when no replicas exist in a replicatedesyorm— 1 or less fragments exist
in an erasure-encoded system. We call the replication thedlault tolerance algorithm seleais
and study systems that aim to maintain this target levelddimdancy in order to survive bursts of
failure.

Given a choice of the number of replicas to maintain denotedhe system works as
follows. An initial number of replicasr,, are stored in the system. We assume that a replica
location and repair service monitors each replica and nmmeaghe number of replicas that exist
over time. When a replica fails due to permanent serverrigilanew replica is created. The replica
location and repair service selects a new server to host aagmiva. The new server downloads the
replica from a server storing an existing replica. Finatg new server updates the replica location
and repair service when the download completes.

We assume the new server may have many new replicas to dahenholprioritizes which
replica to download next. Priority is based on the numbegeofaining replicas that exist for each
object. The replica location and repair service commuagd#be priority to the new server when
triggering repair and updates the priority if necessarg.(athen repair completes by another new
server or another failure occurs). The repair time is dependn the time to download the new

replica plus the time to download other replicas with the s@mhigher priority. Figur€4l5 shows
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Figure 4.6: Example number of replicas that exist over timigially, r,. = 8 replicas of an object are
inserted into the system. At time 3, a server storing a reghds. The failure is detected at time 4
and repaired by time 6. The repair lag is due to constrainsalirees such as access link bandwidth
that restrict the number of objects that a server can repadr given time period. Furthermore,
the newly triggered repair would have to wait for previousiggered repairs to complete. Later,
another server fails at time 9. But before repair can corapatother server fails at time 11 bringing
the number of replicas that exist down to 6. The lost replax@sreplaced by time 14. The lowest
number of replicas that exist is 5 at time 21.

the process of creating a new replica where repair is coatelihvia a replica location and repair
service. Details of implementing this service are discdisseChaptefD.

Replicas are continuously created until one of two situegtioccurs: either, replicas
exist again or no replicas exist anywhere and the data olsjgegrmanently lost. Figule=3.6 illus-
trates how the number of replicas that exist evolves oves.tirermanent server failures reduce the
replication level. Server failure must be detected andirépggered. The problem is that failure
detection has a lag because it takes time to detect failnoe svide-area storage systems often use
heartbeats to determine that a server is available and faakheartbeat to determine a server is
unavailable. Further, the repair process has a lag due &ireamed resources such as access link
bandwidth that restrict the number of objects that can baireg in a given time period. Moreover,

newly triggered repairs may have to wait for previouslydeged repairs to complete. We assume
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all failures are permanent failures. We study the effectsasfsient failures, where servers return
with data intact, in Chaptéi 5.

The target replication level is dependent on the failure rake, distribution of failure
bursts, and replica creation rate denotedubylhe server failure rat& is the average number of
times a particular server fails per time unit (assuming #haerver can be “renewed” — replaced,
after each failure, and then returned to service immediatfter failure). In some cases, such as
with an exponential distribution, it is the reciprocal oktimean-time-between-failures (MTBF)
where MTBF is the average time between failures of a pagrcsgrverAs (and MTBF) is a system
characteristic; see TadleR.2 for example. The replicatioreaate is the average number of times
one server can copy a particular replica from a remote spamime unit. Itis dependent on system
characteristics such as the per-server network accesspedd, the amount of data stored on each
server, and the number of servers (and hence number of dadegswhich help replace replicas
stored on a failed server. When a server fails, new servest hmiselected to download replicas
from the other remaining servers holding replicas of thectsj stored on the failed server. Objects
remain durable as long as there is sufficient bandwidth @ailfor the lost replicas to be recreated.
For example, in a symmetric system, each server must hafieisnitf bandwidth to download (and
serve) a server’'s worth of data during its lifetime.

At minimum, if servers are unable to keep pace with the awefaifure rate, no replication
policy can prevent objects from being I0St[BRD3, CD36,[Dab0b]. These systems anéeasible
If the system is infeasible, it will eventually “adapt” toglfailure rate by discarding objects until it
becomes feasible to store the remaining amount of data. #&rmeydesigner may not have control
over access link speeds and the amount of data to be storgdn&ely, choice of scheduling which
object to repair and object replica placement can improeesfieed that a system can create new
replicas. Scheduling is considered in our model below aadgvhent is discussed in Section 4.3.1.

If the creation rate is only slightly above the average failtate, then a burst of failures
may destroy all of an object’s replicas before a new replaralie made; a subsequent lull in failures
below the average rate will not restore the situation sitideareplicas are gone. For our purposes,
these failures arsimultaneousthey occur closer together in time than the time requirecréate
new replicas of the data that was stored on the failed diskuBaneous failures pose a constraint
tighter than just meeting the average failure rate: evejgabbmust have more replicas than the
largest expected burst of failures. Simultaneous failuwre t statistical coincidence is one source

of correlation and occurs according to a distribution.
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Figure 4.7: A continuous time Markov model for the processagiica failure and repair for a
system that maintains three replicas£ 5). Numbered states correspond to the number of replicas
of each object that exist. Transitions to the left occur atrte at which replicas are lost; right-
moving transitions happen at the replica creation rate.

4.2.2 Generating a Markov Model

We assume that server failure occurs randomly according Exponential distribution
with mean (MTBF)%, where; is the rate of server failure (the number of times a particsdaver
fails per unit time). We assume that is independent and identically distributed for all servers
and that an exponential distribution is reasonable foressrthat are independently acquired and
operated at geographically separated sites (See Higdfer2ekample). According to the model
presented, an object withreplicas loses a replica with rae; because each of theervers storing
an existing replica might fail.

Further, a replica lost due to server failure is replacedavisew server downloading a
new replica from a remote server storing an existing repli€his replica creation process takes
some time. For instance, creating a particular replica nraiyrequire waiting for an entire servers
worth of replicas to be downloaded first. To model repair, s&uane that repair occurs randomly
according to an exponential distribution with me@nNhereu is the replica creation rate (the num-
ber of times one server can download a particular replica faocemote server). We assume that
is independent and identically distributed for all objempairs and is subject to some randomness
due to available bandwidth and competing repairs. An objétt i replicas that exist increases
the number of replicas with ratg_ —i)u. Each of ther, —i new servers (selected by the replica
location and repair service) may complete downloading aneglica.

To analyze the system model presented in this section, weeeitl to a Markov chain.
At any point in time, the system hasreplicas that exist witli0 < r; <r_). The remaining —r;
replicas are lost and need to be repaired (i.e. new servectedl and downloads replica from
existing servers). An object replication level can be mede&ls a Markov chain with + 1 states.
An object is in state if there arer; replicas that exist. In staieany one of the; replicas that exist
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can fail, in which case the object goes to statel. Alternatively, any one of thg —r; non-existing
replicas can be repaired, in which case the object goestwistdl. This is a continuous Markov
model; in state, the object moves to state- 1 with rateiAs and to staté + 1 with rate(r,. — i)
whereA; is the server failure rate andthe replica creation rate (rate at which a particular sezaar
download a particular replica). We assume objects with tawplication are scheduled for repair
with higher priority than objects with greater replicatidnus have an increased likelihood of repair.
Note that staté = 0 is an absorbing state; the object no longer exists and tden@paired since
no replicas exist anywhere. The model is illustrated in FegiL].

The Markov chain model is useful to compute the probabiligt ta data object exists after
some amount of tim@ givenr,, 4, andA;. We discuss this computation in Sectlon4.2.4. Simi-
lar Markov chain model derivations and analyses can be fautitrature, Chun et al[CDHOE],
Dabek [Dab0b], and Ramabhadran and Pasquale JRP06]. THeMaodels presented in [CDHE]
and [Dab0b] are different, so the results will be differdraywever, the analytic derivation mechan-
ics are the same. The difference is the rate of creating a eplica is constant, independent of the
object’s current replication state [CD1#6,[Dab0b]; whereas, we consider “scheduling” of repair,
the likelihood of being selected for repair is increased asemeplicas are lost since objects with
less replicas are selected with a higher priority. This dalieg is similar to the model presented

in [RP0O6].

4.2.3 Creation versus Failure Rate

Intuitively, the server failure ratd; and replica creation rafe represent a balance be-
tween how fast a system loses replicas compared to how fzst itreate replicas to compensate for
the attrition. This ratio between replica creation rate seder failure rate determines the average
replicas per object the system can expect to support [QIB;{Dab0b[ RP06]. For example, if the
system must handle coincidental bursts of, say, five falutemust be able to support at least six
replicas and hence the replica creation rate must be at@dases higher than the replica failure
rate. We'll refer to the ratiqu/A+ as®. Choices forr| are effectively limited byd. It is not the
case that durability increases continuously withrather, when using_ > 6 the target replication
level is greater than the number of replicas that can beeantdat a particular object per unit time.
In this case, the system provides the best durability it garen its resource constraints (i.e. the
average number of replicas will be at m@shstead ofr. whenr, > 6). On the other hand, When

r. < 6, higher values 0B decrease the time it takes to repair an object, and thus timelow of
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vulnerability’ during which additional failures can cause object to be destroyed.

To get an idea of a real-world value 8f we estimate\; and based on the historical
failure record for permanent server failures on the secatehial of the PlanetLab trace. From
Table[Z2, the average permanent failure inter-arrivaé tiar the entire test bed is 39.85 hours. On
average, there were 490 servers in the system, so we camtstire mean time between permanent
failures for a single server as 4989.85 hours or 2.23 years. Hendg, ~ 0.439 permanent server
failures per year.

The replica creation ratg number of times one server can download a particular eplic
from a remote server per time unit, depends on the achiewaihleork throughput per server, as well
as the amount of data that each server has to store (incloelpigation). We assume that an entire
server’s worth of data may be downloaded before downloadipgrticular replica. For example,
recall from FigurdZJ5 that there were four servers and fdjects withr_ = 3 (each server stores
3 replicas). After failure, server 5 downloaded an entirvesés worth of replicas before a replica
for object C could be downloaded. Similar to this illustoati we estimatel based on the amount
of time to download an entire server’'s worth of data before@moading a particular replica; As a
result, we estimatp based on the data per server and network access link bamdwid®lanetLab,
the current limit on the available network bandwidth is 1B&per server. If we assume the system
stores 500GB of unique data per server wijth= 3 replicas each, then each of the 490 servers stores
1.5TB (Total amount of replicated data is 4900GB3=735TB and amount of data per server is
735TB/490=1.5TB). This means that a particular replicaymloaded after a server’s worth of data,
can be downloaded in 121 days (i.e. 1.5TB/150KBs=121 daysdpproximately three times per
year. This yieldgi~ 3 per year, one server can download a particular replica timees a year.

Therefore, in a system with these characteristics, we ctimate the ratio between the
replica creation rate and server failure rfte- p/A¢s ~ 6.85. In practice, this value is somewhat
lower; for example, servers cannot make copies during dovest or shortly after a permanent
server failure. However, the fact remains tBat higher than the minimum for a feasible system
(6 > 1 defines a feasible system). The system still profits frors fi@icause higher values &f
decrease the time it takes to repair an object, and thus timeldw of vulnerability’ during which
additional failures can cause the object to be destroyedth&unore, when viewed in terms of
permanent server failures and copig@slepends on the value of: asr increases, the total amount
of data stored per server (assuming available capacity@ases proportionally and reduges

To study the impact o8, we ran a set of experiments via simulation where we reduced

the bandwidth per server effectively reducing the replication ratgqi (and6). The goal was to
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Figure 4.8: Average number of replicas at the end of a two ggathetic trace for varying values
of 8. This Figures represents a set of simulations where we eedtlee bandwidth per server
(x-axis) effectively reducing the replica creation ratéand8). The input to the simulator was a
synthetic failure trace with a 632 servers and a serverrtailate ofA; = 1 per year. The storage
load maintained was 1TB of unique data (50,000 20MB objedts) a result, the total replicated
data was 2TB, 4TB, 6TB, and 8TB for = 2, 4, 6, 8, respectively. Finally, each experiment was
run with a specific available bandwidth per server that rdrfgem 100 B/s to 1,200 B/s.
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measure the average number of replicas that exist per aijéice end of the trace and relate that
to the expected value based gnand®. If r. > 6 then the average should be n&armtherwise,

if r_ < 6, the average should be. The simulator was discussed in Secfion 2.2.5. In reviewy, th
simulator acts as a replica location and repair serviceerAftserver failure has been detected via
a timeout, new random servers are selected to download atatecthe replicas lost on the failed
server. The input to the simulator was a synthetic failumedrwith 632 servers and a failure rate of
A¢ =1 per year (SectionZ.1.4). The length of the trace was taosyel he storage load maintained
was 1TB of unique data (50,000 20MB objects). As a result,toie replicated data was 2TB,
4TB, 6TB, and 8TB forr. = 2, 4, 6, 8, respectively. Finally, each experiment was ruih &
specific available bandwidth per server which ranged fro@ B to 1,200 B/s. For example, the
case of 100 B/s corresponds@e= 1.81/r| (i.e. p= 20 ___ — _1008)s ' 5748.10°8/r_ per

data per server  1TBr_ /632

5748108 .
secA; = 1iyr — 3538000 58¢ 3-171- 1078 per sec, an@ = & — Ww/sm =1.81/r,). Figurd LB

shows the results of these simulations. Wher: 6, r|_ is the average number of available replicas

per object at the end of the trace. However, whas less tharr the ratio of the replica creation
rate to server failure rate is not sufficient to support amaye target replication level of replicas
per object. The system can no longer maintain full replicaind starts operating in a ‘best effort’
mode, where higher values nf do not give any benefit. The exception is if some of the initjal
replicas survive through the entire trace, which explaiesamall differences on the left side of the
graph.

4.2.4 Choosing

A system designer must choose an appropriate valug f meet a target level of dura-
bility. This process could be automated. Essentially, ier tharacteristics of the system,must
be high enough so that a burstrpffailures is sufficiently rare.

One approach to choosing would be to simply examine a trace and select one more
than the maximum burst of simultaneous failures. For exanfiburdZP shows the burstiness of
permanent failures in the second interval of the Planetkatetby counting the number of times
that a given number of failures occurs in disjoint 24 hour @adhour periods. If the size of a failure
burst exceeds the number of replicas, some objects may beAgssa result, one may conclude
perhaps that 12 replicas are needed to maintain the desimadbility. This value would likely
provide durability but at a high cost. If a lower value fwould suffice, the bandwidth spent

maintaining greater numbers of replicas would essentimlywasted.
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Figure 4.9: Frequency of “simultaneous” failures in therelhab trace. These counts are derived
from breaking the trace into non-overlapping 24 and 72 hariops and noting the number of
permanent failures that occur in each period. If therexareplicas of an object, there wege
chances in the trace for the object to be lost; this would Bappthe remaining replicas were not
able to respond quickly enough to create new replicas of hfect

There are several factors to consider in choosing provide a certain level of durability.
First, bursts arrive according to the distribution of fadls: there is no maximum burst size. Worse,
a burst may arrive while there are fewer thanreplicas. From this, one could conclude that the
highest possible value aof is desirable. On the other hand, the simultaneous failureveh a
large fraction of servers may not destroy any objects, ddipgron how replicas are placed. In real
systems, the workload may also change over time, affegting

The selection of_ does not capture the impact of placement strategies: tlhissscap-
tured via simulations that include real workloads and plamet strategies. We discuss placement
strategies in Sectidn 4.3.1. The replication leyetioes capture the effect of the burst distribution
via the Markov model presented in Section4.2.1.

Given this Markov model, we can analyze the relationshipvbeh the values af,
A+ and the probability that data is lost. By examining the pholiist of data loss for various com-
binations of the system parameters, we hope to provide saidargre to system designers who
must pick a reasonable value figr. Previously we stated that an appropriate value fanight be
the maximum number of simultaneous failures that the syst@hexperience: since this analysis
assumes that failures are independent events, what thdatao here determines is the probability

of more tharr_ failures occurring due to statistical coincidence.
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In the context of the Markov process, the probability thataneinterested in corresponds
to the probability that the system is in state O at timeT. We can find this probability by solving
the differential equations that describe the behavior @Miarkov process over time. For each state,
we can write a differential equation that relates the prabalof remaining in a state to the rate
of transitions into the state and out of the state. The neg&tirm of each equation captures the

transitions out of the state, the positive term capturesnth@nsitions:

BU = APy(t) I/ prob enter state= 0
// no leaving staté = 0!
% = —((re—=Du+Ag)Pu(t) + // prob leave state= 1
2\ ¢ Pa(t) I prob enter state= 1
U= —((re-Dp+iApR() + /1 prob leave state
(re —i+1)pR_1(t) + (i+21)A¢Pya(t) // prob enter state
dpﬁt(t) = AR () + // prob leave state=r_+1
= pR () // prob enter state=r_ +1
YRt = 1

with the initial conditionsP;, (0) = 1 andPR;(0) = 0. The final equation stipulates that the probabil-
ities sum to 1; this constraint is necessary to solve theesysince the other. equations are not
independent. This system can be analyzed numerically ima&st the probability of data object
loss by timeT: Py(T).

We can analyze the example presented in SeEfionl 4.2.3 wheéreldnetLab servers store
500GB of replicas each with parameters= 3, A\ = 0.439,u= 3, andd = 6.85. Figurd’Z.T0 plots
P(t) for each of the four states. The solid bold line shows the giodity of object loss over time.
The dotted bold line shows the results of a simulation of taes system. The observed fraction
of data lost at each point in time is plotted (error bars shwsvrhinimum and maximum from five
runs of the simulator). The probability that data is losesisgowards one as time increases even
though the system can create objects faster than they dar@iJds ~ 6.85 > 1). If failure events
are generated by Poisson processes, object loss is irlevifi@bn enough time, since a burstrof
failures between repair actions has a nonzero probability.

The shape of the curve in Figure4.10 is affected mainly byraiie 6 = % The higher
0, the faster repair is in relation to data loss, so the sysfmmds more time in the nonzero states.
Therefore it is important to design the system suchthaias high as possible. In Sectlon413.1, we
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Figure 4.10: Analytic results for the probability of datascover time. These curves are the solution
to the system of differential equations governing a comtirsutime Markov process that models a
replication system running on PlanetLab storing 500GB. iketzero, the system is in state 3
(three replicas) with probability 1.0 (dot-dash line is &)1 As time progresses, the system is
overwhelmingly likely to be in state O which corresponds ligeat loss (that probability is shown
as a bold line in the above plot).

describe placement strategies that can be used to inquedbe individual values ok; andp also
affect the results.

By solving this system of differential equations to deterei?y(T) for variousr, a de-
signer can estimate an that gives an acceptably small chance of object loss in adsxitime
after the object is inserted. To explore different workleade consider different amounts of data
per server. In FigurE2Z11, we graph the probability that lajeas will survive after four years as
a function ofr_ and data stored per server which affects the repair rate emckB. Note that the
amount of unique data stored in the system decreasgsmseases since we constrain the amount
of data per server.

The points plotted are obtained by evaluating the proligiiiat no replicas exist and the
object is in state zero after four yed®g4years in the continuous time Markov model with +1
total states; each value of requires evaluating a different model. Each curve lowenstds the
right: asr, increases the system can tolerate more simultaneousefaidurd objects are less likely
to be lost. The predicted object loss increases as perfsempacity is increased: when more data

must be copied after a failure, the window of vulnerability & simultaneous failure to occur also
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Figure 4.11: Analytic prediction for object durability eftfour years on PlanetLab. Theaxis
shows the initial number of replicas for each object: as timlver of replicas is increased, object
durability also increases. Each curve plots a differentseever storage load; as load increases,
it takes longer to copy objects after a failure and it is mdkely that objects will be lost due to
simultaneous failures.

increases. Finally,. = 1 is not shown since it corresponds to not using any redicand objects
are lost based only on the lifetime of a server (witl= 1, no new replicas are created, so the object

is lost when the only copy is lost).

4.3 Choosing Where to Store Replicas

The third decision a fault tolerance algorithm must consisi¢he placement of replicas.
Replica placement is the process in which servers are edldotstore data replicas. There is
a plethora of proposed placement algorithins TKKIM02] optimg for properties such as access
latency, availability, or load balance. However, in theteathof durability, two properties are most
relevant: scope and predictability.

First, scopedetermines which servers are eligible to store replicasafgiven object.
Furthermore, after replicas are placed, scope implieswégevers are monitored for liveness and
storage of replicas for particular objects. Systems likesSGEGL03], Pond[[REG03], and To-
talRecall [BTC"04] have a large scope and consider all servers in the systestigible to store
replicas. While storage systems based on distributed ladbst (DHTs) such as Dhash [Cat03],
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OpenDHT [RGK05], and PASTI[DRO1] to name a few, consider a small numbeenfess; the
exact set depends on the identifier of the object in questinareasing the scope has two desir-
able effects: It increases flexibility of the system and d@r@ases the parallelism during repair. In
general, with a scope of sizg if one server of thé servers fails, then thke— r_. — 1 other servers
can use their combined access links to download and repgh&ceeplicas lost on the failed server.
When scope is small (e.¢.=r|), only a few servers download new replicas (hamely, newessrv
replacing the failed servers download replicas); howewben scope is large (e.dc = N), many
servers download new replicas (any server that does netdgirgtore the lost replica can download
a replacement replica). A large scope can utilize more rmtywaths to replace lost replicas. The
disadvantage of a large scope is that higher valudsinérease the overhead of monitoring server
liveness (monitoring is discussed further in Secliomh 5.1).

Second, dailure predictorbiases the placement of replicas towards more reliableserv
In other words, failure predictors use an “oracle” to maleteshents about the expected remaining
lifetime of servers or groups of servers. If a predictor isdjghe system can improve its chances
of maintaining durability by placing replicas on highly ieddle groups of servers. Several exist-
ing systems use this approach; Pohd [RG, [KT0Q] infers host reliability from the observed
failure pattern[[WMKOR] while Phoeni] uses server attributes such as operating system
or installed software. On the other hand, failure predgtoave been criticized as inherently un-
reliable [HMDUO%], and measurement studies have shown #ilatrés in real systems are difficult
to predict [YNYT04]. When using a failure predictor, there is an obviousdddfdbetween load
balance and optimized placement. Itis only by biasing losghtds more reliable servers that dura-
bility can be improved; as a consequence, these serversquigad to provide more storage (and to
answer more requests) than their less reliable counterpart

Failure predictors can also be used to avoid temporallyetated failures. Temporally
correlated failures occur close together in time. A hyptitiaé failure predictor that knows the ex-
act time servers permanently fail can be used in a placenrategy to avoid temporally correlated
failures between pairs or large groups of servers. Avoigilaging replicas on servers that fail at
the same time helps ensure there is sufficient time to replguecas lost to failure. This clair-
voyant failure predictor is able to better avoid temporatyrelated failures than Weatherspoon
et al [WMKO0Z] and Phoenix [[BHO5] since it knows future failure times while the latter ttra
gies do not know the future. We use a clairvoyant failure joted as a basis for comparison in
SectioT4.3P.

As a specific instance of applying scope and failure premfictive demonstrate two ef-
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Figure 4.12: Scope. Each unique servias a unique set of servers it monitors and can potentially
hold copies of the objects thais responsible for (server set storage server sgtvi # j). The
sizeof that set is the serverscope (a) scope=3 and (b) scope=5. In terms of placement choices,
assuming that, =3 and object replicas are stored on sengeserver set, then there is no choice for
(a) and(*°P9 = (3) choices in (b).

fects (in the context of systems with failure characterssguch as PlanetLab). First, a large scope
increases durability. Second, not much benefit is gained fuse of failure predictors since ran-
dom replica placement — such as one that avoids blackligieeis and replaces duplicate sites —
is sufficient to avoid the problems introduced by many obesgworrelated failures. Using a failure
trace with correlated failures due to upgrade and compmitfisst interval of PlanetLab), a ran-
dom placement policy that avoids blacklisted servers amdichte sites, triggered only 3.4% more
repairs than a clairvoyant placement that knew the futune that servers fail.

We discuss scope and failure prediction further.

4.3.1 Increasing Durability Through Repair Parallelism with Scope

This subsection explores how the system can increase ttyrdlyi copying objects from
a failed server in parallel. In effect, this reduces the tireeded to repair the replicas lost on failed
servers and increas@qgratio of rate of replica creation to rate of server failure)

Each server, designates a set of other servers that it monitors and damigdly hold
copies of the objects thatis responsible for. We call theizeof that set the server'scope and
consider only system designs in which every server has tine sgope. Scope can range from a
minimum ofr. to a maximum of the number of servers in the systémScope and the replica
location and repair service (discussed in Sedfioh 3.1)edated since scope defines the number of
servers a particular server will monitor. Thus, it definedohtservers can assist in locating and
monitoring servers responsible for storing replicas of i@aar object.

To be explicit, each unique serviehas a unique set of servers it monitors and can poten-
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tially hold copies of the objects thais responsible for (server set storage server sgtvi # j).

All server sets are the same size, and the size of the serveargges fronr. to N. Each object

is replicated within a unique server set. Generally, a lasgepe offers more flexibility since the
number of possible replica sets is larger (aro(uﬁ@p‘j); however, more servers must be monitored
with a larger scope. Figufe—4]12.(a) pictorially shows hoseaver, server set, and replicas for a
particular object are organized.

After a particular scope (size of server set) has been chasplacement strategy needs
to be chosen. For example, if the number of replicas jsscope isN, and placement strategy
is random, then any random server may be chosen to storeieare@®n the other hand, if the
placement is successor list placement (the number of eepigr, and scope i), then only the
successive, servers would initially be chosen to store replicas, evengih all servers are eligible.
Notice that successor list placement does$ imply a small scope (scope ¥ in this example);
rather, successor list placement states that serversssiseén the identifier space should initially
store replicas. Essentially the placement strategiesestdated to a server’'s scope. Furthermore,
existing copies only “count” towards the replication leeélan object if they are stored on one of
the servers in the set. We compare placement strategiesctio®ld. 3.2, but for this section we
assume a random placement.

A small scope means that all the objects stored on séihare copies on servers chosen
from the same restricted set of other servers. The advamtfagesmall scope is that it makes it
easier to keep track of the copies of each object. For exarfplash stores the copies of all the
objects with keys in a particular range on the successoesef that key range. The result is
that those servers store similar sets of objects, and camege compressed summaries of the
objects they store when they want to check that each objeepigcated a sufficient number of
times [CafOBl RGKO05].

The disadvantage of a small scope is that the effort of crgatew copies of objects
stored on a failed disk falls on the small set of servers in digk's scope. The time required to
create the new copies is proportional to the amount of da@nerdisk divided by scope minug
(datsacgle)%f"eﬁ. A small scope results in a long repair time. Another probleith small scope, when
coupled with systems that use consistent hasHing [K44, [CafoB[ DKK 01, [DR01 [ RGK0F],
is that the addition of a new server may cause unneeded appyiabjects: the small scope may
dictate that the new server replicates certain objectsijrfgrthe previous replicas out of scope and
thus preventing them from contributing to durability.

Assuming a random placement policy with replicas for a paldir object placed in dif-
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Figure 4.13: Example parallel repair with a large scope p8dés 7 and| = 3. Only servers within
scope are monitored and there é@ possible replica sets. The replica location and repainserv
coordinates the repair process utilizing as many sourcedastination server pairs as possible.
Initially, there are seven servers and seven objects (A@nwith r. = 3 for each object. (a) Server
1 fails. The replica location and repair service selects asynsource and destination server pairs to
reduce the repair time. Server 2 downloads replica A fromese3. Similarly, server 5 downloads
replica D from server 4 and server 6 downloads replica B fremaex 7. (b) All repair completes.

ferent unique sites, larger scopes spread the work of madeagcopies of objects on a failed disk
over more access links, so that the copying can be complasterf In the extreme of a scope of
N (the number of servers in the system), the remaining cogitteembjects on a failed disk would

be spread over all servers, assuming that there are manyohmes than servers. Furthermore,
the new object copies created after the failure would alsspoead over all the servers. Thus the
network traffic sources and destinations are spread ovey metwork paths, and the time to re-

cover from the failure is short (proportional to the amouhtlata on one disk divided biX or

dataper. server)

ScopeR T, Figure[4IB illustrates spreading repair over many ssiand destinations server

pairs reducing repair time.

A large scope requires coordination to effectively redugeair time. For instance, in
Figure[Z» anZ.13, a replica location and repair servicedioates many source and destination
server pairs to parallelize repair. Many network paths aeglun parallel decreasing repair time. In
implementation, in Sectidd 9, the replica location and iregervice is implemented as a distributed
directory. Each server is responsible for monitoring thaicas for particular objects. When a
particular object’s replication level falls below the tatdevel, the server responsible for monitoring
the object triggers repair. The repair process, then, seteleader to coordinate repair.

Additionally, a larger scope also means that a temporatyréiwill be noticed by a
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Figure 4.14: Durability for different scopes. Assumingdam placement. We vary the target repli-
cation levelr, and scope (x-axis). To reduBewe limit the bandwidth per server to 1000 B/s in this
experiment. Durability is measured via simulation usingva year synthetic trace. Increasing the
scope from 5 to 25 servers reduces the fraction of lost abjgcain order of magnitude, independent
ofri.

larger number of servers. Thus, more access links are blaila create additional replicas while
the failure lasts. Unless these links are already fullyiagd, this increases the average number of
replicas per object, and thus improves durability.

Figure[4LIh shows how scope (and thus repair time) affegecbdurability in a sim-
ulation on a synthetic trace. To reduBewe limit the bandwidth per server to 1000 B/s in this
experiment. We vary the repair threshold and the scope, aasune durability after two years of
simulated time. Increasing the scope from 5 to 25 serversgcexdthe fraction of lost objects by an
order of magnitude, independentrpf By including more servers (and thus more network connec-
tions) in each repair effort, the work is spread over mor@sgdinks and completes faster, limiting
the window of time in which the system is vulnerable to anottisk failure. Ideally, by doubling
the scope, the window of vulnerability can be cut in half.

A large scope reduces repair time and increases duralbibtyever, implementing a large
scope presents two trade-offs. First, the system must orogdich server in the scope to determine
the replication levels; when using a large scope, the systeist monitor many servers. This in-
creased monitoring traffic limits scalability. Second, am® instances, a large scope can increase
the likelihood that a simultaneous failure of multiple diskill cause some object to be lost.

If object replicas are placed randomly with scdgethere are many more objects than
disks, and each object has exadilyreplicas, then it is likely that alqr'\i) potential replica sets are
used. In this scenario, the simultaneous failure of anglisks is likely to cause data loss: there

is likely to be at least one object replicated to exactly ¢hdisks. A small scope inherently limits
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placement possibilities that are used, concentratingctsbjato common replica sets. As a result, it
is less likely that a given set of failures will affect a replica set, but when data loss doesigc
many more objects will be lost. These effects are similag:etkpected number of objects lost during
a large failure event is identical for both strategies. lihis variance that differs between the two
strategies.

4.3.2 Placement Strategies, Failure Predictors, and Durality

Scope limits the possible servers eligible for replica elaent of a particular object;
however, once scope has been decided, a plethora of platetregegies are possible. There are
two categories of replica placement strategies: randonseledtive. Random placement is used for
its simplicity. Random does not use any information whepa@lg a server for replica placement.
Its use is often accompanied by the assumption that eachrdailure is independent or has low
correlation with each other. If server failures are not pefedent or have high correlation, the end
result could reduce durability or increase costs such asuh#ber of repairs triggered. In contrast,
selective placement uses information to choose specifieisethat satisfy some constraints. For
example, select servers that have been previously showaviolow correlation [AHK 02,[DW01,
IDE8Z,[jBHT 05, [WMKOZ]. Selective placement strategies emulate usefaflare predictor that
attempts to select servers with the most remaining lifetima not temporally correlated (fail close
together in time).

In this subsection, we explore various random and seleplica placement strategies in
the context of systems with PlanetLab failure characiesisiVe begin with an analysis of the Plan-
etLab trace for correlated failures. We use the first intesirece it likely contains many correlated
failures. Next we describe some selective placement gtemtdased on analysis. Additionally, we
describe some random variants. Finally, we compare replaeement strategies with a simula-
tion using the PlanetLab trace. This study is not exhaushige/ever, it demonstrates that even in
environments with correlated failures such as PlanetLiaiiple placement strategies are sufficient
to maintain durability. For example, random replica plaeatrthat avoids blacklisted servers and
replaces duplicate sites can avoid the problems introdbgéide many observed correlated failures.

Correlated Failures in PlanetLab

In this subsection, we test the first interval of the Planbtdata (Figurd—2]3) for the
possibility of servers with correlated failures. We test temporally correlated failures between
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Site 2D Correlation Threshold Fraction Correlated
Same 0.5 22.43%
Same 0.8 8.86%
Different 0.5 0.91%
Different 0.8 0.04%

(b) Fraction of Correlated Servers

Figure 4.15: Temporally Correlated Failures. We use a timeedsional space of conditional down-
time probabilities, both p(is down|y is down) and pf is down| x is down). Serverg andy are
temporally correlated iboth probabilities are greater than a threshold such as 0.5 o&@).8pper
right quadrant of 2D Correlation. (b) Fraction of Correthtgervers. 22% of the time that a server
goes down, there is at least a 50% chance another server gathe site will go down as well.
Alternatively, the servers in different sites were not tengtly correlated.

pairs of servers that commonly fail close together in timervBrsx andy are temporally correlated
if, given serverx is unavailable, serveris also likely to be unavailable and visa versa. We perform
two tests to measure the degree of temporal correlatiorst, kire measure the two-dimensional
space of conditional downtime probabilities, which ilkages the likelihood that two servers are
down at the same time. Using two dimensions reduces the ndtuef servers with long downtimes.
Second, we perform the same study again, however, this #meving the servers with the longest
total downtimes. This study illustrates two effects. Fitst PlanetLab distribution has a long talil
of servers with long total downtimes. Second, servers éxpee correlated failures, however, the
strongest correlation is amongst servers in the same site.

First, to capture server correlation, we use a two-dimeraispace of conditional down-
time probabilities, both p(is down|y is down) and pf is down| x is down). Serverg andy are
temporally correlated iboth probabilities are greater than a threshold such as 0.5 oNag& that

most studies only use a single dimension when producingralation metric. For instance, prob-
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Figure 4.16: Per Server Total Downtime (log scale).

ability thaty is down given thak is downor probability thatx is down given thay is down. The
use of an br” instead of an &nd’ between the two dimensions increases the number of seihatrs
may be temporally correlated. For example, using only oneedsion would correlate servers that
are chronically down with all other servers increasing thmhber of temporally correlated servers;
using two dimensions prevents this effect, servers aretentyporally correlated if both dimensions
are above a threshold. We do not discuss one-dimensiontmalidowntime probabilities further.

Figure[4T5.(a) shows the upper right quadrant of the twaedision conditional down-
time probability. It highlights servers in theame sitewith open circles and different sites with
dots. The fraction of correlated servers are highlighte&igure[4.TI5.(b). FigurE—Z415.(b) shows
that 22% of the time that a server goes down, there is at leB8%achance another server in the
same site will go down as well. Alternatively, Figure4.15.¢hows that the two-dimension condi-
tional downtime probability of servers in different siteasinsignificant. Figure~Z415 is interesting
because it illustrates that significant temporally coteldailures exists.

Second, we look at the two-dimension conditional downtimabpbility when servers
with long downtimes are removed from consideration. Figlif shows the total downtime for
each server and orders the servers from most to least totaitisloe. Of the 512 total PlanetLab
servers, 188 servers have total downtimes greater thanid06. In Figur&4.17.(a), we again show
the two-dimension conditional downtime probability, buthwservers with total downtime longer
than 1000 hours factored out. Figlire4.17.(a) shows morsitgealong the diagonal, meaning that
p(xis down| y is down) is more symmetric with p{s down| x is down); that is, the servers are not
asymmetrically influenced by long downtimes. Similar toFe[4.T5h.(b), Figur&417.(b) shows

that 33% of the time that a server goes down, who’s total diomats less than 1000 hours, there



77

P[X is down | Y is down]

0.6 0.8 1
P[Y is down | X is down]

0 0.2 0.4

Different Site - Same Site o
(a) 2D Correlation (servers w/ total downtirgel000 hours)

Site 2D Correlation Threshold Fraction Correlated
Same 0.5 33.33%
Same 0.8 13.83%
Different 0.5 0.34%
Different 0.8 0.04%

(b) Fraction of Correlated Servers (servers w/ total dowat 1000 hours)
Figure 4.17: Temporally Correlated Failures with serveith wotal downtimes longer then 1000
hours removed from consideration. (a) 2D Correlation andHtaction of Correlated Servers
(servers w/ total downtime< 1000 hours). 33% of the time that a server goes down, who's to-
tal downtime is less than 1000 hours, there is at least a 5G¥cehanother server in the same site
will go down. The temporally correlated probability incsea when we removed the long down-
time servers because the number of servers temporallyla@uderemained relatively unchanged
from Figure[Z.Tb while the total number of servers was redume188. Alternatively, the servers
in different sites were not temporally correlated.

is at least a 50% chance another server in the same site wilbgo. The temporally correlated
probability increased when we removed the long downtimeessrbecause the number of servers
temporally correlated remained relatively unchanged awiiie total number of servers was reduced
by 188. However, the inter-site two-dimension conditiodalvntime probability is still insignifi-
cant. Figure§ 416 arld 4117 are interesting because thegrdgrates that significant correlation
exists amongst servers in the same site and not much betee@rssin different sites.

Replica Placement Strategies

Unreliable and correlated servers have been cited intitexdCVO3NYGS04, YNY 04].
However, it is not clear to what degree “flaky” and correlasedvers affect durability or cost such
as the number of repairs triggered. We compare random pkxtestrategies that blacklist flaky

servers and/or avoid placing multiple replicas in dupbcsites. In particular, we blacklist the top
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10% of servers that are likely to be unavailable; 22% of Rlaaie servers in the first interval are
available less than 50% of the time according to Fiduré @3.(Additionally, to avoid placing
multiple replicas in duplicate sites, we pick another randeerver to store a replica if a server in a
duplicate site was already selected.

The four variations of random replica placement stratetifiaswe compare argandom
RandonBl ackl i st, RandonSi t e, andRandon®i t eBl ackl i st. Randomplacement picks unique
servers at random to store replic®ndonBl ackl i st placement is the same Bsndombut avoids
the use of servers that show long downtimes. The blacklisgtoraprised of the togz servers
with the longest total downtimesRandonSi t e avoids placing multiple replicas in the same site.
Randonfi t e picks n unique servers at random and avoids using servers in the siene We
identify a site by the 2B IP address prefix. The other criteaa be geography or administra-
tive domains. FinallyRandon®i t eBl ackl i st placement is the combination 8 ndonSite and
RandonBl ackl i st .

The other category of replica placement is selective. Tmefits of more sophisticated
selective placement strategies are not well understoaeting of durability and costs. We compare
costs of the random placement strategies discussed abawvesttpe best selective placement strat-
egy that uses a failure predictor. Our failure predictorsuséure knowledge when selecting servers
for replica placement. Future knowledge is based on offtiferimation (i.e. the PlanetLab trace).

This offline clairvoyant selective replica placement gyt namedvax- Sum Sessi on,
uses future knowledge of server lifetimes, sessiontines aaailability to place replicas. In partic-
ular Max- Sum Sessi on places replicas on servers with the highest remaining susessiontimes.
This strategy places replicas on servers that permanaaitlfufthest in the future and exhibit the
highest availability. Thé/ax- Sum Sessi on was the best performing algorithm of all clairvoyant

algorithms we studied (e.gvhx- Sum Sessi on performed better than some anti-correlation tech-

niques [WMKO2]).

Evaluation of Replica Placement Strategies

We now compare different replica placement strategies. tvepare different random,
DHT, and clairvoyant replica placement strategies. DHRaisdombut with a small scope; all other
strategies have a large scope of dizéall servers in system). Table#.1 shows for all the place-
ment strategies the total number of repairs triggered antepgage of improvement ov@andom
Additionally, Table[Z]L shows the average and standardatiewi of the number of replicas per
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Data Replica Strategyr|(= 5, n= 11, and|blacklisf = 35)
Random | DHT | Randon®ite | RandonBl acklist | RandonfiteBlacklist [ Max- Sum Session
# Repairs 227,242 | 447,204 223,003 221,618 217,291 209,815
% Improvement -96.80 1.87 2.47 4.38 7.67
# Replicas/N 1386.2| 1439.9 1381.9 1391.8 1386.5 1388.9
Stddev () 1126.6 684.4 1140.5 1182.1 1193.7 1213.3

Table 4.1: Comparison of Replica Placement Strategjes. 5 andn = 11.

server. The storage system used a low watermark 6f 5. The size of the blacklist for the
RandonBl ackLi st andRandonSit eBl ackl i st placement strategies was the top 35 servers with
the longest total downtimes. Talfle 4.1 shows how the regliaaement strategies differ in cost
(number of repairs triggered).

Table[41 shows that more sophisticated placement stestegxhibited noticeable in-
crease in performance; that is, fewer repairs triggeredpeoed toRandom For example, the
Randon®i t eBl ackl i st placement showed a 4.38% improvement dkardom which was slightly
more than the sum of parts, 1.87% and 2.47%Rmdonti t e andRandonBl ackl i st, respectively.
The clairvoyant placement strategy exhibited a 7.67% iwvgmreent {ax- Sum Sessi on). TheDHT
placement triggered more data repairs tRandom However, because the load balance is a pri-
mary goal of consistent hashing usedf, the distribution of the number of replicas per server
was more uniform fobHT as can be seen with the smaller standard deviation of 68&aspber

server.

4.4 Summary

Fault tolerance, the first key to ensuring durability, is agarty that is highly desired in
distributed wide-area storage systems, yet setting vdareiss parameters are often not well un-
derstood. A fault tolerance algorithm must choose the tyfpedundancy, the number of replicas
to create, and where to store replicas. However, questigss such as what redundancy scheme
should be used? How much redundancy is needed to tolerateefaiWhat is the associated dura-
bility? Where to store replicas? What servers should andldhaot be eligible to store replicas.
These are all questions that govern a systems ability toat@dailure without loss of data. In this
chapter, we explored many techniques to answer these gu®stsing combinations of analytical
models and simulation. We discuss four insights and teci@siqo answer these questions.

First, we quantitatively compared systems based on rejalicto systems based on erasure-

codes. We showed that the mean time to data loss (MTTDL) ofa@suee encoded system is often
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many orders of magnitude higher than that of a replicategsywith the same storage overhead and
repair period. Another interesting result of our analysieveed that erasure-resilient codes use an
order of magnitude less bandwidth and storage than rejplicér systems with similar MTTDL.
Use of erasure-codes, however, has negative consequelBzsure-codes increase system com-
plexity. Complexities include increased memory and prscesitilization to produce fragments,
use of cryptographic mechanisms to identify erasures aadrigny the integrity of fragments and
data, need for aggregation, and reconstructing data fragmfents for repair. Ultimately, as a result
of these complexities, a designer must decide if the effogi@f erasure codes is more valuable than
the simplicity of replication.

Second, we presented a model that helps the system seleutrttieer of replicas to cre-
ate for an object. The proper number of replicas to createlaed to the burstiness of permanent
failures. We use a model that computes the durability (dridibathat a data object exists after a
specific amount of time) given a rate of server failure (i@ploss), rate of replica creation, and tar-
get replication level. The model based on a continuous tiragkbly chain calculates the probability
that a burst of server failure destroys the remaining rapllmefore more replicas can be created in a
specific amount of time. Replica creation rate is dependemneplica placement, repair scheduling,
and constrained by resources such as access link bandWwadtrestrict the number of objects that
a server can repair in a given time period. This model considepair scheduling and constrained
resources; placement, however, is considered separd@teymodel allows the system to calculate
a target replication level that satisfies a target durgbiiitnstraint.

Third, we demonstrated that durability could be increaseddpying object replicas from
a failed server in parallel. In effect, reducing the timedeskto repair the replicas lost on the failed
servers. The decrease in repair time increases durabiitg slurability is inversely proportional
to repair time [PGK88]. We call this property scope. Scoptemgines the number of servers
that are eligible to store replicas for a particular objeatso, it limits which particular servers
are eligible. Furthermore, after replicas are placed, sdomplies which servers are monitored
for liveness and storage of replicas for particular objettgreasing scope increases parallelism.
However, increasing scope also requires the system to anamibre servers limiting scalability.
Sectiof 5. Z1 illustrates that monitoring costs are ofteignificant when compared to repair costs.

Finally, deciding where to place replicas is difficult sirtbere are many possibilities.
However, in the context of durability, two properties arestielevant: scope (discussed above)
and predictability. Ideally, if the system knew the exantdithat servers fail, then it could select
servers to store replicas based on two criteria. Firstessithat fail furthest in the future. However,
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this technique results in an unbalanced system since sanersstore significantly more data than
others. Second, select servers where failures are spacegde in time. This technique avoids

temporally correlated failures (failures that occur clasgether in time) allowing repair more time

to replace lost replicas before another failure occurs. g@rbblem, of course, is that an oracle that
knows the exact failure time is not available to systems. él@x we demonstrated that a random
placement policy—that avoids blacklisted servers andidaif@ sites—is sufficient to avoid many

observed correlated failures. For instance, such a pdiiggdred only 3.4% more repairs than a
clairvoyant placement that knew the future time that sereit.
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Chapter 5
Repair

Repair is second key to ensuring data durability. The goatpdir is to refresh lost re-
dundancy before data is lost due to permanent failures. fdi@d information, which measures
the number of available replicas, is the basis for init@tiapair. However, this monitored informa-
tion is imprecise since replicas can be durably stored buinmmediately available, hence transient
failure. The possibility of transient failures complicatgroviding durability efficiently: we do not
want to make new copies in response to transient failurdst isimpossible to distinguish between
disk failures and transient failures using only remote ekwneasurements. This chapter focuses
on minimizing the amount of network traffic sent in resporsrdnsient failures while maintaining
a target durability. We demonstrate three techniques toceedost due to transient failure.

First, in Sectiof.2]1, we show that timeouts reduce costgaltransient failure; however,
their effectiveness is limited. Timeouts reduce falseip@s, misclassifying servers as permanently
failed that have actually only transiently failed. Theifeetiveness is dependent on the downtime
distribution. If the timeout value is set to mask most of tleevdtime distribution, a transiently
failed server may return before a timeout expires and pteesources from being wasted creating
replicas unnecessarily. However, setting longer time@lties decrease durability. The time to
recognize permanently failed servers increases as thedimnvalue increases, thus increasing the
“window of vulnerability” for an object to be lost due to peament failure.

Second, in Sectiofn 4.2, we show that extra replicas, beydrat is required to maintain
a target durability, decreases cost due to transient é&iMfe demonstrate that the number of extra
replicas that minimizes cost can be estimated. The advamtiagxtra replication is that it exponen-
tially reduces the cost due to transient failure with onlynaar increase in replicas. Furthermore,

there is no reduction in durability by adding extra replicAs a result, extra replicas perform better
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than long timeouts.

Finally, in Sectior 513, we show that the optimum number d¢faereplicas does not need
to be estimated at all. Costs are minimized by simply resimontb all failures, transient or per-
manent, creating replicas until (humber of replicas required for target durability) areika@e,
tracking all replicas created, and reintegrating repliatisr transient failure. We call such an al-
gorithm Carbonite. Carbonite was first presented_in [CIDE], we provide a description here for
completeness. The result of the Carbonite algorithm istti@system performs some extra work
for each object early in its life, but over the long term cesatew copies of the object only as fast
as it suffers permanent failures.

We assume that all data is immutable in Sectlond5.1, 5. Z5a@hdVe consider efficiently
maintaining durability of mutable data in P& IlI.

5.1 Reducing Transient Costs with Monitoring and Timeout-kased

Failure Detectors

Most replication systems are closed-loop systems; thegeseand can respond to, the
current state of the system. For example, many systems on@atver failures and keep track of
the set of replicas that is stored on each server. Once adadldetected, these systems can respond
by creating a new replica of each object that was stored ofatlesl servers[[BTE04,[CDH0E,
[Caf03, DKK" 01, [HMDO0%,[RGK'05]. In particular, we assume that durability is maintaitsd
monitoring the availability of at least a low watermarkrgfreplicas for a particular object (Sec-
tion[£2). When the number of available replicas drops be&lgunore replicas are created until one
of two situations occur: eithey replicas are again available or no replicas are availabéepbject
may have been lost (see Sectiod 4.2 for a detailed analysisanfd durability).

In this section, we describe failure detectors and how #m@uracy affects durability and
cost to maintain durability. Cost is measured as the numbeepldicas created (i.e. total bytes
sent) to maintain durability. In particular, we demongrttat longer timeout values increase the
accuracy of timeout-based failure detectors and decréaseost to maintain durability; however,
longer timeouts decrease durability since more time isirequo recognize permanent failures.

We do not discuss, in this section, the cost due to monitaimmayhow to build a monitor-
ing infrastructure, we leave those discussions for Sesfioh and 312, respectively.
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5.1.1 Failure detectors

A very common information source for replication systemshisfailure detector A
failure detector is a functiori(N,t) — {A,U,D} which, for a given time, maps every serve¥
to one of three states: Available, unavailable, or dead. SBwend state models transient failures,
during which the server cannot be reached by the other skiver otherwise remains intact, while
the third state models permanent failures with data loss$) as hardware failures. The information
from the failure detector can be used e.g. to drive the aeati new replicas.

A perfect failure detector isompleteandaccurate meaning that it detects all failures and
does not report a failure unless one has actually happededlly, it is alsdanstantaneousmeaning
that failures are reported immediately. Unfortunatelgl failure detectors do not have all of these
properties. An incomplete failure detector may not repdtilare at all, and one with delays may
do so too late for the system to respond. Both effects carecdas loss, which the system can
avoid by creating additional redundancy. Inaccuraciesataccause data loss but may cause extra
overhead, since they may prompt the system to create ursaegagplicas.

In distributed systems, transient failures are usuallgcted by sending ping messages to
a remote host, and by declaring it unavailable when no answeceived within a short timeout
T;. Since permanent failures have the same symptoms, the psans usually made that tran-
sient failures do not last longer than a maximum timagthe server is declared dead when it has
not responded to pings for at least that time. Measuremadtest of existing system5 [BDETIO00,
IYNY *04] have shown that this assumption is realistic.

Timeout-based failure detectoase complete (a failed server cannot respond to pings and
thereforewill be declared dead aftep), but they are not completely accurate, and they have an
inherent delay. There is a difficult tradeoff between delag accuracy. By increasing the timeouts,
we can reduce the false positives; however, this comes abttef a higher delay, which increases
the probability that multiple failures occur before thetsys can detect the first one.

Better failure detectors can be built if special hardwaeylable, e.g. a watchdog [Fel03].

However, in today’s wide-area storage systems, such haedwgenerally not available.

1A server is not reachable by other servers possibly due tpdeany server failure such as reboot or network failure
such as dropped messages or network partion.
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Figure 5.1: The impact of timeouts on bandwidth and durighdh a synthetic trace. Figufe 5.1(a)
shows the number of copies created for various timeout sl shows the corresponding object
durability. In this trace, the expected downtime is abouth®@rs. Longer timeouts allow the
system to mask more transient failures and thus reduce emainte cost; however, they also reduce
durability.

5.1.2 Evaluation of Timeout-based Failure Detectors

Timeout-based failure detectors are most effective wheigrafieant percentage of the
transient failures can be ignored, which is dependent ondtiventime distribution (e.g. Fig-
ure[2Z5.(c) illustrates the downtime distribution for Ritlrab). However, for durability to remain
high, the expected server lifetime needs to be significagryater than the timeout.

To evaluate this scenario where timeouts should have impagierformed an experiment
using a synthetic trace where we varied the repair thresholand the server timeotit Since
the system would recognize servers returning after a pegntdailure and immediately expire all
pending timeouts for these servers, we assigned new i@srtitsuch servers to allow long timeouts
to expire normally.

Figure[B.1 shows the results of this simulatipn] (a) showddkal bytes sent as a function
of timeout while[{B) shows the durability at the end of thec&ra As the length of the timeout
increases past the average downtime, we observe a redirctibe number of bytes sent without

a decrease in durability. However, as the timeout growsdgrdurability begins to fall: the long

2In the simulaor, the server timeout is a system-wide defiredmpeter. An adaptive scheme such as setting a timeout
value per server may perform bettEr [LSMKO05] (e.g. usingsriiution of downtime per server such as Figiire ¥.16
may reduce the total bytes sent by masking transient faiukéowever, use of timeouts (either statically or dynahiga
may reduce durability since a timeout inherently incredlsedag time to detect a permanent failure, thus increasiag t
‘window of vulnerability’, during which additional fail@s can cause data loss.
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Figure 5.2: Transient and Permanent Failures over Time.

timeout delays the point at which the system can begin repaiucing the effective repair rate.
Thus setting a timeout can reduce response to transientdaibut its success depends greatly on

its relationship to the downtime distribution and can in sdnstances reduce durability as well.

5.2 Reducing Transient Costs with Extra Replication

Storage systems are required to trigger repair and reptstedplicas as servers fail to
maintain target data durability levels. As described egrl fundamental problem with this con-
struction is differentiating permanent failures (datadst) from transient failures (server returns
with data intact). FigurE®82 shows an example of transiedtggrmanent failures over time. Tran-
sient failures that render a server temporarily unavalase due to server reboot, system main-
tenance, Internet path outage, etc. In addition to trah$alures, failure detection has a lag; a
permanently failed server is classified as alive during #weperiod. A study found that transient
failures occur often in the wide-arda JCV03].

Triggering repair due to transient failures can increasetst of maintaining data severely.
Some environments are very reliable and do not have muchkid¢ranfailures (e.g. within a data
center). In contrast, other environments do not supportdarstorage [BR03] due to too many
permanent and transient failures (e.g. Kazaa, Gnutelthp#rer high client churn environments).
But for many wide-area systems, like PlanetLiab [BEd], reliable storage can be supported and
transient failures are comman[CV03].

The cost of maintaining durability is determined by the abse to permanent failure,
transient failure, write, and monitoring rate.
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Figure 5.3: Example. Cost per Server of Maintaining Data\Wide Area Storage System.

Work = f(permanent failurdransient failurewrite, monitoring)
= f(permanent failurg+ f (transient failure+

f (write) 4+ f (monitoring) (5.1)

Although the overall cost is additive, the cost due to tramisfailures often dominates. Intuitively,
decreasing the cost due to transient failures decreaseséehnall cost.

In this section, we show that we can decrease the cost duansid¢nt failures by adding
extra replicas beyond what is required for a target dutgbiDecreasing the reaction to transient
failure is analogous to decreasing the error rate of sendingessage across a noisy channel by
adding extra bits. Explicitly, we tradeoff increased strdor reduced communication while main-
taining the same minimudrtarget durability. The extra replicas absorb noise. Thisglates into
a decreased rate of triggering repair since it is less lik@mlyhe extra replicas teimultaneouslpe
unavailable. FigurEH 3 illustrates the breakdown in tha daaintenance costs as the extra replicas
are increased.

Figure[&.B is key. It shows that with no extra replicas thebphility of triggering repair
due to transient failures is actually quite high; hence,dbst due to transient failures is high. In
fact, the probability of triggering repair lsigherthan the probability of a single timeout since the
chance ofanyone out ofn replicas timing out is higher than the probability of a sngjmeout. If

we add extra replicas and require that at ledisextra replicas simultaneously be unavailable, then

SExtra replication beyond what is required for durabilityeddncrease the expected durability since more replicas
must be lost for the object to be lost. However, we use it ta@lse communication costs and hence call the target
durability, the minimum target durability.
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the rate of triggering repair drops significantly; simijarthe cost due to transient failures drops
significantly.

The goal is to estimate the optimum number of extra repliegsired to minimize work.
In the following subsections we describe how to estimatedpiimum number of extra replicas. In
particular, we discuss how to estimate the number of explicess that minimize work.

Note, this estimator algorithm assumes that any replicaisekist, but were unavailable
when repair was triggered afergottenabout; when the extant replica returns int re-included
into the replica set.

5.2.1 Estimator Algorithm

In this section, we show how to estimate the amount of exphcas required to absorb
“noise” and reduce rate of triggering repair. The algorithworks as follows. Given a target data
durability to maintain, first it calculates the minimum lovatermarkr, of the number of replicas
required to be available (see Secfiod 4.2 for relationsktpberr, and durability, calculation based
on ratio between the rate of replica creatjpfaccess link speeds, replicas per server, and replica
placement] and rate of server failuke, i.e. r|_ is based onu/A; = 6). It then supplements this
number with a set of extra replicas to absorb noise (calondiased on average server lifetime,
sessiontime, and downtime). Finally, it triggers repairewhll extra replicas are simultaneously
considered unavailable. In the following subsections wawshow to estimate the amount of extra
replicas. See Secti@n .2 to understand how to first set

Estimating the Amount of Extra Replicas

We estimate the optimum number of extra replieédy synthesizing the cost due to main-
taining durability as expressed in Equationl 5.1. In pakdicwe develop an estimator for each term
in Equatior 511, then calculate each term’s cost, and @igkere the overall cost is minimum. The
key is to pick the optimum number of extra replicathat reduces the cost due to transient failures
without increasing the cost due to writes or permanentreduoo high. We discuss each term’s

estimator and the overall extra replication estimator in teelow.

Permanent Failure Estimator

Permanent failure is the loss of data on a server. The maintencost due to permanent
failures is dependent on the average amount of storage W%and the average storage server
lifetime T.
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Variable | Description
re Number of replicas required to be available.
Repair is invoked when available replicas is less than
e Number of “extra” replicas beyonqd to create during repair.
n Total number of replicas available after repair complétes r_+e).
m Number of replicas required to read objeti= 1 replication,m > 1 erasure codes.
1-¢ Target minimum data availability.
€ Probability data isinavailable.
a Average server availability.
D Total amount of unique data.
S Total amount of storageS(= kD) where storage overhead facto 7.
N Total number of servers.
T The average lifetime of al servers.
u(x) Probability distribution function of downtimes
T Timeout used to determine a server is unavailable.
Tmax Maximum time a server has been unavailable and came back.
Pdr Rate of triggering repair
[of Probability server down longer than timeaut

Table 5.1: Notation

BW S
permanen{N— = O(ﬁ) (5.2)

where total storag8is the product of the total amount of unique dBtand storage overhead factor
k (i.e. S= kD). Note that the storage overhead factor is dependent oratkef erasure-coding,
(m= 1 for replication) and total number of replicasthat is,k = %9 = 2. Equatior 5P states that
on average the total stora@amust be copied to new storage servers every average sdetgndi
T period. We assume that all storage servers have a finiterigete.g. 1-3 years) typical of a
commodity server, so storage will not be biased towards ttree neliable server. Equatidn®.2 has

been discussed in literature by Blake and Rodriglies TBRO3].

Transient Failure Estimator

Transient failure is when a server returns from failure witha intact. Reducing the rate
of triggering repair due to transient failure reduces th@am of unnecessary repair. We assume
that a timeout-based failure detector with value timeoistused to determine if a server has failed
or not. p; is the probability of a single timeout. If there are no extrplicas, then the probability of

at leastone server timing out is high; as a result, the rate of trigigedata repairpyr, is high. That
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pr = P(storage unavailable longer than
= /u(x)dx (5.3)
T
psr = P(atleast one storage server unavailable longer than

- H.:ZT <?> ok (1 po)™! e

whereu(x) is the probability distribution function of downtimes. kig[Z3(c) is the downtime
distribution for PlanetLab. Equatidnb.4 is the probapititat at least one of the replicas times
out. Note that the probability of at least onerofeplicas timing out is higher than the probability
of a single time oup;. This assumes that failures are independent.

Lets now assume we add extra replicas beyond We require that at leastll extra
replicas to simultaneously be unavailable in order to giggpair. As a result, the rate of triggering

repair is

par = P(atleast alextrareplicas unavailable longer than
n=r_+e n X .
-3 (M nr o9
ier1 \!

Equatior[5.b computes the probability that at leastl servers have simultaneously timed out. It
also shows that the rate of triggering repair can be redugeddieasing the extra replicas. For
example, given a timeout period= 1 hour and a probability of a timeout; = 0.25, then for
the following parameterizatiom= 1,r. =5,e=4(n= 9= 5+ 4), the resulting rate of triggering
repair ispqr = 0.049, which is significantly less than the probability of g&ging repair with no
extra replicagygr =0.762 (n=1,r. =5,n=5,e=0).

The cost of triggering repair is the amount of storage pexe;ﬁ and the average period
for the MTTF and MTTR (i.e. average session and downtimeg ffansient term is

BW s
transient > = pg;-O 5.6
ransienty Par (N(MTTF+ MTTR)) (5-6)
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Write Rate Estimator The write rate is the rate of unique data being added to thhag#osystem.
The cost due to writes is simply the unique write rate muégbby the storage overhead fackor

. BwW .
erteW = Kk-write rate (5.7)

Ideally, we wank = %’ = 1 to be small. However, the cost due to writes may be increastid u

an optimum number of extra replicass obtained sincé& depends or.

Heartbeat Timeout-based Failure Detector Estimator

A heartbeat timeout-based failure detector is used to md@terwhether a server is alive
or not. We assume that each server heartbeats all otherseagea result, knows the status of all
other servers. This assumption is used to implement a nrorgtnfrastructure called a distributed
directory (see Sectiolis®.2). The cost per server for mongall other servers is dependent on the

number of serverdl, the heartbeat timeout periadand the size of a heartbda,, That is,

heartbea%v = ? -hbs; (5.8)

Equation[5B states that each server sends a heartbeat dtheill servers every period. For
many reasonable timeouts, the cost due to heartbeats wlitlena significant fraction of the overall
data maintenance costs. For exampld\ K= 10,000 serverst = 1 hour, andhbs, = 100 B, then
heartbea® = 277.8 Bps.

Example of Applying Extra Replication Estimator

Figure[5% shows an example of applying the extra replinagigtimator. Using an_ = 5,

we can maintain six 9's of data durability (i.e. 1 out of evemillion objects is permanently lost
per year). We assume network access link speeds of 1.2MbASQ&KB/s), an aggregate amount
of unique data i© = 2T B, the aggregate unique write rate ISR per day, the number of servers
is N = 400, and the timeout value 5= 1 hour. Finally, we use the expected server availability,
lifetime, MTTF, and MTTR from Figur&213(d) and the downtimistribution from Figurd—213(c).
Using an average of 400 servers in the system, we can estineateean time between failures for a
single disk as 40089.85 hours or 1.82 years. Heneg, =~ 0.550 disk failures per year. The replica
creation ratqt ~ 187 disk copies per year given 25GB of replicated data pees@nd 150KB/s
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Figure 5.4: Extra Replication Estimator for Storage System PlanetLab.

per server network access link speeds. TBus,320 andr,. = 5 yields six 9’s of durability.

Figure[5.3H(a) shows that the estimated optimum number oh ezplicas that minimizes
the cost due to data maintenance is six. Similarly, Figufb®.shows the estimated optimum
number of extra replicas for varying timeout values.

Notice that the extra replication estimator computatiom loa performed locally at a each
server with local estimates for the total number of storageess, average server availability, life-
time, MTTF, MTTR, storage per server, and write rate pereerThis is beneficial because the
extra replication estimator can be performed online sotttestorage system parameterization can

adapt to the changing environment characteristics overtim

5.2.2 Evaluation of Extra Replication

We now evaluate the effectiveness of extra replication. tRis analysis, we maintain
six 9's of data durability, use a low watermark @pf= 5, limit the access link speeds to 1.2Mbps
(150KBY/s), and us&andom placement with large and small scope denotedRinydom and DHT
respectively. We used a timeout valuetcf 1hr. In Figurd5.b, we measure the number of repairs
triggered and average bandwidth per server over time foophienum and worst number of extra
replicas. Additionally, we show the breakdown in cost inlFe&f5.6. Note that the small scope,
DHT-based storage system, parameterization (he- 1, r. = 5, and small scope) is the same as
Dhash [Caiod, DKKO01].

The results in Figure 3.5 show that in both the small scopel(d large scopBandom
based storage system (Figures a-c and d-f, respectively);dnfigurations that use the estimated
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Figure 5.5: Extra Replication. Figures (a), (b), and (c)theeDHT-based storage system like Dhash
and Figures (d), (e), and (f) use a directory-based storgiers with a Random placement. Figures
(a) and (d) shows the number of repairs triggered per weektbeecourse of the trace. Figures (b)
and (e) show the average bandwidth per server (averagedoveek) over the course of the trace.
Finally, Figures (c) and (f) show the average bandwidth peves as we vary the number of extra
replicas and timeout values.

optimum number of extra replicas use at least an order of matgless bandwidth per server than
with no extra replicas. Furthermore, Figures (c) and (fwstimt large timeout values exponentially
decrease the cost of data maintenance; however, the indreasrver failure detection potentially
compromises data durability. An alternative solution wdim@ar increase in extra replicas which
similarly exponentially decreased the cost of data maarea without sacrificing data durability.
Figures (c) and (f) are consistent with the expected costepisted in Figur€hl4(b).

Figure[5.® showed the breakdown in bandwidth cost for maiintg a target durability
and extra replicas. Figute™.6 fixed both the timepst1hr and data placement strategyRemdom
with a large scope. Figute®.6(a) and (b) used a per servguenirite rate of 1Kbps and 10Kbps,
respectively. Both Figurds3.6(a) and (b) illustrated that cost of maintaining data due to tran-
sient failures dominated the total cost. The total cost vamidated by unnecessary work. As the
number of extra replicas, which are required to be simutiasly unavailable in order to trigger

repair, increased, the cost due to transient failures deete Thus, the cost due to actual perma-
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Figure 5.6: Cost Breakdown for Maintaining Minimum Data A&hility for 2 TB of unique data.
(a) and (b) Cost breakdown with a unique write rate of 1Kbps ElKbps per server, respectively.
Both (a) and (b) fix the data placement strategRdadom and timeoutt = 1hr. The cost due to
heartbeats is not shown since it was less than 1Kbps.

nent failures, which was a system fundamental charadgterddminated. The difference between
Figure[5.6(a) and (b) is that the cost due to permanent égildominated in (a) and the cost due to
new writes dominated in (b). Finally, the cost due to sentiiegrtbeats to each server in an all-pairs
ping fashion once an hour was insignificant. These resutg€@amnsistent with the extra replication

estimator depicted in Figute™b.4(a).

5.3 Reducing Transient Costs with Reintegration

In Section 5P, we demonstrated that extra replicationaeslcost due to transient fail-
ures. However, the estimator algorithm (Secfion.2.19lired the measurement of many values
which all affect the accuracy of the algorithm and may be hansheasure in practice. In this sec-
tion, we illustrate a simpler algorithm to add extra reita an object where no values need to be
estimated.

The key technique needed to achieve this is to ensure thal/gtem reintegrates object
replicas stored on servers after transient failures. Hotegration to be effective, we assume that
the system is able to track all replicas created for an objediobjects are immutafleThe number
of replicas that the system must remember turns out to bendepé ona, the average fraction of

time that a server is available. However, we show that theecomumber of extra replicas can

4If objects are mutable and an update occurrs while a remioaavailable, then reintegrating the server may actually
increase costs since the replica needs to be updated.
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/I Iterate through the object database
/l and schedule an object for repair if needed
MAINTAIN _REPLICAS ()
keys =<DB.objectkeys sorted number of available replicas
foreach kin keys:
n = replicaslk].len ()
if (Nn<ry)
newreplica = enqueurepair (k)
replicas[k].append (newreplica)

Figure 5.7: Each server maintains a list of objects for whidls responsible and monitors the
replication level of each object using some synchronipati®chanism. In this code, this state is
stored in the replicas hash table though an implementatepnahnoose to store it on disk. This code
is called periodically to enqueue repairs on those objdetstave too few replicas available; the
application can issue these requests at its convenience.

be determined without estimatireyby tracking the location of all replicas, including thoseatth
are offline. Carbonite is an algorithm that uses this teamigWe demonstrate its effectiveness
using simulations. We additionally show that reintegmati® effective for storage systems that use
erasure-coding. Carbonite was first presented_in_[ED&). We provide a description here for
completeness.

5.3.1 Carbonite details

The Carbonite maintenance algorithm focuses on reiniegrad avoid responding to
transient failures. Durability is provided by selectinguitable value ofr| ; an implementation of
Carbonite should place objects to maxim&eand preferentially repair the least replicated object.
Within these settings, Carbonite works to efficiently maimt, copies, thus providing durability.

Because it is not possible to distinguish between transiedt disk failures remotely,
Carbonite simply responds to any detected failure by ergatinew replica. This approach is shown
in Figure[5.Y. If fewer tham_ replicas are detected as available, the algorithm creamsgh new
replicas to return the replication levelito.

However, Carbonite remembers which replicas were storexeorers that have failed so
that they can be reused if they return. This allows Carbdaitgeatly reduce the cost of responding
to transient failures. For example, if the system has cdette replicas beyond_ and both fail,
no work needs to be done unless a third replica fails befoeedbrihe two currently unavailable
replicas returns. Once enough extra replicas have beetedrétis unlikely that fewer than_ of
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Figure 5.8: A comparison of the total amount of work done Hfediént maintenance algorithms
with r_. = 3 using a PlanetLab trace (left) and a synthetic trace (rightall cases, no objects are
lost. Howevery, = 2 is insufficient: for the PlanetLab trace, even a systemdbald distinguish
permanent from transient failures would lose several abjec

them will be available at any given time. Over time, it is isasingly unlikely that the system will
need to make any more replicas.

5.3.2 Reintegration reduces maintenance

Figure[28 shows the importance of reintegrating replicckbnto the system by com-
paring the behavior of Carbonite to two prior DHT systems anglypothetical system that can
differentiate disk from transient failures using an oraatel thus only reacts to disk failures. In
the simulation, each system operates with= 3. The systems are simulated against the PlanetLab
trace (a) and a synthetic trace (b). haxes plot the cumulative number of bytes of network traffic
used to create replicas; theaxes show time.

The synthetic failure trace parameters used in Figuile &.8@rfigured to be similar to the
PlanetLab trace. In particular, the average server lifetamd the median downtime are the same.
The result is an approximation (for example, PlanetLab gdewng the trace) but the observed

performance is similar. Some of the observed differencesdae to batching (used by algorithm

Transient failures
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described in Sectidid.2 and Total Redall [BT®]) and timeouts (used by all systems); the impact
of these are discussed in more detail in Sectionsl15.3.4d04. 5.

Since the oracle system responds only to disk failuresgi$ tise lowest amount of band-
width. The line labeled Cates shows a system that keeps afaotactlyr, replicas per object; this
system approximates the behavior of DHTs like DHash, PASIT@penDHT. Each failure causes
the number of replicas to drop belay and causes this system to create a new copy of an object,
even if the failure was transient. If the replica comes baaline, it is discarded. This behavior
results in the highest traffic rate shown. The differencedariggmance between the PlanetLab and
Poisson trace is due to differences in the distribution efrttomes: Poisson is not a particularly
good fit for the PlanetLab downtime distribution.

Total Recall [BTC 04] tracks up to a fixed number of replicas, controlled by apaater
ru; we showry = 5 which is optimal for these traces, angd = 9. As can be seen at the right
of the graphs, this tracking of additional replicas allovedal Recall to create fewer replicas than
the Cates system. When more thamreplicas are available, a transient failure will not caus&all
Recall to make a new copy. However, Total Recall’'s perforrean very sensitive toy. If ry is set
too low, a series of transient failures will cause the regian level to drop below, and force it to
create an unnecessary copy. This will cause Total Recafigooach Cates (whemy =r). Worse,
when the system creates new copies it forgets about anysctiigare currently on failed servers
and cannot benefit from the return of those copies. Withouffecently long memory, Total Recall
must make additional replicas. Settingtoo high imposes a very high insertion cost and results in
work that may not be needed for a long time.

Carbonite reintegrates all returning replicas into thdicapsets and therefore creates
fewer copies than Total Recall (and algorithm presentedeictiSn[52). However, Carbonite’s
inability to distinguish between transient and disk faikirmeans that it produces and maintains
more copies than the oracle based algorithm. This is maisiple in the first weeks of the trace
as Carbonite builds up a buffer of extra copies. By the endefsimulations, the rate at which
Carbonite produces new replicas approaches that of thie@pstem.

5.3.3 How many replicas?

To formalize our intuition about the effect of extra repican maintenance cost and to
understand how many extra replicas are necessary to awggeting repair following a transient

failure, consider a simple Bernoulli process measuRntihe number of replicas available at a given
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Figure 5.9: Additional redundancy must be created when theuat of live redundancy drops
below the desired amount (3 replicas in this example). Théalility of this happening depends
solely on the average server availabiktynd the amount of durable redundancy. This graph shows
the probability of a repair action as a function of the amaafrdurable redundancy, wita= 0.5,
a=0.7 anda = 0.9 for a replication system.

moment, when there are> r_ total replicas. The availability of each serverais Since repair is
triggered when the number of available replicas is less thathe probability that a new replica

needs to be created is the probability that less thaeplicas are available:

n-1 . .
Pr{R < r_|r extant copies= 20 (:) al-a"".
i=

This probability falls rapidly as increases but it will never reach zero; there is always a @an
that a replica must be created due to a large number of camtailures, regardless of how many
replicas exist already. However, when a large number ofaapkexists, it is extremely unlikely that
enough replicas fail such that fewer tharnare available.

By computing the Chernoff bound, it is possible to show ttiegrahe system has created
2r. /areplicas, the probability of a new object creation is expaiadly small. 2 /ais a rough (and
somewhat arbitrary) estimate of when the probability of & bject creation is small enough to
ignore. Figurd5J9 shows (on tlyeaxis) the probability that a new object must be created varen
increasing number of replicas already exist.rAscreases, the probability that a new replica needs
to be created falls, and the algorithm creates replicasflegsently. Asr approachesi2/a, the
algorithm essentially stops creating replicas, despit&knowing the value o#.

This benefit is obtained only if returning replicas are regnated into the appropriate
replica set, allowing more than to be available with high probability. As a result, the cokt o

responding to transient failures will be nearly zero. Stills system is more expensive than an ora-
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cle system that can distinguish between disk and transadotds. While the latter could maintain
exactlyr_ replicas, the former has to maintain approximately/2. The factor of 2a difference in
the cost is the penalty for not distinguishing disk and tiemtsfailures.

5.3.4 Create replicas as needed

Given that the system tends towards creating/& replicas in order to keep_ of them
available, it is tempting to create the entire set—notijusif them—when the object is first inserted
into the system (Total Recall [BTM4] and algorithm presented in Sectibm 5.2.1 use a similar
technique). However, this approach requires an accurtiteats fora to deliver good performance.

If ais overestimated, the system quickly finds itself with la@santr, replicas after a string of
transient failures and is forced to create additional cafiea is underestimated, the system creates
unneeded copies and wastes valuable resources. Carlmsiteplified by the fact that it does not
need to measure or estimatéo create the “correct” number of replicas.

Another idea is to create not only enough copies to bring timeber of available replicas
back up tor_, but alsoe additional copies beyond (this is similar to the algorithm described
in Section[B.R2 and Total Recall’s lazy repair technique)edfing a batch of copies makes repair
actions less frequent, but at the same time, causes mordéemaice traffic than Carbonite. The
work required to create additional replicas will be wastethose replicas are lost due to disk
failures before they are actually required. Carbonite,lendther hand, only creates replicas that
are necessary to keepreplicas available. In other words, either Carbonite waventually create
the same number of replicas as a scheme that creates rdplicatches, or some replicas created
in the batch were unnecessary: batch schemes do, at besgnigeamount of work as Carbonite.

Figure[5ID shows the bytes sent in a simulation experimsgingla five-year synthetic
trace witha = 0.88,r_. = 3, and an average server lifetime of one year. The graph sresu#ts for
different values ot (in Total Recall,e = ry —r.) and for two different scenarios. In the scenario
with reintegration, the system reintegrates all repliceishay return from transient failures. This
scenario represents the behavior of Carbonite veher® and causes the least traffic.

In the scenario without reintegration, replicas that ar@ailable when repair is triggered
are not reintegrated into the replica set even if they dametliotal Recall behaves this way. Extra
replicas give the system a short-term memory. Additionplicas increase the time until repair
must be made (at which time failed replicas will be forgo}teturing this time failed replicas can

be reintegrated. Larger valuesa{ive the system a longer memory but also put more data atfrisk o
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Figure 5.10: Total repair cost with extra replicas, and veitid without reintegration after repair.
Without reintegration, extra replicas reduce the rate atlwhepair is triggered and thus reduce
maintenance cost; there is an optimal setting (leete8). With reintegration, the cost is lowest if
no extra replicas are used.

failure: for this synthetic trace, a value ef= 8 is optimal. Taking advantage of returning replicas
is simpler and more efficient than creating additional s a system that reintegrates returning
replicas will always make fewer copies than a system thas ame and must replace forgotten
replicas.

More formally, consider a replication based system with dege failure detector that
makesE additional replicas when the number of replicas falls bedothreshold . letr(t) be the
number of replicas over time. We assume tﬂat: —Ar for some decay ratk, i.e. the more data
the system stores, the more data loss is expected per uanit fillus, if the system creatés> 0

extra replicas when repair is triggered,
rt) =(r.+E)-e™,

assuming that the steady state or initial conditions hagymedr, copies. From this, we can derive
the inter-repair timd (E) by solvingr(T) =r_— 1 for T. We get

(rL+E)-e* = r -1

1 rn+E
T(E) — X In |"L—1

Thus, as increasesT (E) only increases logarithmically.
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Figure 5.11: Total repair cost with a rate= T = 1—74 erasure-coding scheme, reintegration, extra
fragments, and with and without replica caching after retmiction and repair. Without caching,
extra fragments reduce the rate at which repair is triggaretthus reduce maintenance cost; there
is an optimal setting (here= 12). With caching, the cost is lowest if few extra fragmemts @sed
(e=0to 2).

This affects the amount of work done per unit time, which we ¢&w as the average
number of replicas created per unit time. During each repaile, we create 4 E replicas, so the

average number of replicas created per unit time is

1+E _ \-(1+E)

T(E)  Initf

which is minimal ifE = 0 since the numerator increases faster than the denominator

When the failure distribution is not exponential, on Plamat for example, creating one
replica at a time is optimum assuming that all replicas ecand available are tracked and reinte-
grated into the replica set (Figure5.10).

5.3.5 Reintegration and Erasure-coding

For systems that use erasure codes, there is an additi@ubtost since a complete copy
of the object is needed in order to generate a new fragrhe@IFRWKOZ]. The cost of reading a
sufficient number of fragments prior to recreating a losgjfn@nt can overwhelm the savings that
erasure codes provide. A common approach is to amortizedsisby batching fragment creation
but simply caching the object at the server responsiblegioair is much more effective. Figure 911
shows a simulation contrasting both caching and batchiagkbth with reintegration). Results in
Figurd 5. 11 are similar to Figutes]10: reintegrating anthatching is optimum. Caching the object
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withar = 0 = 14 erasure code uses 85% of the bandwidth that the optimalibgtstrategy would

use.

5.4 Summary

Repair, the second key to ensuring durability, must cresgitiaas in response to failures.
The problem of triggering repair is complicated by transfarnure, where data is intact on a server,
but not immediately available. In this chapter we showed itihe@nitoring techniques cannot distin-
guish between permanent and transient failure and that dastto transient failures were dominant
in maintaining durability. We demonstrated three techegiio reduce costs due to transient failures.

First, we showed that timeouts reduce the number of tranféares by delaying clas-
sifying a server as failed. The effectiveness of timeouteducing false-positives, misclassifying
servers as permanently failed that have actually only ieaily failed, is dependent on the down-
time distribution. Thus, if the timeout is set to mask modihaf downtime distribution, a transiently
failed server may return before a timeout expires and pteesources from being wasted creating
replicas unnecessarily. However, setting longer timedetseased durability because the time to
recognize permanently failed servers increased, thusasarg the “window of vulnerability”.

Second, we showed that extra replicas, beyond what wasreglgto maintain a target
durability, decreased costs due to transient failures. Waamhstrated that the number of extra
replicas required to minimize costs could be estimated. dthentage of extra replication is that
it exponentially reduced the cost due to transient failwéh a linear increase in replicas. Fur-
thermore, there was no reduction in durability by addingeereéplicas. As a result, extra replicas
perform better than long timeouts.

Finally, we showed that the optimum number of extra replidiasnot need to be esti-
mated. Costs were minimized by simply responding to alufa#, transient or permanent, creating
replicas untilr_ were available, tracking all replicas created, and renatiégg replicas after transient
failure. We showed that this solution, called the Carboaltprithm [CDH"06], created the mini-
mum number of replicas,rg/a (without an estimate for server availabili&y. The factor increase
of 2/a was the cost for not being able to distinguish between peemtsand transient failures. The
result of the algorithm was that the system performs sonra gxdrk for each object early in its life,

but over the long term creates new copies of the object onlgsiss it suffers permanent failures.
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Part Il

Exploiting a Secure Log for Wide-Area
Distributed Storage
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Chapter 6

Secure Log Overview

In previous chapters, we discussed how to durably maintatim dn this part of the thesis,
we design a distributed wide-area on-line archival stosygéem that employs durability techniques
presented earlier. Additionally, the system solves theginty problem. It ensures that the state of
data stored in the system always reflects changes made bwiies.0

We assume that an on-line archival storage system is antieddayer for a variety of
applications and proceed to address two questions: Filgtt is an appropriatmterfacebetween
applications and an archival infrastructure? Second, hamwvan archival infrastructure be con-
structed to provide integrity and efficiency in addition tarability?

Our basic premise is that a secure log provides an ideal fprérfior implementing an
archival storage infrastructure. A log’s structure is diengnd its security properties can be veri-
fied [LKMS04, MRC™97,[Mer88 [ MMGCOR['SKY98]. Only a single interfacapend(), is pro-
vided to modify the log, and all mutations occur at a singlinpethe log head. A system can
secure the log head by requiring that &lbend() operations be signed by the private key of the
log owner. If each log element is named individually, randaccessyet () provides quick data
retrieval. Because of the simplicity of its interface, awsedog is easier to implement in a secure
way than other structures. In particular, only a narrowrfiatee that modifies data needs to be se-
cured. Additionally, most of a secure log is resistant tawgotion or attack since it is immutable
(read-only and cannot change). Furthermore, a secure mbgdace is sufficient to implement a
variety of interesting applications. For instance, we destiate that a secure log interface can be
used to implement a secure file system application.

In the following chapters, we show how to construct an efficRyzantine fault-tolerant

wide-area archival system with a secure log interface. @ucarchival system is intended to be a
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component of a larger application. While a secure log is epha@lly simple, replicating the log
in a distributed storage system has proved challen@ing [MIUES[REG03]. Such systems offer
improved data durability, but must overcome several diaathges arising from the distributed
environment. We address the challenges of consistencgbitity, and efficiency.

When a system replicates data, it must ensure that repliedgept consistent and queries
are answered in a manner that reflects the true state of taeMaintaining consistency of a log is
simpler than other data structures because modificatiéest ahnly the log head. In particular, most
of the secure log is immutable where consistency is immedi&till, a system must maintain the
consistency of the log head as servers hosting the rephdas £ndure attacks. To ensure progress,
the system must manage the replica set, replacing faulgisewith new ones.

Replication alone does not ensure durability. A system ralsst respond intelligently
to changes such as the scheduled retirement of old servérsraxpected transient or permanent
failures. Furthermore, the system must tolerate and redowa a variety of faults and attacks. For
instance, data may be corrupted on disk or during networistréssion and malicious agents may
attempt to subvert the system. The system should persigitelagrver and network failure.

Finally, a wide-area storage system must utilize systerauress carefully. Protocols
should limit the number of cryptographic operations and dhmunt of communication needed
across the wide-area. This requirement leads to aggregatombining small, application-sized
blocks into larger chunks for validation, storage, and irep&ggregation is notably lacking from
recent DHT-based storage systeins [BDd,[DKKT01,[MGM0Z [MMGCO02] that divide large ob-
jects into small (e.g. 8K) blocks which are spread widely.

This part of the thesis describes the design of a securepdigld, log-structured storage
system. To meet the challenges described above, the dedigiséd on a log interface. The system
combines this interface with three technologies: quoruqusyum repair, and aggregation. We uti-
lize dynamic Byzantine fault-tolerant quorums to ensunescgiency of the log head. Data integrity
is assured at both the block and container granularity. \&eige data durability with an algorithm
that repairs quorums when replicas fail. Finally, aggregateduces communication costs while
maintaining fine-granularity access for clients.

The contributions of this part of the thesis are as follows:
e An implementation of a secure log interface.

e A consistency protocol for a replicated secure log basedyoamic Byzantine fault-tolerant
quorums that works well in the wide-area.
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e A mechanism for dynamically repairing Byzantine faultet@nt quorums that maintains con-
sistency and durability in the face of recurring replicdufiaa.

¢ In ParfIM, we describe an operational prototype that coebihese features and is currently
running in the wide-area.

In the rest of this section, we give an overview of goals, nimydend assumptions of a
system based on a secure log interface.

6.1 Overview

A secure log is a generic low-level data structure and iaterfused by distributed wide-
area storage systems to provide secure, durable storagalelsigned to serve as the storage layer
for a variety of applications such as file systefns [DKKI,[MMGCO02], back-up[[QDU2, RE®3J],
and databaseés It provides to applications a limited interface by whicteyhcan create new logs,
append data to the head of an existing log, and read data gicaitjon in the log. It can be used
to guarantee fault-tolerance through replication, cdestsyy via dynamic Byzantine fault-tolerant
quorum protocols, and efficiency by aggregation.

6.1.1 Storage System Goals

The design of a storage system based on a secure log was twidleel following goals.

e Integrity: Only the owner can modify the log. Any unauthedzmodifications to the log, as
in substitution attacks, should be detected.

e Incremental Secure Write and Random Read Access: A clienadd data to a log securely
as it is created, without local buffering. Further, the mliean read arbitrary blocks without
scanning the entire log.

e Durability and Consistency: The log should remain accéssibspite temporary and perma-
nent server failure. The system should ensure that logspatated in a consistent manner.

1A secure log inherently supports transactional databases ainderlying storage layer since it stores data using
ACID (Atomic, Consistent, Isolation, and Durable) semesitiall writes are atomically applied to the log and storetthwi
a total order within the log structure.
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Replicated
Service

Figure 6.1: A log-structured storage infrastructure casvigie storage for end-user clients, client-
server systems, or replicated services. Each log is idedtify a key pair.

e Efficiency/Low overhead: Protocols should limit the numbgcryptographic operations and
the amount of communication needed across the wide-areainiastructure should amor-
tize the cost of maintaining data and verifying certificatd®n possible.

A system that provides these goals would be a useful subdtriatipplications. Integrity
ensures that data stored in the system reflects changes mtuedpplication. For usability, appli-
cations can write new data and read any block already writBemrability and consistency ensure
that the log will exist and be writable even as servers faihaly, applications can efficiently use

the storage system reducing the number of cryptographievéshetarea operations.

6.1.2 System Model

The storage system stores logs on behalf of clients. Thetypelients storing data in the
system can vary widely as shown in Figlitel 6.1. The client neathb end-user machine, the server
in a client-server architecture, or a replicated servicearly case, the storage system identifies a
client and its secure log by a cryptographic key pair; oningpals that possess the private key
can modify the log. Requests that modify the state of the logtrmclude a certificate signed by
the principal’'s private key. Although a log is non-repudyabound to a single key pair, multiple
instances of the principal may exist simultaneously. Iftiplé devices possess the same private
key, then they can directly modify the same log.

Storage resources for maintaining the log are pre-allddatehunks. When a new chunk,

or extent needs to be allocated, the system consultatministrator The administrator authenti-
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cates the client needing to extend its log and selects a stbi@ige servers to host the extent. The
newly-allocated portion of the log is replicated on the defabected storage servers. To access or
modify the extent, clients interact directly with the stgeaservers.

Applications interact with the log through a client librahat exports a thin interface—
create(), append(), andget (). To create a new log, a client obtains a new key pair and irs/oke
thecreat e() operation. The administrator authenticates the requekselects a set of servers to
host the log.

After a log has been created, a client usesamgend() operation to add data to the
head of the log. The client library communicates directlytwthe log’s storage servers to append
data. The interface ensures that data is added to the logrstgjly by predicating each write on
the previous state of the log. If conflictirappend() operations are submitted simultaneously, the
predicate ensures at most one is applied to the log

Data written to a log cannot be explicitly deleted. Instaatplicit deletion based on an

expiration time is supported. A client can extend the exjpinetime of an extent.

6.1.3 Assumptions

We assume that clients follow specified protocols, exceptifashing and recovering. A
malfeasant client, whether due to software fault or comjisethkey, can prevent the system from
appending data to a log. It cannot, however, affect data@yjrstored in its log or logs belonging to
other principals. If a principal’s private key should be gomomised, an attacker could append data
to the log, but it cannot destroy data previously stored énldlg. A principle can retrieve data from
a log until the log’s expiration time.

We assume that the administrator, tasked to select setsrafstservers to host lods [MA04],
is trusted and non-faulty. The design, however, includesrs¢mechanisms to mitigate the cost and
consequences of this assumption. While each log uses & sidglinistrator, different logs can use
different administrators. By allowing multiple instancéise role of the administrator scales well.
Second, the administrator's state can be stored as a seguire the system. Thus, the durability
of the state can be assured like any other log. If the admagstwere to fail, a new administrator
could be created using the state stored in the log. Thirdstdte of the administrator can be cached
to reduce the query load on an administrator. Finally, thaiactrator can be implemented as a

replicated service to improve availability further.

2We assume a storage server atomically handles each refjhesis, a server processes requests one at a time, even
though multiple requests may have been received at the sarme t
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Figure 6.2: To compute the verifier for a log, the system usesecurrence relatiod = H(Vi_1 +
H(Di)). V_1 = H(PK) wherePK is a public key.

Storage servers may exhibit Byzantine faults. We assuntgitithe set of storage servers
selected by the administrator to host a particular extemtagimum threshold number of servers is

faulty.

6.2 Secure Log Details

A secure log is a data structure with interesting propedisd an interface that protects
its properties. First, only a single operati@append(), can modify the log. Most of the log, except
for the log head, is immutable — read-only and cannot chaSgeond, a single cryptographically
secure hash, called therifier, asserts both the data and append-order integrity of theedag.
The verifier is cheap to compute and maintain over time. Thichsistency of the log is assured
by requiring the verifier of the previous state of the log asetigate in a subsequeappend()
operation. Finally, since each log element is individuadgmed, random accegst () provides
quick data retrieval. We discuss the verifigspend() , andget () in more detail below.

First, the data and append-order integrity of the entireisogssured via Merkle’s hash
chaining technique IMer88]. This technique works by nameéagh element in the log with a cryp-
tographically secure hash of the content of the element arfiedding the secure name in the data
structure. With Merkle chaining, a malicious or comprordiserver cannot deceive a client with
corrupt data. Further, Merkle’s technique makes the lofjvelfying meaning the integrity of the
entire log can be verified with a single hash callece&fier.

A verifier is computed as follows. Assume alog contains asege of variable-sized data
blocks, D;. Each data block is named with a secure, one-way hash funeiitD;). The verifier
is computed using the recurrence relatdn= H(Vi_; + H(D;)), where+ is the concatenation
operator. We bootstrap the process by defindhgto be a hash of the public key that identifies the

log. See Figur€®l2. This convention ensures that logs owgedifferent principals always have
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Certificate contents:

verifier token that verifies contents of log
seqnum | certificate sequence number
timestamp| creation time of certificate

ttl time the certificate remains valid

Table 6.1: The certificate present with each operation aédtwith each log. It includes fields to
bind the log to its owner and other metadata fields.

different verifiers.

Creating a verifier in this manner has several advantagesn\block is appended to the
log, the client can compute the verifier incrementally. Thisans it must hash only the new data,
not all data in the log, to compute the running verifier. Aaafilly, only oneparticular sequence of
appends result in a particular verifier. Thus, chainingtereea verifiable, time-ordered log recording
data modifications. Furthermore, requiring the latestfiegras a predicate in subsequeppend()
operations assures servers maintain a consistent stdte tig. A server atomically performs an
append() against its locally stored state. If the predicate matchestirrently stored verifier, then
the server applies thepend() ; otherwise, theppend() is rejected.

Toappend() datato the log, a client creates a request and submits it tstdinage servers.
A request has three arguments. (1) A predicate — verifiersé@airely summarizes the current state
of the log. (2) New data to append to the log. And (3) a new fieate that includes a new
verifier and new sequence number. The certificate verifiensamzes the next state of the log after
appending data. The sequence number is a monotonicallgasiolg number. Tab[e®.1 shows the
contents of a certificate.

When a server receives append() request, it determines if a request succeeds or not. It
performs several checks using local knowledge. The cetificontained in the request must include
a valid signature. Also, the predicate verifier containethenrequest must match the current state
of the log recorded by the storage server. Additionally,vefier in the certificate must match the
new verifier after appending new data to the log. Furtherstgence number in the certificate
must be greater than the one currently stored. If these tonsgliare met, the server writes the new
data to the log on its local store and returns success to ithm.cOtherwise, the request is rejected
and failure is returned.

Toget () data, the client library must first locate the server stotirgrequested block(s)
and then retrieve the block(s) from that server. If the erlog was stored by one server, then the
client could retrieve the requested block(s) from that cenwer. However, without a limit on the
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Log Interface:

status = creatdH(PK), cert);

status = appendH(PK), cert, predicate, data[ ]);

data[] = getblockgextentname, blocknamel]);
mapping = getmapextentname);

Table 6.2: Operations tor eat e( ), append(), and retrieve data viget _bl ocks() from a secure

log. A log is identified by the hash of a public ke (PK)). Thecreate() andappend() op-
erations include a certificate. Furtheppend() requires a verifier of the previous state of the log
as a predicate. Theet _bl ocks() operation requires two arguments because the system breaks
logs into extents and requires both the exteae and blockame. Theget _map() retrieves the
mappings of a previous extenbunter to previous extemame.

number ofappend() 's that can be performed on a log, the size of the log can gramdlessly large.
As a result, the storage system stores a log not as a sequdngestements, but rather a sequence
of container objects callegktents Extents are the units of storage and are independentlytaiaaa

by the storage system. Each extent stores a variable nurhlaébitrarily-sized application-level
log elements (blocks). Additionally, similar to the logel§ extents are self-verifying and use a
verifier to guard data and order-integrity. The use of estémtaggregate log elements into larger
containers was first proposed by Eaton et[al. [EWWKO05]. Wernilgs@n implementation of extents
as part of a secure log in Chapiér 7.

Extents introduce added complexity in computing the addofsa block of data. Each
extent is assigned an integer corresponding to its posititime chain. Also, each extent records the
mapping between counter and extent name for the previoestext

To read data embedded in extents, the client must know trentertime, location of
server storing extent, and block name. However, the agjaitanly records the extent counter
and block name; it does not know the extent name at the timeppénd(). As a result, the
client library must first resolve the extent counter to ekigame. In particular, the client library
first accesses the mappings stored in the log headetiarap() to determine the previous extent
name. We assume that a mechanism exists to locate the logoheeny extent given the extent
name (Chaptdd9). Next, the client continues retrievingra@sdlving extent counter to extent name
mappings until it locates the mapping that includes therddséxtent holding the data. It then
uses theget _bl ocks() operation to retrieve the requested blocks from that ext€ataccelerate
the translation between counter and extent name, the dimatry caches the mappings. Also,
in implementation, each extent contains not just the mapfin the previous extent, but a set of

mappings that allow resolution in a logarithmic number alops.
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Table[6.2 summarizes the log interfaceeat e() , append() , andget () (get _map() and
get _bl ocks()).

6.3 Semantics of a Distributed Secure Log

The archival system replicates the log on multiple senezovide durability. Durabil-
ity means that the log persists over time. The difficulty iSntening consistency across the log
replicas so that new data can be added. The storage systeid sleocapable of maintaining data
and append-order integrity of the log across the replicapite arbitrary failure such as network
error, server failure, or simultaneously submitted andladimg requests. As a result, consistency
across the log replicas must be maintained to ensure psogrability to add new data to the log.
We discuss a consistency protocol in Chapler 8; in this sectiowever, we describe the client’s
view considering that the client interacts with multiple\s&ss to complete a single operation.

An operation that modifies the log results in one of threeestasound, unsound, or
undefined. The result of an operatiors@undif the client receives a positive acknowledgment from
a threshold of servers. A request succeeds and is “durabiieé¢ iresult is sound. Durable means
that data exists over time in the storage system even agséaile On the other hand, the result of
an operation isinsoundf the client receives a negative acknowledgment from eh@agvers such
that positive acknowledgment from a threshold is no longessible (e.g. sizeof(negative acks)
sizeof(server set} threshold-1). A request fails if the result is unsound. The storageesystoes
not maintain unsound results, thus unsound writes are mabthu Finally, the result isndefined
if it is neither sound nor unsound. An undefined result mehasctient did not receive sufficient
acknowledgment from servers perhaps due to network oristiligre. In this case of an undefined
result, a timeout occurs and the client does not know whéltearequest is sound or unsound. After
a timeout, the client performsgat _cert () on all the servers and waits to receive acknowledgment
from a threshold. If the state stored in the system has cliatay®other client updated the log),
then the request is unsound. If thet _cert () fails to receive acknowledgment from a threshold
of servers, then the client may trigger a repair audit thétdetermine the latest consistent state of
the log (repair audits are discussed in Chagter 8). Thetammtinually sends the request, reads the
state of the system, and then triggers a repair audit urtifequest is either sound or unsound.

To illustrate the notions of sound, unsound, and undefinetsyrassume a log is repli-
cated on seven servers. A threshold required for consistamta sound response is five positive ac-

knowledgments. The number required for an unsound respstiseee negative acknowledgments
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Figure 6.3: Semantics of a Distributed Secure Log. (a) A setag with the valueA is initially
replicated onto seven servers. In (b), a workstation attergappend() the valueB, predicated
on A already being stored. The result of the request is soun@ gimeaches a threshold of servers
(servers 3-7). In (c), a laptop, which possesses the sawveg@iiey as the workstation, simultane-
ously attempts tappend() valueC, predicated o\ already being stored. The result of the request
is unsound since the predicate fails on a threshold of seridwte that the two servers (server 1-2)
apply C since the predicate matches local state. However, themysteuld return valu® in any
subsequent reads.

(total minus a threshold plus one;-A+ 1 = 3). The initial value stored on all the log replicas is
A. Further, assume two clients, a workstation and laptopulsgmeously submit conflicting opera-
tions. The workstation attempts to append the v&weand receives five positive acknowledgments
and two negative, thus the response is sound since a thdestiolowledged positively. The laptop,
on the other hand, attempts to append the valamd receives five negative acknowledgments and
two positive, thus the response is unsound. With this saenide storage system should maintain
the workstation’s appended valBeover time despite arbitrary server failure. Figlird 6.3 shtvis
example. Furthermore, in the above example, if the workstaeceives one less positive acknowl-
edgment (four instead of five), possibly due to network tmaission error, then the result would
be undefined and timeout. The workstation could read thetlagplicated state of the secure log,
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trigger a repair audit that will repair the distributed seclog if necessary, and resubmit the request
until it receives sufficient server acknowledgment.

Alternatively, if both the workstation and laptop requesiseived unsound responses (e.g.
both received three negative acknowledgments), then theejolicas would be in an inconsistent
state since a threshold of the log replicas state do not agveen the log replicas are in an incon-
sistent state no progress can be made, new data cannot libtaddéhreshold of the log replicas,
and the log replicas need to bepairedto a consistent state. Repair restores the log replicas to a
consistent state such that the latest sound write is thevlaststored by a threshold of log replicas.

A quorum repair protocol that ensures consistency and dilyadimongst log replicas is discussed
in ChaptefB.

6.4 Example uses of a Secure Log

To understand how a client can use a log, consider the exanopla tamper-resistant

syslog, secure file system, and a database log.

6.4.1 File System Interface

This example shows how a versioning file system stores datéoiqp shown in FigurE6l4.

Figure[6.4(d) shows an abstract representation of twooressif a versioning file system.
The second version is composed of some newly-written datssame data from the previous ver-
sion. The application first translates the file system intoeakié tree [[Mer8B]. It divides the files
and directories into small blocks, typically 4-8 KB or leEsch block is named by a secure hash of
its contents. Applications can embed the secure pointeappitication-level data to create complex
data structures| [DKKO1,[REG 03,[QD02].

To store the file system into the log, the application usesitkat e() interface to initial-
ize the log. It then traverses the Merkle tree in a depthfirasbner, using theppend() operation
to write data to the log. Figufe 6.4]b) shows the operatiomstae contents of the log.

To read data, the application invokegyet _bl ocks() operation with the name of the
desired block. By naming blocks individually, the inteasupports random reads. The secure
pointers that name blocks also allow the application tofyetata integrity. The application simply
compares the hash of the data retrieved from the log agdiastdame by which it was retrieved.

The application verifies all data read by following chainseture pointers.
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(b) Storing the file system in a log

Figure 6.4: (a) An abstract representation of a versionilegsfistem with two versions. A version
can reference newly created data and data in previous wergib = version,R = root directory, =
file inode,B = data block) (b) An application can write the file system toglby traversing the tree
in a depth-first manner.

To make this file system example concrete, we map the bloclbslgrio files and di-
rectories. We assume that a file or directory is stored asgéesbiock and ignore inodes in this
example. In FigurE®@l5, X/ Rx, Ix, and B represent the root “/” directory, “docs” directory, “proj”
directories, and files, respectively. A single quote ()resgnts new versions of a directory or a
file. To write new data, the file system appends the changeslditel directories to the head of
the log in a depth first manner. For example, when the file systgplication wrote new versions
of the report and reqs documents (B5—report’ and B6-regissppended the new file versions to
the head of the log by callingppend(B5-report’) andappend(B6-reqs’) Additionally, the
new directory versions that point to the new files are appartdehe log éppend(|3-proj2'),
append(R2-docs’ ), andappend(V2-/")). To read a particular file, the file system application
reads the root of the file system stored at the head of the lddadlows the pointers to the desired

file. For example, assume the client wants to read the “scfiled’The client first reads the root of
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Figure 6.5: A simple file system used as a running example. $yagbols to concrete file system.

the file system which is the first entry stored at the head ofdbeget _head(). The root of the
file system is a directory and directories store pointershitaien directory and files. Pointers are
an extent counter and secure hash. The file system appticadies theyet _map() routine to map
the extent counter to extent name and caches the mappingr i&&olving the mapping, the file
system reads the next directory callipgt _bl ocks( ext ent _name, H(R2-docs’)). Similarly, the
file system does the same for “proj1” and “sched”. It extrélsspointer from the parent directory,
maps the extent counter to extent name, then galisbl ocks(extent _nanme, H(I1l-proj1'))
andget _bl ocks(extent _nane, H(B2-sched)).

6.4.2 Database Example

Similar to the file system example, a database can storerdatsdcure log. For example,
Figure[63 could also represent a database where data ésl siera B-treeappend() is used to
add data to the log after modifying or adding new entries. il@mto the file system example, the
pointers to database nodes and entries are extent coudtkash of the entry. Finallget _head(),
get _map(), andget _bl ocks() can be used to retrieve any block.

6.4.3 Tamper-resistant syslog

As a last example, a tamper-resistant syslog can be used dyyeaating system to store
all access entries, which can be audited at a later date. éiueeslog ensures that entries have not
been altered or deleted.
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Chapter 7

The Secure Log Interface

Thecreat e() /append() interface should assure the integrity of data stored in aTog
interface is sufficient to assure integrity when an entiislog is stored unreplicated on a single
server. It ensures data is appended to the log in a sequéadfabn. It ensures the append-order
and data are verifiable. It ensures only entities that pegbesprivate key caappend() data. It,
however, is not sufficient to ensure the durability of the (e single server could permanently
fail).

For durability, the secure log is replicated with replicéstributed throughout the wide-
area. Furthermore, the entire secure log is not storedhegdbut rather broken into a sequence
of containers callegxtents Extents are the units of replication and storage. Evengh@usecure
log is replicated and broken into extents, its interfaceuthstill ensure the integrity of the log as
if it were stored whole, unreplicated, and on a single sefver data is appended to the log in a
sequential fashion, theppend() order is verifiable, and only entities that possess the farikay
canappend() data).

Given that a secure log is replicated and broken into extdréschallenge is implementing
a secure log interface that can be used to ensure both thbildyrand integrity of a distributed
secure log. We define such an interface in this chapter and Bbw a client library uses it to
interact with the storage system.

The rest of this chapter describes in more detail extents séture log interface, and
distributed secure logs. In Sectibnl7.1 we discuss backgrand prior work. Next, in SectidnT.2,
we describe how to use an extent aggregation interface ttremh a secure log. We describe the
complete distributed secure log interface in Sediioh 7iRally, in Sectio Z}, we discuss why this

interface is easier to implement in a secure way than others.
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7.1 Background and Prior Work

In this section, we begin by reviewing the concepts behinidveeifying data. We then
discuss the designs of popular, first-generation diseibhiash table (DHT) storage systems, focus-

ing on their similarities and the consequences of thosesoiers.

7.1.1 Self-verifying Data

Data is said to be self-verifying if it is named in a way thabais any client to validate the
integrity of data against the name by which it was retrieviterefore, names of self-verifying data,
serve ideally as identifiers in a distributed wide-areaagjersystem. The self-verifying property
enables clients to request data from any machine in the metwithout concern of data corruption
or substitution attack. A malicious or compromised macliaenot deceive a client with corrupt
data—its attack is limited to denying a block’s existence.

Traditionally, data is made self-verifying via one of twel@iques: hashing and embed-
ded signatures. These techniques were made popular by lhee8i#ying Read-only File Sys-
tem [EFKMOUO]. Hash-verified datas named by a secure hash of its content. A client can verify
hash-verified data by computing the hash of the returnedatetacomparing it to the name used to
fetch the data. Hash-verified data is immutable—if the datanges, the hash-verified name of the
data changes too.

Additionally, Weatherspoon et al. extended the hash-bagpguoach to name erasure
code fragments in a self-verifying manner [WKO02] as disedsis Sectiof i Z.T12. Clients can verify
either individual erasure code fragments or the full blo€klata by the same name. Distillation
codes|[KSIF04] can be considered a generalization of this scheme.

Key-verified datas verified via a certificate that is signed by a user’s pubéyg.kThe
certificate contains some token, such as a secure hash obmitent, that securely describes the
data. To verify key-verified data, a client checks the sigreabn the certificate and compares the
data against the verifier in the certificate. Commonly, kesified data is named by a hash of the
public key that signs the data’s certificate. With this appig each key pair can be associated with
only a single object. To allow the system to associate maltbjects with a single key pair, other
schemes hash a combination of data, such as the public ke lamehan-readable name, to create
the name for the data. Key-verified data can be mutable—atdan associate new data with a key
by creating a new certificate.

Many systems employ Merkle’s chaining techniqle [Mér88jhvhash-verified data to
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Traditional interface;:
puthashi{H(data), data);
put keyH(PK), data);

data = get(h);

Table 7.1: First-generation distributed hash table (DH@egye systems use a simpld () / get ()
interface. Theput _hash() andput key() functions are often combined into a singl& () func-
tion. H() is a secure, one-way hash functidnis a secure hash, as output fraii).

combine blocks into larger, self-verifying data structur8uch systems embed self-verifying names
into other data blocks as secure, unforgeable pointers. obtstrap the process, systems often
store the name of the root of the data structure in a key-gdrifilock, providing an immutable

name for mutable data. To update data, a client replacesethedified block. See, for example,

CFS [DKKT01]], Ivy [MMGCU02], and Venti [QDOR].

7.1.2 Distributed hash table (DHT) storage systems

Recently, researchers have used self-verifying data andistributed hash table (DHT)
technology as a foundation for building distributed widesastorage systems. Despite their in-
dependent development, many systems share importanindiesitures. In identifying common
design features, we have considered a number of populdsgéreration DHT storage systems in
the research literature including CAS_[DKE1], vy [MMGCU0Z], OceanStore_ [RE®)3], Total
Recall [BTCT04], and Venti [QDOR].

First-generation DHT storage systems provide a simplefade for clients to interact
with the storage system. The interface, shown in Table 3 dftén called aut ()/ get () interface
due to its similarity to the interface of a hashtable. Notbjlevwe have showput _hash() and
put _key() as distinct members of the interface, they are often implgatkas a singleut ()
function.

Systems tend to use self-verifying data andptig( ) / get () interface in a common man-
ner, illustrated in FigurE_A.1. A client divides data intoathiblocks, typically 4-8 KB or less. It
computes the hash-verifiable name of each block and linkbltdwks together, using the names as
unforgeable references, to create a Merkle tree. Findlgy,ctient stores all blocks of the tree in
the DHT system using theut _hash() interface. If the system supports mutable data, the client
will typically use theput key() function to store a key-verified block that points to the robthe

Merkle tree, providing an immutable name to the mutable.data
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eo— = Verifiable Pointer

Figure 7.1: Clients divide data into small blocks that anmbmed into Merkle trees. A key-verified
block points to the root of the structure. To update an objgdlient overwrites the key-verified
block to point to the new root\( = version,R = version root] = indirect nodeB = data block)

To read data, a client first retrieves and validates the legified root block of the data
structure using thget () function. It can then iteratively fetch and verify the othesh-verified
blocks by following the chain of hash-verified names embdddéhe tree.

Because each new hash-verified block of data has a unique, mafiestorage systems
naturally provide versioning capabilities. Some systexggose the versioning feature to the end
user [REG 03] while others do not. Using copy-on-write to provide ééfiit versioning has also
been implemented in other systems predating DHT storagerag{MT85].

One notable counterexample to these design patterns i\B€ [PR0O1] system. PAST
uses theput _hash() call to store whole objects as hash-verified blocks. As ateRAST cannot
incrementally update objects; instead, it stores new eBssof an object as a single block using the
put _hash() interface.

The design features shared among these implementatiomsahsignificant impact on
the behavior of the resulting systems. For examplepthé)/ get () interface forces the storage
infrastructure to manage data at the same granularity asiéme. While some applications, like off-
line data processing, handle data in large chunks, mangattiee and user-oriented applications
tend to create and access relatively small blocks of datasupyporting fine granularity access,
these systems allow applications to fetch data withoutingstcarce bandwidth at the edges of the
network retrieving data that is not needed or already cachiedlows applications to push data to
the infrastructure as soon as it is created, improving dlitsab

Coupling the infrastructure’s unit of management with thent’s unit of access, however,

has several disadvantages. Most relevant to our work, Beagach block is managed independently
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in the infrastructure, to provide non-repudiable bindirfigpener to data, a client must create a
certificate for each block. To illustrate this problem, assuan application running on a 3 GHz
processor wishes to store 1 TB of data. If the data is dividénl 8 KB blocks and the certificates
are created using 1024-bit RSA cryptography, it would takeatthansix daysto create certificates
for the data'.

Other consequences, though secondary to our work, alsatrttpaefficiency of the sys-
tem. For example, some of the indexing, management, andenaince costs in the infrastructure
are independent of the block size. Thus, managing the sroak® created by the client increases
the load on the infrastructure. Also, because each apigiicétvel block is indexed independently,
clients must issue separate requests for each block théytwiead. Reading an object of even

moderate size can flood the storage system with requests.

7.1.3 Prior Aggregation Systems

The classical file system literature demonstrates replgateds aggregation can improve
efficiency of storage systems. For example, the Fast FileeBy&FS)[MJLESK] increases system
performance, in part, by aggregating disk sectors intcelalocks for more efficient transfer to
and from disk. XFSI[JADN 93] further aggregates data into extents, or sequencesooksl to
reduce the size of the metadata and allow for fast sequeatt@@ss to data. GoogleHS [GGI03]
aggregates data from a single file further still into 64 MB ks improving performance and per-
object maintenance costs for large files typical of theidiapion domain.

More recently, the GlacieE [HMD05] DHT storage system, hiagwan how aggregation
can reduce the number of objects that the system must indbmanage. Glacief T[HMDO5] relies
on a proxy trusted by the user to aggregate applicatiod-levjects into larger collections. All
collections in Glacier are immutable and thus cannot be figatafter they are created.

7.2 How to use an Aggregation Interface to Construct a Securkog

In this section, we summarize a method for aggregating bigrsized application-level
blocks into ordered containers called extents. Furtheemee show how to break a secure log into

an ordered sequence of extents.

1A 3 GHz Pentium-class processor can create a signature in dsmeeasured with the commaogknss| speed
rsal024.
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Breaking a secure log into extents serves two purposest, Riadlows a log to grow
without requiring the entire log to be stored together. Btgeare the units of storage and are
independently maintained by the storage system. Secotehtexaggregate log elements (blocks)
together improving system efficiency. Each extent contamsrdered collection of variable-sized
application-level blocks of data. Use of extents to aggeepocks together into larger containers
was first proposed by Eaton et &l JEWKO05]; we summarize tlygexgation interface and show how
to construct a log from it.

A secure log broken into extents still maintains the intggof the entire log. All data in
an extent belongs to the same log, and thus, is owned by a&grgcipal. The sequence of blocks
within extents defines the append order of the extent. M@agdke sequence of extents define the
append order of the entire log. Blocks, extents, and theesltlg are all self-verifying via secure
hashes and Merkle chaining.

Alog is composed of two types of extents. The log head is a loheitiey-verified extent;
all other extents are immutable, hash-verified extents. Keyeverified log head is named by a
secure hash of the public key associated with the log. T contents of the log head, a server
compares the data to the verifier included in the certificateer( confirming the signature on the
certificate). When the mutable extent at the log’s head Is thué system converts the extent into
an immutable hash-verified extent. A hash-verified extemaimed by a function of the contents
of the extent. Specifically, the extent is named by the vetifiehe extent's most recent certificate.
A server can verify the integrity of a hash-verified extentdoynparing an extent’s contents to its

name (verifier).

7.2.1 Constructing a Secure Log

Table[Z2 shows ther eat e() /append() secure log interface extended to include an ex-
tent interface. All mutating operations require a certticsigned by the client for authorization.
The certificate includes the verifier of the new version ofdkient. The interface ensures that up-
dates are applied in a sequential manner by predicating gaation on the previous state of the
extent. Upon completion of the operation, the certificattaesed with the extent. Thenapshot ()
andt runcat e() operations help manage the chain of extents. fitli¢) operation is an optimiza-
tion that allows a data source to write data directly to a hasffied extent. Theenew() operation
extends the expiration time of an extent.

Three of the operations enumerated in TahI¢ 7cReat e(), snapshot (), andput () —
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Interface for Aggregation:

status = creatdH(PK), cert);

status = appendH(PK), cert, predicate, data[ ]);
status = snapshaiH(PK), cert, predicate);
status = truncatdH(PK), cert, predicate);
status = put(cert, data[ ]);

status = renewextentname, cert);
cert = getcert(extentname);
data]] = getblockgextentname, blocknamel]);
extent = getextenfextentname);
mapping = getmapextentname);

Table 7.2: To support aggregation of log data, we use an @&teAPI. A log is identified by the
hash of a public keyH (PK)). Each mutating operation must include a certificate. Stashot ()
andt runcat e() operations manage the extent chain;rthieew() operation extends an extent’s ex-
piration time. Theget _bl ocks() operation requires two arguments because the system iraptsm
two-level naming. Thext ent _nane is either H(PK) for the log head or verifier for hash-verified
extents.

create new replicas. Each of these operations requireshihalstem contact the administrator for
a configuration, set of servers, to host the new replicas. mibs common operatiomppend() ,
does not require any interaction with the administrator.

While the application still relies on the simpteeat e() /append() interface, the client
library interacts with the storage system using the extéid®. Figurd ZP illustrates how the client
library uses the extended API. In this example, an appboas writing the first version of the file
system shown in Figule_8.4 to the storage infrastructure client library passes mosappend()
requests from the application to the storage system. Reaityd however, to prevent the extent at
the log head from growing too large, the client library ceptiata to hash-verified extents using
the snapshot () operation. After data has been copied to a hash-verifiechextee library uses
truncat e() to reset the log head. Whitmapshot () andtruncat e() are typically used together,
we have elected to make them separate operations for easgleinentation. Individually, each
operation is idempotent, allowing the library to retry theemation until successful execution is
assured. The library continues to use #ppend(), snapshot (), andtruncate() sequence to
add data to the log.
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Operation | Log
create() % %
append(Bl B2) | s
append(B B4)

777/ uliin

snapshot () B4 B3 11 B2B1 B4 B3 I1 B2B1

% 1 1 1] ]

truncate() B4 B3 I1 B2B1
append(12)
append(R1) V %%m 34‘ B3 ‘u‘ BZ‘Bl‘
append( V1)

Figure 7.2: This example illustrates how the client librages the extended API to write the first
version of the file system shown in Figlirel6.4. The shadedeigéhe mutable log head; immutable
extents are shown in white.

7.2.2 Reading data from a Secure Log

To provide random access to any element in the log, the systgiementstwo-level
naming In two-level naming, each block is addressed not by a singhaee, but by a tuple. The first
element of the tuple identifies the enclosing extent; thers@@lement names the block with the
extent. Retrieving data from the system is a two-step psocEke system first locates the enclos-
ing extent; then, it extracts individual application-le¥#ocks from the extent. Two-level naming
reduces the management overhead incurred by the infragteusy decoupling the infrastructure’s
unit of management from the client’s unit of access. Theasthucture needs only to track data
at the extent level, and the client can still address indi@icblocks. Both blocks and extents are
self-verifying.

When an application writes a block to the log, the block isexddn the mutable extent at
the head of the log. Because the log head is a mutable extensystem can not know the name
of the hash-verified extent where the block would eventuaty permanently reside. To resolve
this problem, each extent is assigned an integer corresmphal its position in the chain. When
data is appended to the log, the address returned to theaipmi identifies the enclosing extent by
this counter. Each extent records the mapping between&oantl permanent, hash-verified extent
name for the previous extent.

To read data embedded in extents, the client must know threnterame, location of

server storing extent, and block name. However, the agitanly records the extent counter
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and block name since it does not know the extent name at tleedfrappend() . As a result, the
client library must first resolve the extent counter to ektexme. In particular, the client library first
accesses the mappings stored in the log headetiarap() to determine the name of the previous
extent. We assume that a mechanism exists to locate the &mhdreany extent given extent name
(Chaptef®). Next, the client continues retrieving and Ikésg extent mappings until it locates the
extent holding the data. It then uses tfet _bl ocks() operation to retrieve the requested blocks
from that extent. To accelerate the translation betweenteowand extent name, the client library
caches the mappings. Also, in implementation, each extmims not just the mapping for the
previous extent, but a set of mappings that allow resolutianlogarithmic number of lookups.

7.2.3 Other benefits of Aggregation

Aggregating blocks into extents and extents into a log imgsathe system’s efficiency
in several ways. First, breaking a log into extents enaldegess to intelligently allocate space for
extents that may have a maximum size while the log itself caw d¢o be arbitrarily large. Second,
extents decouple the infrastructure’s unit of managememh fthe client’s unit of access. As a
result, the storage infrastructure can amortize manageousts over larger collections of data.
Third, two-level naming reduces the query load on the sydiecause clients need to query the
infrastructure only once per extent, not once per block.uAsag data locality—that clients tend
to access multiple blocks from an extent—systems can axjleiuse of connections to manage
congestion in the network better. Finally, clients writimgiltiple blocks to the log at the same time

need only to create and sign a single certificate.

7.3 A Distributed Secure Log and Error Handling

A client library should communicate the result of an opermatio applications. However,
determining the return value can be difficult since a secogeid replicated and replicas are dis-
tributed throughout the wide-area for durability. As a tesfimaintaining consistency across the
distributed log replicas, there are three possible retatnes: sound, unsound, and undefined. A
sound result is durable meaning it will persist despite esefailure. An unsound result is a failure
and will not be maintained by the system. Finally, an undefiesult has unknown status. An unde-
fined result is often not returned to the application. Indtiwe latest replicated state is obtained via

calling get _cert () on the servers. If the less than a threshold of servers rdspotine replicated
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state is in an inconsistent state (e.g. concurrent wrigargits), the client triggers a repair audit. If
the repair audit repairs the log to the latest sound writd, thie request can be applied from that
write, then the request is resubmitted. This process aéwétig the latest replicated state, triggering
a repair audit, and resubmitting the request continue$ tinatirequest is either sound or unsound.
In particular,append() andtruncate() operations follow this process until the request is either
sound or unsound. As a result, we do not disam®nd() andtruncate() further. create(),
snapshot (), andput (), however, requires an extra step that first interacts wetrattministrator.

Thecreate(), snapshot (), andput () operations create new extents and communicate
with the administratorcr eat e() creates a mutable log heashapshot () andput () create im-
mutable hash-verified extents. Each of these operationgresgmset of servers called a configuration
to be allocated to host the new extent. When the administcagates a configuration, it has three
possible responses: success, failure, or unknown, or ssicdethe administrator returns success
then a configuration signed by the administrator is retutodtie client. The signed configuration
contains the servers responsible for hosting the new exiémt administrator returns failure in two
situations. If no storage servers are allocated (e.g. psrhi# client has used its quota). Also,
if the extent already exists and has been repaired at least dn either case, the error would be
returned to the client. If no response is received from thaiaidtrator possibly due to a network
transmission error, then the result is unknown. The requasbe resent until the request succeeds
or fails; each request is idempotent.

The client sends the request éat e(), snapshot (), or put ()) along with the signed
configuration to the new storage servers. The result of {hésaiion can be sound, unsound, or un-
defined similaappend() andtruncate(). If the result is sound (a threshold of servers responded
with success), then the new extent is durable and successiised to the application. If however,
the request is unsound, then failure is returned to the egijmin. A result is unsound if the extent
has existed for a while such that data has already been aggépdrhaps another client) or the
extent has already been repaired at least once. Finallyeiféquest is undefined, the request is
continually resubmitted, latest state obtained @da cert () ), and repair audit triggered.

7.4 Discussion

There are five reasons why implementing a secure log inerfaeasier to implement in
a secure way than other interfaces. Most reasons are rétetied structure of the secure log itself.

First, since most of the log is immutable and stored in hasffied extents, the order and
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data integrity of those extent replicas are immediate — xtené name verifies both the order and
content of a hash-verified extent. It is not possible for &esetio corrupt a hash-verified extent.

Second, the order and data integrity of the head of the lodpearrified using the verifier
contained in the certificate. This verifier ensures the caderdata integrity of the entire log. There
is only one sequence of appends that results in a particatérer.

Third, the verifier provides a “natural” predicate that canused to ensure the consistency
of a log. Each storage server checks that the predicateeramifitches local state before applying
any operation. Furthermore, the verifier contained in a nestifcate can be used to ensure the
integrity of the subsequent state. The verifier is cheap hopte and update.

Fourth, the narrow interface to modify a log reduces the dexify of the handling errors.
Sound and unsound results return success or failure to thieajon. Undefined results require
more decision processing. The client library needs to @etidresubmit the request, obtain the
latest state of the log, or trigger a repair audit. Fortugatee methods that modify the log are few
and the ways in which the log can be modified are even fewer.

Finally, a secure log decouples the infrastructure’s uhihanagement (extent) from the
client’s unit of access (data block). As a result, the steniafrastructure can amortize management
costs over larger collections of data.
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Chapter 8

Dynamic Byzantine Quorums for
Consistency and Durability

The last chapter illustrated that the implementation ofcaiselog interface must account
for replicating the log. In particular, a design for reptied, log-based storage must ensure consis-
tency of the log head and durability of all log elements in phesence of a variety of server and
network failures. Typical server failures that we may hapeoterate include transient failure such
as reboot, permanent failure such as disk failure, and eoumfailure such as database corruption
and machine compromise. Furthermore, we hope to toleraeoriefailure that may include loss
of network connectivity such as temporary partition andgnaission failure such as message drop,
reorder, delay, or corruption.

Our approach relies on dynamic Byzantine quorums. In gérigyaantine quorum pro-
tocols tolerate many server and network failures and mairgansistency over replicated state.
Basic Byzantine quorum protocols tolerate a threshold oltyfeservers in a configuration, set of
storage servers that maintain replicated state; howewgfigtirations are static and not allowed to
change. In particular, the level of protection againsufaildegrades overtime as faults accumulate.
This is because basic Byzantine quorum protocols can oldyatte a finite number of failures over
the lifetime of the system. Dynamic Byzantine quorum protecon the other hand, extend basic
quorum protocols and allow for reconfiguration; they alldwe set of servers responsible for stor-
ing replicated state to change. As a result, dynamic Byzargiuorums can tolerate many failures
overtime (assuming a limited number of failures within acfpewindow of time).

In this chapter, we demonstrate how we use dynamic Byzaqtioeums to write data
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Configuration contents:

objectid | cryptographically secure name of object
clientid hash of client’s public key: H(PK)
ssset(] set of storage servers: set of HBK)

f fault servers tolerated

seqnum | configuration sequence number
timestamp| creation time of configuration

ttl time the configuration remains valid

Table 8.1: A configuration defines a set of storage servetsithmtain a replicated log.

to a log in a consistent manner and to ensure the durabiliglldbg elements. The system can
make progress, add new data to the log, with up failures in a configuration. It can also create a
new configuration to assume responsibility for storing diporof the log with up to 2 failures in
the old configuration. This construction is an improvemesrgrevious constructions which only
allow up tof failures in a particular configuration.

The rest of this chapter describes the protocol requiresnerssumptions, details, and
correctness. In Secti@n 8.1, we discuss background andvpoidk. Next, in Sectiofi8]12, we discuss
the protocol requirements. We list our assumptions in 8el13. We describe the quorum repair
requirements in Sectidn8.4. In Sectionl8.5, we present tbmgol details. We show that the
protocol satisfies the requirements in Secfiod 8.6. FinaWly discuss how a secure log makes

implementing the protocol easier in Section 8.7.

8.1 Background and Prior Work

Byzantine fault-tolerant quorum protocols can ensure isterscy of replicated state. A
quorum protocol is executed overcanfiguration set of storage servers that maintain replicated
state. The parameters that define a configuration are showabie[8.1. To update the replicated
state, guorumof servers in a configuration must agree to the change. A quswa threshold of
servers and its size is defined by the number of servers infigaoation n and number of faulty
serversf the protocol should tolerafe[MRD7]. For example, a quoruightrhaveq = n— f servers
wheren > 3f and can toleratd faulty servers. FigurE8.1 shows a client attempting toterea
log with a configuration that includes seven servers and a@anate two faulty serversf(= 2 and
n=7> 3f). After an administrator selects a configuration, the ¢leadmits ther eat e() request
to all the servers in the configuration. Theeate() request succeeds after the client receives
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Figure 8.1: Examplereate() request using a Byzantine fault-tolerant quorum. (a) Antliat-
tempts to create a secure log with a configuration that imsgkven servers and can tolerate two
faulty servers { = 2 andn = 7 > 3f). After an administrator selects a configuration, the tlien
submits theer eat e() request to all the servers in the configuration. (b) Giheat e() request suc-
ceeds after the client receives positive acknowledgment & quorum of serverg|&7— 2 =5).

positive acknowledgment from a quorum of serveys=(7— 2 =15).

Byzantine fault-tolerant agreement protocols similarlgimtain consistency of replicated
state; however, they do so at a higher communication costBiaantine quorum protocols [AG®3].
In the common case, Byzantine agreement protocolsQ{sé) messages over multiple rounds,
whereas Byzantine quorums u€gn) over two rounds where the second round is often piggy-
backed onto subsequent operations [A®E]. Figure[BR shows a client creating a log using a
Byzantine agreement protocol.

Both Byzantine agreement and quorum protocols tolerate fiffietulty servers and ensure
consistency. However, traditional Byzantine fault-tal@rquorum (and agreement) protocols do not
allow changes to a configuration. They guarantee correstoely if no more thanf servers in a
configuration failduring the life of the systemThis restriction is impractical for long-running
systems. Such systems need the ability to change the caatfiuover time. They must be able
to remove faulty servers from the configuration, replacimgn with new servers. Some systems
may even wish to change the size, and thus fault-tolerari@configuration.DynamicByzantine
quorum protocols allow the system to change a configuratyopeloforming arepair operation.

Martin and Alvisi [MAO4] first defined a framework for dynamByzantine quorum pro-
tocols that could maintain consistency across multiplefigarations. In that work, they identify
two propertiessoundnessndtimeliness that when satisfied, guarantee consistency in a dynamic
environment. Informally, soundness ensures data read bgrd was previously written to a quo-

rum of servers; timeliness, on the other hand, ensures tha@d is the most recent value written.
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Figure 8.2: Exampler eat e() request using a Byzantine fault-tolerant agreement. (@) enare
similar to the Byzantine quorumr eat e() request and acknowledgment in Figlirel 8.1.(a) and (b),
respectively. However, Figure (b) above illustrates thatdhtine agreement protocols uSén?)
messages over multiple rounds, whereas Byzantine quorge®(a) over two rounds where the
second round is often piggybacked onto subsequent opesgGG05].

They call these propertigsansquorumproperties because they do not depend on quorum intersec-
tion between configurations [MRRB7]. Finally, they provetttransquorum properties are sufficient
to guarantee the consistency semantics provided by eable pfotocols they consider.

The Martin and Alvisi protocol can invoke a repair protocothwup to f faulty servers in
a configuration; however, in implementation there is a nero probability that more thahfailures
can occur. In implementation, repair cannot be invoked whenneeded most, when less than a
quorum of servers are available. Essentially, a quorum ivesg in a configuration are required
to agree to trigger a repair protocol that will create a newfigoiration. Assuming servers are
always faulty in a configuration, such a protocol often paidally triggers repair, but cannot “react”
to failures when necessary.

In this chapter, we extend the Martin and Alvisi dynamic Bytr@e quorum protocol to

allow the servers to reactively invoke a repair protocol wless than a quorum is available.

8.2 Protocol Requirements

In this section, we outline the requirements of a dynamicadyime quorum protocol that
can invoke a repair protocol with less than a quorum of semsponses in a configuration. The

requirements are consistency, durability, and liveness.

e Consistencyneans all successful writes can be totally ordered.
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e Durability means no successful writes are lost.
e Livenesaneans new write attempts can eventually succeed; also,rkasprogress

A write attempt is a client issued operation to all the sexwea configuration requesting each server
modify its local state. In particular, clients submit wragempts and servers can either accept or
reject the request (they can also ignore requests). A straeaccepts the request invokes the write
operation on its local replica and replies accordingly. ks write attempt is successful after

receiving sufficient server accept responses. We discedsatbe write protocol in Sectign 8b.1.

8.3 Protocol Assumptions

We limit our assumptions to ensure consistency and dutybilithe secure log under the
broadest possible conditions. First, we assume clientenperoperations on extents of the log as
defined in Tabl€Z]2. Each extent has its own configuratiomeéfand signed by an administrator.
The configuration includes the public key of each storageesewhich can be used to verify a
server’s response. Additionally, server public keys candsal to set up authenticated point-to-point
channels. Second, we assume servers are computationaliyl Iso that cryptographic primitives
are effective. Further, we assume that servers have masg&brage that is durable through a crash
and subsequent recovery (transient failure). Finally, s®ume an asynchronous timing model;
no assumptions are made about the duration of message isaimsndelays. Channels can drop,
reorder, and duplicate messages; however, channels araesd$o be fair, a message sent an infinite
number of times will be received an infinite number of tinle€TA0].

We assume clients are correct, follow specification, exé@ptrashing and recovering.
Furthermore, we assume the administrator is correct anayalavailable. We discuss our assump-

tions for the number and types of faulty servers toleratédvbe

Server Fault and Attack Model

We assume that each server is either correct or faultgorect server follows its spec-
ifications. A Byzantindaulty server, however, can deviate from its specification. SingeaBtine
failure is a generalization of all failures, we use a hybmdver fault model that breaks Byzan-
tine servers into three types of faulty servers: benign,itlimg stale, and malevolent (correct and
up-to-date, correct and out-of-date, and malicious, resgsy).

A benignserver is correct and follows its specification except whefesang from tran-

sient or permanent failure: crashing and (potentiallypvecing. We assume a benign server exe-
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cutes a transient failure protocol that brings its statéadgate after transient failure. The transient
failure protocol is discussed in Sectibn815.5. émwitting staleserver is correct but unaware that
its state is out-of-date. Possibly due to a network erroh s1sca dropped message or a network par-
tition that caused the server to unknowingly miss some @sdaks soon as an unwitting stale server
realizes its state is out-of-date (e.g. receiving a requéhkta later sequence number), it performs a
transient failure protocol to update its local statemAlevolentserver exhibits out-of-specification,
malicious, non-crash behavior and may attempt to subvetopols.

The problem is that a client cannot differentiate a malavokerver response from a
benign or unwitting stale server. A non-responsive mavoserver has the same symptoms as a
benign server that is unavailable due to a transient or peenigailure; no response is received in
both cases. Similarly, a malevolent server can have the sgmptoms as an unwitting stale server;
both can reply with out-of-date information whether intenal or unintentional. We consider both
symptoms, non-responsiveness and stale data, servetsatt@ortunately, malevolent servers are
restricted to these two attacks since malevolent servarsotandetectably alter self-verifying data.
As a result, the protocol should be designed to tolerate dtbdicks.

We assume at mostf2servers are faulty in a particular configuration with at mbst
malevolent servers.

8.4 Quorum Repair

In this section, we discuss the challenges for a quorum r@paiocol. Quorum repair is
necessary to satisfy the durability requirement since vgaras that eventually all servers perma-
nently fail. It transfers state to new servers during regamfition while maintaining consistency.
We use a quorum repair protocol adapted to our target opgrativironment. Specifically, the
algorithm ensures no successful writes are lost duringnfegaaration with up to 2 faulty servers
in the old configuration where at mostof those servers are malevolent. In particular, the quorum

repair protocol maintains the latest successful write gomnfigurations.

8.4.1 Challenges

Repair is a protocol that creates a new configuration for godar object and initializes
the new configuration to the latest successful write valuthefold configuration. It is needed to

remove faulty servers, add new servers, change confignrpacameters, and ensure new write
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Time | Config Servers
1 2 3 45 6 7 8 9
1 0 a a a a a a a a a
2 0 c ¢c c c c ¢ ¢ b b
3 0 c ¢c c c ¢c X X b b
Reconfiguratiof 1 2 3 4 5 6 7 8 9
4 | 1 |c c ccc c ¢c c ¢

(a) cis last successful write before server failure

Time | Config Servers
1 2 3 45 6 7 8 9
1 0 a a a a a a a a a
2 0 c ¢c c ¢c ¢ ¢ b b b
3 0 c ¢c ¢c ¢c ¢c X X b b
Reconfiguratiof 1 2 3 4 5 6 70 8 9
4] 1 |a a a a a a a a a

(b) ais last successful write before server failure

Figure 8.3: A write is successful after a client receivestp@sacknowledgment from a quorum of
g storage servers. Two clients simultaneously submit cdimitjovrites. During repair, the system
should initialize the new configuration to the state reftagthe latest successful write. In these two
examples, the server state that can be observed from thmsciietimet = 3 is the same, but the
latest successful write differs. In (a), the client that te@roreceived a quorum of positive server
acknowledgments and, thus, is successful. In (b), thetdlex wrotec did not receive a quorum of
positive server acknowledgments so the write failed, tthesnew configuration must be initialized
to a.

attempts can eventually succeed. The goal of repair is irem®nsistency, durability, and liveness
of a particular object across multiple configurations.

When selecting a quorum repair protocol for use in the widaawe must carefully
consider several issues. First, we must consider whergigeirirepair. Because some failures, such
as power failures or network partitions, may knock out geoapservers, it is important that the
algorithm be able to tolerate large numbers of failures. Wstralso ensure that the conditions for
triggering repair do not allow a small group of malevolentees to initiate needless repair.

During repair a new configuration is chosen to host the rafdit log. The new configu-
ration must be initialized with the correct state of the ltigs critical that no successful writes are
lost and no failed writes are elevated to success status.

Consider the examples in Figurel8.3 to understand the clggtein initializing the state
of a new configuration, it shows the client’s view of the straystem. The log is replicated on nine

storage servers, can tolerate two faulty servers, andnesgséven positive server acknowledgments
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for a successful writen(= 9, f = 2, andq = 7, respectivelyn = 4f + 1). Negative server acknowl-
edgments contain the latest write accepted by a server. mfesswo clients, a workstation and a
laptop, simultaneously submit conflicting write attempksgure[8:3(d), at timé = 2, shows the
workstation attempting to writb, predicated om, to the log head. The workstation receives only
two positive server acknowledgments (servers 8 and 9) arghsgegative (servers-17), so the
request fails. At the same time, the laptop attempts to wripeedicated om. The laptop receives a
guorum of positive server acknowledgments—(Z), and thus is successful. At tinhe- 3, servers 6
and 7 permanently fail. During repair, the system shouldlaiize the new configuration to state
But, the configuration does not contain a quorum of respersavvers to confirm thatwas indeed
successful.

Compare this with the example shown in FigQire 813(b) wheth blient write attempts
fail. Again, at timet = 2, the workstation attempts to writepredicated ora, but receives posi-
tive acknowledgments from only three servers-(9) and negative acknowledgments from the rest
(servers 1 6), so the request fails. At the same time, laptop attempterite c predicated ora
which also fails. It receives positive acknowledgmentsrirsix servers (- 6) and negative ac-
knowledgments from the rest (servers-B). In this example, both requests fail. When servers 6
and 7 permanently fail at tinte= 3, the latest successful write is sall Comparing examplgs 8.3[a)
and[8:3(0), the state visible from the available servergva t = 3 is the same in both examples;
however, the repair algorithm needs to initialize the newfiguration to different values.

Note that in the above example, after one round of the cliebinitting a write request
and receiving responses, only the client knows that a wsigeiccessful. In the base write protocol
discussed in Sectidn 85.1, however, there is a second nwhece the client sends write success
confirmation to the servers. The client classifies a writeuasessful only after the second round
completes, after receiving a quorum of servers responditiget confirmation. We assume that the
client library only reports success to the applicationrat@mpleting the second round.

If, on the other hand, the client receives sufficient negatiocknowledgments, then it re-
ports failure to the application. Alternatively, if theetit library does not receive sufficient response
in either round, it times out. After timing out, the clierttdary performs a quorum read. If the repli-
cated state changed (e.g. servers store another writ@)thbeclient library returns failure to the
application. If the quorum read fails (times out), then thent triggers a repair audit. The client
library repeats the sequence of sending write attemptsuquoeads, and triggering repair audits
until it is certain the write attempt succeeds or fails onficdant number of servers (e.g=n— f

positive or negative acknowledgments for success or &iltgspectively). SectidnT.3 describes
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this sequence as well. In any case, the client library orpgpnts success to the application after the
second round completes.

8.4.2 Triggering repair

It is not appropriate to assume that the client will alway®hdine to monitor configura-
tions and trigger repair. Instead, the storage serversicadhfiguration must initiate repair when it
is required. We use @eactiveapproach to triggering repair. A storage server requeptmra two
situations: when it believes betweén- 1 to 2f servers have failed or the replicated stateésiged
— cannot make progress because replicas are in an inconsite. At least P+ 1 storage servers
must agree that repair is needed before reconfiguratioitiestad.

2f 4+ 1is the minimum number of servers required to trigger repinly f servers were
needed to trigger repair, thédmmalevolent servers could waste system resources by tinggespair
continuously. Alternatively, if storage servers requeésegpair after onlyf servers failures, theh
malevolent servers could force repair continuously simmplybeing unresponsive. Furthermore,
a protocol could not guarantee that the latest successftg will be used in a repair with 2 or
less servers requesting repair. In particular, there is ap W guarantee that malevolent and
f unwitting stale servers are not used to initiate repairgisin old value. Theorefd 1 states this

observation.

Theorem 1. Given f servers may be malevolent and f correct servers maybef-date 2f + 1

is the minimum number of servers required to trigger repathwhe latest successful write.

Proof. Proof by contradiction. Assume thaf 3ervers is sufficient to trigger repair with the latest
successful write. Then in all cases, at least one outfageétver repair requests contains the latest
successful write. However, this is not possible for all sade particular, 2 server responses may
include f malevolent servers responding with old values and andttservers that may be out-of-
date (f correct servers may be out-of-date since quorum protodiols arogress without response
from f servers). In the other direction, we again use proof by eginttion. Assume thatf2+ 1
servers is not sufficient to trigger repair with the latestiga Then all Z + 1 repair requests contain
out-of-date information. However at moktservers are malevolent and at mdstorrect servers
are not involved in the latest successful write. As a reghlg is not possible since at least one
correct server must be involved in the latest successfuewtius at least one server is correct and

up-to-date. O
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Soundness proof contents:

cert certificate

config configuration

sssigs[] | 2f + 1 or more signatures
<H(cert+config}ss priv

Table 8.2: A soundness proof can be presented by any machamy tother machine in the network
to prove that a write was sound. To provide this guarantez ptbof contains a set af storage
server signatures over an append’s certificate (Table 6djhe storage configuration (TabEl8.1).

Operation| Soundness Proof Configuration Servers
{certseqnum, configsegnum} — sigs

create() | {0,0} —sigq1,2,3,4,5,6,F {1,2,3,4,5,6,7,8,p
append() | {1, 0} -sigq1,2,3,4,5,6,F {1,2,3,4,5,6,7,8,P
repair() | {1, 1} -sigq1,2,3,6,7,8,9% {1,2,3,4,5,6',7,8,9
append() | {2, 1} -sigq1,2,3,6,7,8,9 {1,2,3,4,5,6,7,8,9
append() | {3, 1} -sigq1,2,3,6,7,8,9% {1,2,3,4,5,6,7,8,9
repair() | {4,2} —sigq1,4,5,6,7,8,9 {1,2,3,4,5,6,7,8,97}
truncate() | {5, 2} —sigq1,4,5,6',7,8,9'} {1,2,3,4,5,6,7,8,97}
repair() | {5,3}—sigg3,4,5,6,7,8,9} {1,2,3,4,5,6,7,8,9}
append() | {6, 3} —sigg3,4,5,6,7,8,9"} {1,2,3,4,5,6,7,8,9 }

Figure 8.4: Example total order of sound operations.

Instead of triggering repair reactively, other systenggr repair in a proactive manner at
regular intervals[JCLTO0]. Such systems require a quorumiggér repair. Generally, these systems
are not able to trigger repair when it is needed most, whereri@nf servers have failed in the
repair interval. Reactive repair can be used in combinatiith proactive repair to supplement
this deficiency adding the ability to maintain consisterdyability, and liveness when more than
f servers fail. The key difference is a strictly proactiveaiegystem requires at least= 3f +1
servers[[MAO#]; where as, a reactive repair system requitdsastn = 4f + 1 servers since the
system reacts aftef + 1 or more failures have been detected. Both proactive aradiveaepair

systems require at least= 2f + 1 servers to trigger repair (Theoréin 1).

8.4.3 Initializing a configuration after repair

To ensure that no successful writes are lost during repahase repair on soundness
proof. Table[8:2 shows the contents of a soundness proof. It iesladcertificate (Table—8.1),

configuration (Tabl€=8l1), and a quorugof server signatures over a hash of the certificate and
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Time | Config Servers
1 2 3 45 6 7 8 9
3 ] 0O Jac ac ? ? ¢ ? ? a a

Figure 8.5: Latest soundness proof. From Fidure §.3(ajmettt= 2, the latest sound write was
c. Assume a quorum of servers (servers 1-7) acknowledgedvimgehe latest soundness proof
(configuration parameters=9,q=7,r =5, andf = 2). This figure shows the administrator’s
view of the storage system at tinhe- 3 after receiving replies from five servers (servers 1, 2,5, 8
9). Assume servers 1 and 2 are malevolent and can either Iseraté¢st or old proof and servers
8 and 9 are out-of-date and did not receive the last proofeastl one server response out of five
(server 5) contains the latest soundness projof (

configuration. It can be stored by and presented to any sasveroof that a write was successful —
sound

A soundness proof contains enough information to deterthi@datest sound write since
both the certificate and configuration contain a sequencebaumhich defines a total ordering of
sound writes. Figure_8.4 shows an example total orderindl oparations on the head of a log.

The use of soundness proofs also enables repair with up tautty servers in a config-
uration while maintaining data consistency. By collectthg most recent soundness proofs from
2f + 1 servers in a configuration, we can be sure that we havevedri@ soundness proof from at
least one non-faulty server that participated in the lashdawrite (Theorenlll). Figufe=8.5 illus-
trates that 2 + 1 server responses contains the latest soundness prooéfieast one correct and
up-to-date server.

Other systems use the notionrepairablewrites to initialize new configurations [AG®5].
Repairable writes amaot successful writes, rather replies from orfly- 1 servers (not the required
number of quorum replies). We did not use this solution sihgel responses is not sufficient to

ensure that an old value is not used instead of the latest.

8.4.4 Certificates and Soundness Proofs

Tabld8.2 shows the contents of a soundness proof (whiahdaslthe contents of a certifi-
cate and configuration, Tadleb.1 and TdbIé 8.1, respegtiv€he client increments the certificate
sequence number and signs the new certificate before iny@kdoh operation. To create a sound-
ness proof, the client must receive a quorum of responses thhe storage servers, where each
response is a signature over the secure hash of the newcegetiind configuration. The set of
all soundness proofs defines a total ordering of all sountes/gince it contains a unique pair of

sequence numbers from the certificate and configurations fokél order is sufficient to maintain
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consistency[ISch90]. Furthermore, soundness proofs &a tasmaintain the durability of sound
writes. Sectiofi8l6 proves the correctness.

8.4.5 The Repair Audit Protocol

Though only the storage servers can trigger repair, any ooem of the system can
request a repaaudit (e.g. client, storage server, administrator, periodietiratc.). When a storage
server receives a repair audit, it attempts to read thetlatate (certificate and soundness proof)
from the other servers in the configuration. If a quorum resigcand the data is in a consistent
state, the storage server takes no action. If, however, mgqudoes not respond or the replicas are
in an inconsistent state (wedged), then the storage serllesreate a repair request, record it in
local stable storage, and submit it to the administratahédfserver observes that it already stores a
signed repair request on its local disk, it will forward ttzare request to the administrator. Once a
storage server is in the repair state, it does not acceptegpdatil a new configuration is created.

A minimum of 2f + 1 repair requests are required to trigger the repair pratochis
ensures the latest sound value will be used in the repaiof€ndl). Additionally, Z + 1 servers in
the repair state ensures no more writes will succeed in theruconfiguration[[MAOQH]. If at most
f servers are malevolent, then at leést 1 of the 2f + 1 required server requests to trigger repair
are correct servers. As a result, at lehst 1 correct servers will not accept new writes ensuring

progress cannot be made in the current configuration.

8.5 Protocol Details

In this section, we describe how components of the systearaot to implement the
create(), append(), andrepair () protocols (Tabld—7]2). In the basic system there are three
components: the client, the storage servers, and an adratois We require that all updates sub-
mitted to each storage server include a certificate signealfoywate key that is known only to the
client. The storage servers are replicated state machiagéstore data, transform local state with
well defined procedures, and cryptographically sign ackedgments testifying to that fact. Fi-
nally, an administrator is required to create configuratiorhe administrator is the authority on the
latest configuration for an object. A storage server wiltiggrate in the management of an object
when it observes that it is included in a configuration sigbhgdhe administrator. We assume that

the administrator is non-faulty.
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Field | Description

proof Certificate, configuration, and a quorum of server signature
block.names| ] Secure hash of data blocks (blankmesi]=H (datablocksi])).
datablocks[ ] Data.

mapping Previous extentounter and extemiame.

pendingproof Certificate, configuration, and no server signatures.

pendingblock names[]| Secure hash of pending data blocks.
pendingdatablocks[] | Pending data.

pendingmap Pending previous extembunter and extentame.
pendingoperation create(), append(),truncate(), snapshot (), put ()

Figure 8.6: Local server state for log head and hash-vergfigents. It includes proven state (with
soundness proof) and pending state (without soundness)prBooven state includes the latest
soundness proof, blockames, and data. Mapping is used to connect extents intouaeskag.
Proven state is null when an extent is first created, velneat e( ) , snapshot (), orput () are pend-
ing; otherwise, it is not null. Pending data includes a pegdioundness proof (certificate and con-
figuration without server signatures), blankmes and data. Pendingap is used byruncat e()
pendingmap points to the extent created dursmwapshot (). Pending state is null if no requests
are pending. When a pending request gathers proof of sossdne pendingproof field replaces
the proof.creat e(), snapshot (), andput () replace blocknames, datdlocks, and mapping with
the associated pending fieldgpend() adds the pendingplock.-names and pendindatablocks to
block_-names and datblocks fields, respectively.r uncat e(), however, removes blockames and
datablocks fields; additionally, it replaces the mapping fieldhathe pendingmap field.

8.5.1 Base Write Protocol

The base write protocol works as follows. There are two reuimwever, the second
round is often sent with a subsequent operation. The clibrary does not report success to the
application until the second round completes successfiisst, a client submits a request to the
storage servers. The request includes a predicate venéercertificate that contains a new verifier
and new sequence number, and an associated client signaldinen a storage server receives
the message, it checks the request against its local sththe request satisfies all conditions,
the server stores the data to non-volatile storage andmdspo the client with a signed positive
acknowledgment. The client combines signed positive agledgments from a quorum of servers
to create a soundness proof (quorum gjze 3f + 1 and configuration size = 4f 4+ 1). Next, in
the second round, the client sends the soundness proof semhers, often as part of a subsequent
operation. Each server stores the soundness proof to a stabhge and responds to the client. The
client can be certain the log has been written successftity sending the soundness proof to all
servers and receiving responses from a quorum of serversoSI&. proves the correctness of this

protocol.
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Storage Storage
Servers ) Servers

Tcreate_config Tquorum Tquorum
- _ . e
Time Time
(a) create() path (b) append() path

Figure 8.7: (a) To completea@ eat e() request, a client must first request a new configuration from
the administrator. The client then sends the configuratimmgawith the signed certificate to storage
servers listed in the configuration. (b) To completeappend() request, the client must only send
a message to each storage server in the configuration.

Figure[8® shows the local state stored by each server obthédad or hash-verified
extent. The pending fields are null if there are no pendingiests. If the pending fields are
not null and remain unchanged for a specified amount of titme server will query a quorum of
other storage servers in its configuration to gather theasigies required to construct a soundness
proof. When a server’s pending state stores sufficient siges for a soundness proof, the server
updates the proven state with the pending state. It reptheeproof field with the pendingroof
field. Thecreate(), snapshot (), andput () operations replace the blacltames, datdlocks,
and mapping with the associated pending fiekimend() appends the pendinglock names and
pendingdatablocks to blocknames and dathlocks fields, respectivelytruncate() removes
block_names and dathlocks fields; additionally, it replaces the mapping fielthvthe pendingmap
field. Notice that only state that a server can locally pravednt to the administrator in a repair

request.

8.5.2 Thecr eat e() Protocol

Thecreate() protocol is used to create a new log by allocating space oresem a
configuration. The protocol is illustrated in Figyre 8.¥ (&ote that thesnapshot () andput ()
protocols are nearly identical to tleeeate(). The difference is the type of extent created and
whether data blocks are included in the requesstat e() creates a mutable log heaahapshot ()
andput () create immutable (read-only) hash-verified extents. [euntlore,create() does not
include any data blocks since the log head is initially emptereasput () contains data blocks

in the request ansinapshot () instructs servers in the new snapshot configuration to deadhthe
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data blocks from the servers in the log head configurationspde the differences between the
type of extent created and inclusion of data blocks in theesty the protocol between the client,
administrator, and servers are similar. As a result, we didguss ther eat () protocol in detail.

To begin thecr eat e() protocol, the client submits a request to the administriatareate
a new storage configuration. This request includes a cettfisigned by the client that allows the
administrator to verify that the client is permitted to deea log. The administrator then chooses a
set of servers to manage the log and returns the configuyaigmed by the administrator’s private
key, to the client. Next, the client sends the configuratind &s original create certificate to all
of the storage servers listed in the configuration. When mg&server receives the message, it
allocates space for the log and stores the certificate arfiyooation to non-volatile storage. After
the data reaches stable storage, the storage server respatie client with a signature over the
secure hash of the certificate and configuration. After ctitg g = 3f + 1 signatures, the client
combines the signatures to create a soundness proof for ¢hee() operation.

At this point, the client knows ther eat e() is sound, but the servers do not. As a result,
the client sends the soundness proof to all the servers aitsl feaacknowledgment. When the
servers receive the soundness proof, they record it toesiibfage and respond to the client. A
server that is not expecting the soundness proof (e.g. thibseinitial cr eat e() request due to
network transmission error), stores the proof to stableag® and responds to the cliéntAfter
receiving acknowledgment from a quorum of servers, thentlean be certain the log has been
created and will remain durable.

The client library reports success to the application dffsrsecond round completes. The
second round is often performed with subsequent operatimrsnstanceappend(), t runcat e()
or any of theget () operations may include this soundness proof.

8.5.3 Theappend() Protocol

Theappend() operation adds data to the log, moving the replicated state d6ne con-
sistent,safestate to another. The protocol is illustrated in Fidureld).7Note that the r uncat e()
protocol is equivalent to theppend() except the runcat e() removes data blocks stored at the
log head and updates the mapping (previous extent countextémt name mapping); whereas,
the append() adds more data blocks to the log head. As a result, we onlysistheappend()
protocol in detail.

LA certificate and configuration is the only state associatifacr eat e() . As a result, @r eat e() soundness proof
contains enough state to update a server that missed tia ¢nigat e() request.
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To begin theappend() protocol, the client creates and signs a certificate thatrites
the changes to the log. The request describes the currémbstae log and the next state of the log,
should theappend() operation succeed. The certificate also includes a sequremsber that must
be greater than the number in the log’s current certificalte dient then sends the request—which
includes the data to be added, the certificate, and the pie@oundness proof—to each storage
server.

Each storage server determines if the request can be apSiectess of the request is
predicated on several checks. The certificate must incluggich signature and sequence number.
The previous soundness proof contained in the request natshrthe current state recorded by the
storage server. If the conditions are met, the storage isemites the new data to the log on its local
store. It then responds to the client with a signature oweistiture hash of the new certificate and
the current configuration. After collectirgg= 3f + 1 signatures, the client combines the signatures
to create a soundness proof for the operation.

With this protocol, a storage server receives a soundness jprthe second round or in a
subsequent operation. If the client stops submitting djmera or does not send the soundness proof
by itself, however, a storage server is left with a soundmeesf that is stale by one operation.
To obtain a current soundness proof, if a storage server muae®ceive the soundness proof in a
specified amount of time, it will query a quorum of storagevees in its configuration to gather
the signatures required to construct a soundness progafinttgortant that storage servers store the
latest soundness proof since they use soundness proofg dapair. In PaiflV, we will describe
the additional measures taken in the implementation torengiat a current soundness proof is
available to the storage servers. Essentially, the imphtatien of the system stores the soundness
proof in a distributed hash table (DHT) before respondinthtoclient. Storage servers check the
DHT for soundness proofs before triggering repair.

If the client does not receive a sufficient number of respsribe client cannot be sure that
the write is sound and durable. As a result, the client ljpdares not report success until it receives
acknowledgment from a quorum of servers after sending tihenagsociated soundness proof. The
client library may be able to commit data to the log by retgythe operation. If the problem is
transient, such as a dropped message, retrying the opeiatiften sufficient. If, however, the
failure is due to inconsistent state among the replicas) titieprogress can be made until a new
configuration is created by threpai r () protocol. As described in Secti@n¥.3, the client library
continues sending the request, reading the latest stalte afystem viaet _cert (), and performs
repair audits until the request is either sound or the sthtieeosystem has changed indicating the
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Figure 8.8: When a storage server believes that repair idatkeét sends a request to the admin-
istrator. After the administrator receive$ 2 1 requests from servers in the current configuration,
it creates a new configuration and sends message to sentbis set. The message describes the
current state of the log; storage servers fetch the log fr@mbers of the previous configuration.

request is unsound.

8.5.4 Ther epai r () Protocol

Therepair() protocol is used to restore the replicated log to a condistrte on a
sufficient number of servers. It may be used when a clientaamake progress because replicas
of the log are in an inconsistent state or a quorum is notaialdue to server failures. Figurels.s8
shows the repair process.

A repair audit (Sectiofi_8.4.5) causes a storage server tckdhe replicated state and
availability of servers in a configuration. Repair audita &e triggered by any component, client,
storage server, administrator, periodic timer, etc. Hawewnly storage servers in the latest config-
uration can trigger the actual repair protocol. Repair estgifrom storage servers not in the latest
configuration are ignored by the administrator.

Repair begins when the administrator receives signedrregguiests from at leastf2+ 1
storage servers in the latest configuration. A repair rdgaessignature over the soundness proof
and current configuration. The signature is only valid ifsitfiom a storage server in the latest
configuration.

When the administrator received 2 1 repair requests, it creates a new configuration
to host the log. The administrator determines the currete sif the log by extracting the latest
soundness proof from thef 2- 1 submitted requests. This is guaranteed to reflect the lsdesd
write (Theorenfll). The administrator sends the new configurand latest soundness proof to

the storage servers in the new configuration. Servers indiveconfiguration fetch the log (defined
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in the soundness proof) from servers in the previous cordtgur. The administrator can reduce
the amount of data that must be transferred during repaietayning servers across configurations.
After acquiring a copy of the log, a storage server in the nemfiguration responds to the adminis-
trator with a signature over the certificate (contained al#test proof) and the new configuration.
After the administrator receives a quorum of responses &®@rvers in the new configuration, it can
create a soundness proof in the new configuration.

Next, the administrator sends the soundness proof to aldhers and waits for acknowl-
edgment. When the servers receive the soundness proofgitmyl it to stable storage and respond
to the administrator. After receiving acknowledgment frargquorum of servers, the administrator
can be certain the log has been repaired.

The administrator continues to resend the message ngfifyistorage server that it has
been assigned to a configuration until one of two conditiemsét. When the administrator receives
a reply from a quorum of servers in the new configuration, it lba certain that the configuration
can accept new requests. Alternatively, if the administrag¢ceives 2 + 1 requests from servers
in the new configuration to repair the configuration, it reistéhe repair protocol. Because a new
configuration has at mostf Zaulty servers, the administrator is assured that one gktlbenditions
will be met eventually.

We explain how we relieve the administrator of notifyingrafge servers of their new role
in ParIM. Briefly, the administrator selects a server tordomte repair. The coordinator contacts
all the servers in the new configuration, creates a soundwess$, and informs the administrator
when repair is complete. As a result, the administratorgpaasible for creating a new configura-

tion and the coordinator executes the remaining repaiopobt

8.5.5 Transient Server Failure Protocol

A server executes a transient failure protocol to updatkodsl state to the latest sound
write. The protocol may be executed by a server at any timeinstance, a server may execute the
protocol periodically, after receiving evidence that dsdl state is out-of-date (e.g. after receiving
a more recent soundness proof in a request), or after ratufrom failure as part of the recovery
protocol.

The transient failure protocol has two steps. First, a sequeries 2 4+ 1 servers using the
get _cert () interface with the option that the response includes tlestaoundness proof stored by

the server and blockames. 2 + 1 replies are sufficient to discover the latest sound wriseigéng
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at most Z servers are faulty and at mokbf those faulty servers are malevolent. This first step can
be skipped if the server received a later soundness proofenuest. Second, if the server’s state
is in fact out-of-date, it selects one of the servers thaiorded with the latest proof and uses the
get _bl ocks() interface to fetch the missing blocks from that server. éfgbt _bl ocks() fails, the
server can select another server that responded tgetheert () or one that signed the soundness

proof to fetch the missing blocks. Finally, the server'desia up-to-date after executing both steps.

8.6 Protocol Correctness

We now demonstrate that the protocol presented in Sdciibadisfies the requirements
in Sectio8P. First, we show that sound writes define a totddr satisfyingconsistencySecond,
we show that 2 + 1 servers that exist in a configuration are sufficient to #iggpair and ensure

durability. Finally, we show that write attempts can eventually sudg@evidingliveness

8.6.1 Protocol Consistency

Theorem 2. Given a configuration size ofa 4f + 1, quorum size of g 3f 4+ 1, and 2f faulty
servers with at most f malevolent, each sound write has auenagrtificate and configuration

sequence number pair.

Proof. Proof by contradiction. Assume two clients submit a writemfpt with the same sequence
number, but conflicting data (data and resulting verifiefedif Assume further that both clients
receive sufficient replies for a sound write implying a quorgi= 3f + 1 positively acknowledged
both client’s requests. This is not possible since the seion between both write attempts is at
least X + 1 servers which is greater than the number of malevolenesgfv O

TheorenlR proves that each sound write has a unique positittre iset of sound writes.
The unique position defines a total order of sound writesclvis sufficient to maintain consis-

tency [CSP8P["Sch90].

8.6.2 Protocol Durability

Theorem 3. Given a configuration size of-a 4f + 1, quorum size8f + 1, and 2f faulty servers

with at most f malevolent, sound writes exist as lon@ fs- 1 servers in a configuration exist.
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Proof. 2f + 1 servers are sufficient to trigger repair protocol (Thedi®nwhich copies data up to
the latest sound write to a new configuration. O

TheorenB proves that sound writes persist as long as thelyecegpaired.

8.6.3 Protocol Liveness

As presented, the protocol ensures consistency and dtyahilt not liveness in the face
of continually conflicting write attempts. For example sifgossible that the replicated state contin-
ually needs repair starving write attempts from succeeditmyvever, the protocol does ensure that
write attempts eventually succeed. In the absence of coinfliazrrites and repair, we show from any
“wedged” state, the replicated state can be repaired argbqubnt write attempts can eventually

succeed.

Theorem 4. Given a configuration size of# 4f + 1, quorum size8f + 1, and 2f faulty servers

with at most f malevolent, write attempts eventually sutcee

Proof. Invoke repair. Repair installs a new configuration with thaes$t sound write (Theorelnh 1).
In the absence of conflicting writes, re-applying the writerapt against the new configuration will
succeed. O

8.7 Discussion

In this section, we discuss how a secure log reduces the eaitypbf implementing a
dynamic Byzantine quorum.

First, self-verifying data in a secure log reduces serniacks. In particular, there are two
server attacks, not responding to queries and respondihgold values. The protocol tolerates the
first attack by allowing writes to succeed without resporfsa® up to f servers. Additionally, the
protocol ensures consistency and durability toleratingouf faulty servers that may respond with
old values.

Second, most of a secure log is stored as immutable (reggl-bakh-verified extents
reducing the number of operations that modify stadeapshot () or put() can create a hash-
verified extent and epai r() is the only allowed operation after it has been creategpai r ()

changes the configuration but cannot change the contertie ektent.
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Third, the secure log structure reduces the complexity datipg the replicated log. In
particular, the new local state stored by an up-to-dateesesvalways derivable from applying the
request to the current local server state. For example,f@ppend(), the following field and
function are equivalent

pendi ng_proof.certificate.verifier =
conput eVerifier(pending_block nanes[ ], proof.cert.verifier)

See Figur&38Il6 for a description of a server’s local state=aguare[6.2 for a description of computing
the verifier.

Fourth, the secure log structure reduces the complexityadhtaining sound writes over-
time. Only the latest soundness proof and associated dataiigained since the state of the latest
sound write can be derived from previous sound writes anal dat

Finally, a secure log reduces the complexity of the trandigiture protocol. A server
needs to only query the other servers to find the latest souité, \then fetch the missing blocks
from one of the up-to-date servers.

In summary, the secure log structure and narrow interfaogl#y designing a consis-
tency protocol such as a dynamic Byzantine quorum protobtire importantly, the secure log
reduces the complexity of implementing the replicatedespabtocols that maintain the distributed
secure log. Each write or repair operation modifies the selagr in a well-defined manner where
invariants of the local and replicated state can be checkedeh step of the protocol. P&V
demonstrates that a secure log reduces the complexity déingmting, replicating, distributing

replicas, and maintaining consistency over replicas.
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Chapter 9

Utilizing Distributed Hash Table (DHT)
Technology for Data Maintenance

A distributed wide-area on-line archival storage systequires a self-organizing mech-
anism to locate extents and trigger repair audits as sefa@rsin this section, we describe the
architecture of an extent replica location and repair ser¢Pardl) implemented as a distributed
directory. A distributed directory allows each server todagt of the directory and collectively
provides a data maintenance service. At its core, a distdbdirectory is a level of indirection—
utilizing pointers within the network to achieve flexibjlitn data placement, locating extents, and
timely repair based on low watermarks. We describe all ottiraponents necessary to implement
a distributed directory: publishing and locating extenglis, monitoring server availability and
triggering repair audits.

This distributed directory architecture has a large scopererall servers are eligible to
store replicas. As demonstrated in Seclion#.3.1, a lageseduces repair time since more servers
can assist in repair. The decrease in repair time increageditity since durability is inversely
proportional to repair time [PGK88]. The rest of this chapdescribes the distributed directory
architecture and is organized as follows. In Sedfioh 9.1deseribe how servers use the distributed
directory to publish and lookup the location of extents. \@salibe how the distributed directory
monitors server availability and triggers a repair audiSiection[3.2. Finally, in Sectidn 9.3, we
discuss the limitations of a distributed directory.
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Figure 9.1: Distributed Directory System Architecture.

9.1 Publishing and Locating Extent Replicas

Publishing and locating extent replicas is a prerequisiteah on-line archival storage
system. It works by using a structured overlay that suppgéeisBased Routind [DZD03] (KBR)
to route messages; such overlays include Bamboo [RGRK#rdC[SMK01)], Pastry [RDO1],
and Tapestry [ZHS04]. KBR works by consistently hashing an identifier spacer aset of servers.
Each of these servers is responsible for a continuous aitefithe identifier space known as the
root. An identifier is assigned to each server using a secure bastidn like SHA-1. For example,
in Bamboo and Pastry, the server whose identifier is numbricsest to the object’s identifier
(in the identifier ring), is responsible for the object. Awg@rparticipating in the structured overlay
usually maintaingO(logN) state (i.e. routing table) and the path from a server to tloé takes
O(logN) hops. Structured overlays often implement a distributesth hable (DHT) interfacegut ()
andget (), where the root server stores an object guu() request and returns an object on a
get () request. We use the DHT interface to store and retrieveitoeabinters.

Publ i sh() is analogous to aut () operation into a DHT where the value stored by the
DHT is a location-pointer that maps the replica identifiethe storage server storing the replica.
Lookup() is another operationLookup() is analogous to get () operation from a DHT where
the values returned by the DHT are location-pointers.

ImplementingPubl i sh() andLookup() using a structured overlay was first proposed
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SELECT | ocation-pointers
FROM p AS pointerDB
VWHERE p. obj | d=obj 1d AND
p. |l ow watermark >
( SELECT COUNT
FROM p2 as poi nt er DB,
s AS serverAvail DB
VHERE p2. obj 1 d=p.objld AND
p2.src=s.serverld AND
s. stat e=UP)

Figure 9.2: The above query states that for a given objecttifiker select the location-pointers
where the remaining number of replicas are less than thenlatermark, thus triggering a repair
audit

by Tapestry[[HKRZ0P, ZJKO1]. The abstraction is called Bistted Object Location and Routing
(DOLR). A distributed directory is different to a DOLR in tweays. First, a distributed directory
is optimized for maintenance and not routing. Second, we leatended the DOLR to efficiently

maintain large quantities of location-pointers over lorgigds of time.

9.2 Monitoring Server Availability and Triggering Repair A udits

To maintain extents, each storage server also serves ast@rmgnserver. Long term data
maintenance requires that each monitoring server know dh@ber of available extent replicas of
each extent for which it is responsible. The goal of monitgtiis to allow the monitoring servers to
track the number of available extent replicas and to leagxtants that the server should be tracking
but is not aware of. When a monitoring servdails the new serven’ that assumes responsibility of
n’'s location-pointers begins tracking extent replica alzlity; monitored information is soft state
and thus can be failed over to a “successor” relatively parently.

In a distributed directory, replicas for a particular extare stored on different storage
servers and the DHT stores and maintains replica locathomigrs. Namely, each extent replica
(for a particular extent) has the same object identifiut a different location. As a result, a
particular extent has a unique monitoring server calleabathat resolves replica location requests
and triggers a repair audit to replace replicas lost to failuFigured 3]l shows a directory system
architecture.

The root monitoring server stores the status of all storageess in a server availability

1Each fragment for a particular extent has the same iderififiex use erasure codds [WWKI02].
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Figure 9.3: Directory Data Recovery. a) Using its locatiminters and storage server availability
database, the root monitoring server (MIT) knows that tteeetwo replicas remaining. If the
low watermark is three, then the root triggers a repair auw)ifThe storage servers containing the
remaining replicas (Harvard and Texas) cooperate to tefost data replicas.

database. It updates the server availability databasecbiwineg heartbeats from all storage servers;
this message includes a generation identifier that is ralydgemerated when the server is installed
or reinstalled following a disk failure. It interprets thack of receiving a heartbeat as a storage
server failure signal. After receiving a failure signalriggers a repair audit for every extent stored
on the newly down server where the number of available raplis below the low watermark.
When a server returns from failure, sends a heartbeat, sugeiteration identifier has not changed,
the monitoring server can conclude that objects stored arsdrver are again accessible increasing
the available replicas for extents stored on the server.

To determine if a repair audit needs to be triggered, a mongaserver performs a join
between the location-pointer and server availability blases and selects all extents where the num-
ber of available servers is less than the low watermark.re[@12 is an example of the database code
that a root monitoring server uses to determine it needsdgoer a repair audit. Every failure can
potentially cause a scan of the location-pointer and seavaitability database; as a result, scans
are run periodically to reduce load on the databases.

When the available replication level is below the low watarky the root monitoring
server informs the remaining storage servers that a replsabeen lost via a repair audit. After
receiving a repair audit, the remaining storage serverpaate to refresh the lost replica. Fig-

ure[@3.(a) shows an example of a root monitoring server twih remaining available replica
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location-pointers. If the low watermark is three, then &t imonitoring server triggers a repair au-
dit since the number of available replicas is less than thenatermark. The root monitoring server
sends a repair audit to the remaining replica storage seineicating that the number of replicas is
below the low watermark. Figufe®.3.(b) shows the remaistogage servers cooperating to refresh

the lost replicas.

9.3 Discussion and Limitations

Designing a self-organizing and maintaining monitoringtewy is required for distributed
wide-area on-line archival storage. However, its desigh @associated costs need to be carefully
considered. We discuss implied assumptions and conseggiestow.

First, when using a distributed directory, we assume theagedue to location-pointers
is significantly less than storage due to data. The impboaif this first assumption is that replicas
are large (e.g. MIB) when using a directory; otherwise, if replicas were smalg( &B) and the
location-pointers were further replicated, then the gfersystem would maintain more data location
state than data itself. Furthermore, we assume the totabauof replicas of all extents is greater
than the number of servers. The implication of this secosdragtion is that it is more feasible to
maintain a storage server availability database on evenjtoring server than it is to republish the
location of every replica. For example, it is cheaper toqanfan all-pairs ping than to republsh
every replica for a storage system with 1000 servers, 1TBovége per server, 1MB extents, and
a replication factor of 10 (i.e. 10 billion total replicas @ million replicas per server vs. 1000
servers). If either assumption is violated then a distadwdirectory should not be used.

Second, monitoring servers limits scalability. A disttibdi directory has to monitor al
storage servers. It can still be efficient because replieas@rver is assumed to be much greater
than the number of servers; however, care must be taken wdsgnihg a monitoring system. For
example, if each directory root monitoring server is alstoeegje server, than sending and receiving
heartbeats is the same as performing an all-pairs ping. @steof an all-pairs ping per server is
dependent on the number of servliighe heartbeat periot,,, and the size of a heartbddts, (i.e.
% = % -hbsy). The resulting\? probe traffic may limit the system’s scalability.

An alternative implementation to update the server aviitiatlatabase is an all-pairs
multicast. Each storage server sends a heartbeat to itehmeigwith expanding radius; that is,

servers at a further radius receive heartbeats less oftensttrvers at a closer radius. The DHT's

2A republish updates the location-pointers for a directary prevents them from expiring.
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Figure 9.4: Expanding Radius Heartbeat. Heartbeats teitiby a storage server (e.g. middle
server) reach a greater number of additional servers astmtbleat radius expands. Heartbeats are
a form of multicast and reach all servers in the system whemadius is logN.

routing tables are used to establish a unique spanning died at each server witB(logN)
out-degree per server. Each server periodically broasi@sieartbeat message to its children in
the tree. The children rebroadcast the heartbeat to thiddireh until it is received by all servers.
Heartbeats are received by a neighbor at radiwih a periodp; = pi_1 * f, wherep; (the base
period) andf (the factor by which the periods grow exponentially) arefiumable parameters.
Note that wherf is 1, all neighbors in the network receive heartbeats atdheegate, regardless of
their radius. FigurE38l4 shows an example of an expandinggdxbartbeat. We use an expanding
radius heartbeat in Antiquity in PAlV.



155

Part IV

Antiquity: Prototype Implementation

and Evaluation
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Chapter 10
Antiquity

Thus far in this thesis we have explored the design spaceatdt folerant and repair
algorithms designed to efficiently maintain data durapiliFurthermore, we have described an
architecture that applies these design principles to a#sgd on-line archival storage system. The
design is secure and expressive enough to support apptisatin this part of the thesis we further
answer the question: is it possible to build a self-orgagizand maintaining distributed wide-area
storage system that supports a secure append-only log? bsvsdich a system perform?

To verify the design, we have built and deployed a secureildiséd wide-area storage
system based on a log called Antiquity. Antiquity integsdatee above design points into one cohe-
sive system. Antiquity, uses a distributed hash table (D&$lgn underlying layer to connect storage
servers. It optimally maintains immutable data by reiretigg extant replicas. Further, it efficiently
maintains order integrity of mutable data of the log headnbglementing dynamic Byzantine quo-
rum and quorum repair algorithms for consistency and dlitgbrinally, it implements the secure
append-only log interface for usability.

Experience with the prototype shows that Antiquity’s dasgrobust. It has been running
for over two months in the wide-area on 400+ Planetllab [BB4] servers maintaining nearly
20,000 logs containing more than 84 GB. Periodic randomsreakal that 94% of all replicated
logs are in a consistent state. 100% of the logs are durdiegh 6% do not have a quorum of
servers available due to transient failures. This matdieesxpected number of consistent quorums,
assuming an average PlanetLab server availability of 9086giwren that a quorum requires the
availability of five out of seven servers. The prototype reiims a high degree of consistency and
availability due to the quorum repair protocol despite thestant churn of servers (a quarter of the

servers experience a failure every hour).
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10.1 Architecture Overview

The Antiquity prototype implementation combines the dyi@aByzantine quorum, quo-
rum repair, and aggregation discussed inPart I1l with fenltrance and repair techniques discussed
in PartIl. Chaptefl9 discussed how the system utilizesagiinizing distributed hash table (DHT)
technology.

In review, the storage system supports a secure, appegpdioglabstraction where a
single log is owned by a single principal identified by a cogyaphic key pair. Only the owner
canappend() to the log. The storage system stores the log as a sequenamtainer objects
called extents, where each extent stores a variable nunbebitrarily-sized application-level log
elements. To guard data integrity, individual log elememis whole extents are self-verifying.

Alog is composed of two types of extents. The log head is a loheitiey-verified extent;
all other extents are immutable hash-verified extents. Tyevkrified log head is named by a
secure hash of the public key associated with the log. Tdw#re contents of the log head, a
server compares the data to the verifier included in an asedctertificate (after confirming the
signature on the certificate). A hash-verified extent is raimea function of the contents of the
extent. A server can verify the integrity of a hash-verifigteat by comparing an extent’s contents
to its name.

An extent is the unit of storage and replication. The stoggtem maintains consistency
of key-verified extents and durability of both key- and hashified extents. Each server partici-
pating in the system serves as a storage server for extehtsstbrage server is implemented as
a state machine for each extent that it stores. To modifg sthé storage servers implement the
API enumerated in Tab[e“1.2. The system determines the tate af an extent using the quorum
protocols of Chaptdil8. Finally, the Antiquity prototypdig&ntly maintains durability using fault
tolerant and repair algorithms discussed in Part II.

The prototype is implemented in 41,000 lines of Java codeuard BerkeleyDB to store
state to local disk. The client library is an additional dihes of code. All servers in the sys-
tem communicate via RPC using a custom library written irnJéat takes advantage of Java's
framework for asynchronous 1/O. For cryptographic operaj the implementation uses GNU’s
multiprecision library with 1024-bit RSA keys.

The Bamboo DHT[[RGRKU0O4] underlies and connects the storageess. We use the
DHT as a distributed directory; that is, the DHT does notesiata, but rather it stores pointers
that identify servers that store the data. A distribute@atiory provides a level of indirection that
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allows flexible data placement which can increase the ditsabnd decrease the cost of repairing
a given replical[CDHO06,[vS04]. The storage servers use the distributed digettopublish and
locate extent replica locations. Additionally, the staagrvers also use the DHT in the traditional
manner as a storage cache to reduce load on storage serdetseaadministrator. In particular,
Antiquity uses the DHT as a cache for soundness proofs (pinabf write is consistent and durable,
see Sectiof 8.4.4) to ensure they are available for allested parties.

The prototype also relies on the DHT to help monitor serveiilalility to determine
when repair is necessary. Using the DHT as a distributedtdirg it is not efficient to monitor the
availability of each extent separately. Instead, we us®tH€ to monitor server availability and use
that metric as a proxy for extent availability. To monitongs availability, we use a scheme that
periodically broadcasts a heartbeat message through aisganee defined by the DHT’s routing
tables [CDH 06]. A monitoring server receives liveness informatiomireach storage server with
a frequency depending on its distance in the spanning traditidnally, it sends a repair audit if it
fails to receive an expected heartbeat.

In our implementation, each server in the system also servemjateway A gateway
accepts requests from a data source and works on behalftafdbiece. It determines the configu-
ration, set of storage servers responsible to handle theesegFurther, it multicasts the request to
the configuration and aggregates responses. The use oftdveagdowers the bandwidth require-
ments of the data source. Because all requests are signeallatada is self-verifying, inserting
the gateway in the path between the data source and the esteeagers does not affect security.
If the data source believes a failure is due to a faulty gageivaan resend the request through a
different gateway. To make the soundness proof availabkdi@ge servers earlier, the gateway
combines responses from the storage servers to createfaapbpublishes that proof in the DHT.
A soundness proof is proof that a write is consistent andiderra

The administrator, required by the design, is implemensea single server. We take sev-
eral measures to limit the work that must be performed by dimeimistrator. First, the administrator
does notcreatenew configurations. Instead, \ierifiesconfigurations proposed by the gateways.
The administrator requires a configuration be created basede neighbor lists of the underlying
DHT, which is effectively random. It compares the proposedfiguration against neighbor lists
from the underlying DHT before signing, and thus authogzithe configuration. To limit the num-
ber of configuration queries that an administrator must learather machines in the system can
cache valid configurations. Finally, to avoid the burdenadatffging servers of their membership in
a new configuration, the administrator sends notice of navligarations to the gateway that is han-
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Figure 10.1: The path of an (a)create()/put()/snapshot()/renew() and (b)
append() /truncate().

dling the request that requires the new configuration. Thevwggy is responsible for informing and
multicasting the message to the new configuration. We ruadhanistrator server on a machine at
our site in Berkeley.

We discuss these components in more detail in the followaagjens.

10.2 Gateways, Coordinators, Distributed Hash Tables, anérotocol

Details

To understand the performance of Antiquity, we must undadsthe complete path for
each request. First, a data source sends a request to a gaieawamote procedure call (RPC).
Second, the gateway multicasts the request to the storaggsand aggregates responses (possibly
contacting the administrator first for operations suclerasat e() ). Finally, the gateway forwards
the responses to the source as proof that the request isteomsind durable. FigugeID.1 illustrates
a typical path forcreat e() andappend() .

If many data sources use the same gateway, however, theayatam become over-
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whelmed. Thus, for load balance in implementation, thevgayeforwards the request to @-
ordinator. The coordinator performs the multicast and aggregatidre doordinator is the root of
the identifier space. This implementation design decisias & response to observed overload of
gateways in implementation and has some negative conseggiand benefits. The obvious con-
sequence is that a coordinator adds latency to a requeste @he three benefits, however. First,
the coordinator effectively reduces the load of a gatewdne fiumber of extents each coordinator
is responsible for is proportional to the number of serv&@ch coordinator, identified as the root
of the identifier space, must multicast requests and aggregaponses for particular extents it is
responsible. Second, some of the added latency can be tedimze the coordinator is often a
storage server for the request since configurations arenhmssed on the neighbor space. Finally,
recall that inserting the gateway and/or coordinator inghi between the data source and storage

servers does not affect security since storage serverstgmasess the source’s private key.

10.2.1 Pathofacreate(),append(),andrepair()

We now review the path of ex eat e() andappend() as canonical examples that do and
do not involve the administrator. Figules_10.1.(a) and l{b}trates these paths. Additionally, we
review the path of aepai r () illustrated in FiguréI0]2.

First, acreat e() proceeds from the data source to a coordinator through wggatd his
process involves a DHITookup() andpubl i sh() to locate and publish the coordinator. The coor-
dinator is the root of the identifier space. Next, the coattinforwards the request to the admin-
istrator to create a configuration. After the administrat@ates a configuration and responds, the
coordinator multicasts ther eat e() and configuration to the storage servers. The storage server

sign that they received and applied the request. Next, thedowmtor creates a soundness proof
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Treq
create() Sol + A(QWred) el gw+ [V+ Llgw+ AL(GW_red)gw.co+ [V+2- L 4+ Pleo
append() Sel + N(gw—req)cl_gw+ [V+ L]gw+ N(QW—rGQ)gw_co + Veo

Tcreateconfig

create() ‘ L + N (ad-reg)co.ad + [V+ S+ 2- D(ad-req)|ad + N (ad-respad.co ‘

Tquorum

create() n- A(ssreq)cosst [2-V+2- D(ssreq) + S+ Plss+ A (SSrespssco+ [N V+ Pleo
append() n- AL(ssreq)coss+ [V+2- D(ssreq) + Slss+ AN (Ssrespssco+ [N V]co

snapshot () | n-A/(ssred)co.newss+ [2-V+ D(SSreq)|nensst

AL (oldss req)newssoldss+ P (oldssreq)oigss+ AL (oldssrespoidssnensst

Tresp
create() N (gw_resp co_gw+ N(QWresPgw.cl + [N- Vel
append() N (gw-respcogw+ N (gW.respgwe + [N Vg

Table 10.1: Breakdown of latencies for all operations. Wslean operation is stated
explicitly, create() represents all operations that interact with the admatisir such as
put () /snapshot () /renew(), and append() represents all operations that det such as
truncate(). Total operation latency iSreq+ Tereateconfig + Tquorum+ Tresp fOr create() and
Treq+ Tquorum+ Tresp fOr append(). For all time breakdowns\(X)ab = (Onet + XPnet) and
D(X) = (agisk+ XPBaisk) are the network (frona to b) and disk delays, respectively, whemeis
the latency, is the inverse of the bandwidth (bytes per second), and the number of bytes.
Next, cl =client (or app),gw = gateway,co = coordinator,ad = administrator, ands= storage
server. Finallys, v, L, and P are the times to sign, verify, DHDokup(), and DHTpubl i sh(),
respectively. Notice thair eat e() requires three signatures amgbend() requires two.

from a quorum of the storage servers responses. The souwndrad certifies that ther eat e()

is consistent and durable. Then, the coordinator publigieesoundness proof in the DHT. Finally,
the coordinator sends the soundness proof included in amespo the data source via the gateway.
Figure[I0O.1.(a) shows the pathafeat e() .

Second, the path of aappend() is similar tocreate() except the administrator is
skipped. Additionally, the DHT ookup() andpubl i sh() can be skipped if the extent has recently
been read or written. As a result, append() is directly sent from the data source to the coordina-
tor via the gateway. The coordinator multicastsdahpend() to the storage servers. Thppend()
includes a soundness proof from the previousat e() operation. In generaappend() includes a
soundness proof of the previous operation, which servepeigcate for the newappend() . When

the storage servers receiveapend() request, they verify the request, and sign that they redeive
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and applied the request. Next, the coordinator creates asnemdness proof from a quorum of
storage server responses. The soundness proof certifiesebppend() is consistent and durable.

Finally, the coordinator simultaneously publishes thensimess proof into the DHT and sends it to
the data source via the gateway. Figure110.1.(b) shows theopappend()

Finally, the path of a repair audit am@pai r () includes a coordinator as well. The coor-
dinator, however, is often one of the storage servers sieedordinator is the root of the identifier
space and the storage servers in the configuration are chased on neighbors in the identifier
space. Upon receiving a repair audit, the coordinator ci@lsigned repair statements from the
storage servers in response to a repair auditf 2 or more signed repair statements are received,
the storage server forwards the repair statements to thenetirmtor. The administrator creates a
new configuration and sends it to the coordinator to multicea$he new storage servers. The co-
ordinator can be skipped and the storage servers can comateinvith the administrator directly.
We use the coordinator for increased efficiency to remove fo@n the administrator. Again, the
coordinator poses no security risk since it cannot sign garditions and the administrator can pick
a new coordinator if one is not being responsive. Fidurel $B®vs the path of a repair audit and

repair().

10.2.2 Breakdown of latencies for all operations

In this section we discuss the notation and breakdown ohdgtdor operations. Ta-
ble[I0.1 shows the breakdown for operations that do and dimvaive the administrator. Unless an
operation is stated explicitlgr eat e() represents all operations that interact with the admatistr
such agut (), snapshot (), andrenew() ; append() represents all operations that dot such as
truncate().

The latency notation is as follows. Total latency for an agien that interacts with the
administrator such a=r eat e() is the sum ofTeq+ Tereateconfig + Tquorum= Tresp Which represents
the time for a client to send a request, system to create agewafion, send and receive acknowl-
edgments from a quorum, and forward the result back to tlemicliAn operation that does not
interact with the administrator such @spend() is similar to acr eat e() except it does not include
the Tereaeconfig term; as a result, the total latencyTigq + Tquorum=+ Trespfor append() .

Each request includes a number of interactions with the orét@nd disk. The network
and disk delays are represented with the following notati@i{X)an = (0net + XBnet) is the net-

work delay from a servea to a serveb. a is the latency is the inverse of the bandwidth (bytes
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per second), and is the number of bytes. Similarly, for disl)(X) = (0gisk + XBudisk) IS the disk
delay @, 3, andX have the same meaning as they do for the network notation).

The final set of notations represents the communicating coes and time to perform
some auxiliary functionality. The communicating compasanclude thecl = client (or app)gw=
gateway,co = coordinator,ad = administrator, andgs= storage server. auxiliary routines include
the times to sign, verify, DHT ookup(), and DHTpubl i sh() which are represented kv, L,
and P, respectively.

The Treq term in TabldI0J1 includes the time for a client to sign a esg@nd send it to
the gateway of the storage system. The gateway verifies gjueseand performs a DHTookup()
to locate the storage servers and coordinator. If a codatiredready exists, then the gateway
forwards the request; otherwise, it performs a Dpiibl i sh() to announce that it has become the
coordinator followed by a DHTookup() . Theappend() operation often does not need to perform
any DHT operations since servers cache the location of tbelgwtor and storage servers.

The Tereateconfig term in Table[ IO includes the time for the coordinator teniify the
list of neighbor servers to use in a configuration via a Okdkup() . Furthermore, it includes the
time for the coordinator to forward the configuration creatrequest to the administrator. Next, it
includes the time for the administrator to verify the requgalidate the neighbor list for the new
configuration, perform a disk read and write, and sign the cemfiguration. Finally, it includes
the time for the administrator to respond with the new comégan. Note that onlycreat e()
operations interact with the administrator.

TheTquorumin TablelIOI includes the time for the coordinator to makicthe operation to
all the storage servers in the configuration. Additionallincludes the time for the servers to verify
the request, perform a disk read and write, sign its resparsipubl i sh() its location (storage
servers invoke the DHpubl i sh() only for thecreat e(), snapshot (), andput () operations).
Next, it includes the time for the coordinator to receive amdfy the responses from a quorum
of servers angubl i sh() the resulting soundness proof. Notice, tkatpshot () additionally
includes the time for the new snapshot servers to fetch thd bethe log. This fetch includes the
time for the new snapshot server to contact a remote sevengthe head of the log, time for the
remote server to read the data from disk, and time for the teserver to respond.

Finally, theTiespterm in TabldZIOM includes the time for the coordinator 8poed to the
client through the gateway. Furthermore, it includes theetfor the client to verify the soundness

proof contained in the response.
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10.3 Summary and Discussion

The performance observed throughout Chapiér 11 reflectstitiesic properties of the
design.

One feature inherent in the design is the number of signattgguired per operation.
The use of quorums keeps the number of required signatunes The data source must sign a
certificate for each request that modifies the state of thelagh storage server that handles such
a request must sign its response. Becausertbet e(), snapshot (), andput () requests require
a new configuration, these operations also require the ashnaitor to create one signature. Note,
the most common operatiomappend(), does not require the additional administrator signature.
The number of signatures required in Antiquity matches tmalver required of other systems that
tolerate Byzantine failuré [RE@3]. In particular, operations that involve the adminisiraequire
three signatures and those that do not involve the adnatdstrequire two.

Another integral aspect of the design is the number of messagnsmitted to handle a
request. The quorum-based Antiquity system 3@y messages between coordinator and storage
servers; the storage servers do not exchange any messageashtain a new configuration for
create(), snapshot (), andput () operations, the gateway must send an additional messdge to t
administrator. The number of messages required in Antiqgampares favorably to other designs
based on Byzantine agreement protocols that req(irg) between servers.

Byzantine quorums also limit the number roindsof messages to complete a request.
Quorums require one round of communication; the coordins¢mds a message to each storage
server, and each server responds. Byzantine agreemerithaigg on the other hand, require three
rounds of messages between storage servers. By limitinguimber of rounds, the quorum-based
design reduces the number of network round trips.

Finally, the design maintains consistency and durabilitthe log even though a quorum
may not immediately be available. In particular, a quorumanre algorithm restores the log to
a consistent and available state. The consistency and ilityraome from the soundness proof
which ensures that a sound write is durable as longfas 2 storage servers exist(TheorEm 1).
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Chapter 11

Evaluation

In this chapter, we present results from testing the Antyquiiototype deployed on Planet-
Lab and a local cluster. We focus our evaluation on the piiniiperations provided by the storage

system, but we also describe our experiences with a vengjanichival back-up application.

11.1 Experimental Environment

We are currently running two separate Antiquity deployraeBtoth deployments are con-
figured to replicate each extent on a configuration of sevaage servers (except where explicitly
stated otherwise). Thus, each configuration can tol@vedefaulty servers in each configuration.
Both deployments are hosted on machines shared with otbeanehers, and, consequently, perfor-
mance can vary widely over time.

The first deployment runs on 60 nodes of a local cluster. Eaathine in thestorage
clusterhas two 3.0 GHz Pentium 4 Xeon CPUs with 3.0 GB of memory, aral1d7 GB disks.
Nodes are connected via a gigabit Ethernet switch. Sigaaneation and verification routines take
an average of 3.2 and 0.6 ms, respectively. This clusterhisigd site resource; a load average of 5
on each machine is common.

The other deployment runs on tidanetLabdistributed research test-bed [BBGA].
We use 400+ heterogeneous machines spread across mosentsin the network. While the
hardware configuration of the PlanetLab nodes varies, th@mim hardware requirements are 1.5
GHz Pentium 11l class CPUs with 1 GB of memory and a total digk f 160 GB; bandwidth is
limited to 10 Mbps bursts and 16 GB per day. Signature creaitd verification take an average
of 8.7 and 1.0 ms, respectively. PlanetLab is a heavilyamaed resource and the average elapsed
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Throughput (Cluster Deployment)

800 " Base Case - 4 KB putd——
700 + Using Append Interface--—-- T
600 7
s00F T 1
400 | T
300 - + |
200 - |
ool o

0 1 1 1 1 1 1
4 8 16 32 64 128 256 512

Update Size (KB)

Throughput KB/s

Figure 11.1: Aggregation increases system throughput dycieg computation at the data source
and in the infrastructure. The base case shows the throughiuclient that stores 4 KB blocks
(and a certificate) usingut () operation, as in a traditional DHT.

time is often greater then 210.5 and 10.8 ms.

We apply load to these deployments using 32 nodes of a diffdoeal cluster. Each
machine in theaest clustethas two 1.0 GHz Pentium Il CPUs with 1.0 GB of memory, and t\8o 3
GB disks. Signature creation and verification takes an geeof 6.0 and 0.6 ms, respectively. The
cluster shares a 100 Mbps link to the external network. Thister is also a shared site resource,

but its utilization is lower than the storage cluster.

11.2 Cluster Deployment

We first report on results from a deployment of Antiquity oe thcal storage cluster. In
addition to serving as a tool for testing and debugging, dlejsloyment also allows us to observe
the behavior of the system when bandwidth is plentiful andeation for the processor is relatively
low.

Figure[II1l shows how aggregation improves performancethisntest, a single data
source submits synchronous updates of various sizes tquityti At the data source, aggrega-

tion reduces the cost of interacting with the system by aming the cost of creating and signing
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Throughput (Cluster Deployment)
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Figure 11.2: The throughput of the system scales with thebeumf users until resources at the stor-
age servers are saturated. Performing bulk writes usinguth® interface, the cluster deployment
becomes saturated with 48 data sources. Usinggpend() interface, the sustained throughput is
much lower because each quorum operation adds only a smalirdrof data to the log.

certificates and transmitting network messages over mdee tlathe storage system, aggregation
reduces the number of quorum operations that must be pertbtmwrite a given amount of data
to the system. For comparison, we show the throughput ofaagtatrce that stores data using syn-
chronousput () operations with payload of 4 KB of application data, as indgpin a DHT. The
put () throughput is lower thaappend() operations of equivalent size becaysé () operations
require a new configuration be created by the administrator.

Figure[IT.2 shows how the throughput of the system scalédsl@at. In this test, mul-
tiple data sources, each with a distinct key pair and logmsubynchronous updates to the sys-
tem. In some tests, the source writes data to the log increthein 32 KB chunks using the
append() /snapshot () /truncat e() interface; in other tests, the source writes data to therog i
bulk using theput () operation. In all tests, extents have a maximum capacityMB1 The graph
shows that, using theut () interface, throughput increases with the number of usets 4 users.
With additional data sources, contention at the storageesereduces throughput. We would ex-
pect this number to increase if we could spread the load sonose servers and network links. The
throughput of sources using tl@pend() interface is substantially lower because each quorum

operation adds a relatively small amount of data to the log.
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CDF of Operation Latency (Cluster Deployment)
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Figure 11.3: Different operations have widely varying tetg  The latency is dependent on the
amount of data that must be transferred across the netwdrkharamount of communication with
the administrator required. The latency CDF of all operaigeven thewul | () RPC operation)
exhibits a long tail due to load from other, unrelated jobming on the shared cluster.

Next, we measure the latency of individual operations. lIs tést, a single data source
issues a variety of operations, including incrementalegritf 32 KB using thappend() interface
and bulk writes using theut () interface. Extents are configured to have a maximum capacity
of 1 MB. Figure[IIB presents a CDF of the latency of variousrafions. Tabl€_ITl1 presents
a breakdown of the median latency times. The latency of miffetypes of operations various
significantly. Theappend() andtruncate() operations are the fastest because they transfer little
or no data and do not require any interaction with the adrmatisr. Thecr eat e() operation is
slightly slower because, though it contains no applicapiayload, it must contact the administrator
to obtain a new configuration. Finally, tkaeapshot () andput () operations are the slowest; they
transfer large amounts of data and must contact the adnaittisto find a suitable configuration of
storage servers. The latency distribution of all operatiexhibit a long tail due to load from other
unrelated processes running on the same machines; notethevel | () RPC call can take longer
than one second. This delay is due to load from unrelatedrjoibsing on the shared cluster.

Table[IT1 illustrates that interacting with the DHT conssna significant fraction of
time. In particular,append() andtruncate() interact with the DHT one time tpubl i sh()
the soundness proof, although this is necessary for reldaivever, operations that create extents
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Time (ms)

No Admin Admin
Phase truncate() | 32 kBappend() create() | snapshot() | 1MBput()
Treq
Signs Request 6.0 6.0 6.0 6.0 6.0
Send Request 1.8 4.2 1.8 1.8 81.6
Verify Request 0.6 1.0 0.6 0.6 131
DHT | ookup() Locations (cached) 0.0 (cached) 0.0 13.2 13.2 13.2
DHT publ i sh() Coordinator| (cached) 0.0 (cached) 0.0 7.2 7.2 7.2
subtotal 8.4 11.2 28.8 28.8 121.1
Tcreateconfig
DHT | ookup() Neighbors 6.6 6.6 6.6
Send Config Request 1.6 1.6 1.6
Verify Config Request 0.6 0.6 0.6
Create New Config 8.2 8.2 8.2
Sign New Config 3.2 3.2 3.2
Reply w/ New Config 1.6 1.6 1.6
subtotal 0.0 0.0 21.8 21.8 21.8
Tquorum
Send Request 1.8 6.6 1.8 1.8 157.4
Verify Request 0.6 1.0 1.2 1.2 13.7
Fetch Extent 98.4
Disk 4.1 5.9 4.1 61.9 61.9
DHT publ i sh() Location 7.2 62.3 42.3
Sign Result 3.2 3.2 3.2 3.2 3.2
Send Reply 1.6 1.6 1.6 1.6 1.6
Verify Replies 4.2 4.2 4.2 4.2 4.2
DHT publ i sh() Proof 7.2 7.2 63.3 63.3 63.3
subtotal 22.7 29.7 86.6 297.9 347.6
Tresp
Reply w/ Proof 1.7 1.7 1.7 1.7 1.7
Verify Proof 4.2 4.2 4.2 4.2 4.2
subtotal 5.9 5.9 5.9 5.9 5.9
Total — Median (Min) | 37.0 (31.0) | 46.8 (38.0) | 143.1 (62.0)| 354.4 (137.0)| 496.4 (338.0)

Table 11.1: Measured breakdown of the median latency tioresifoperations. For all operations,
the client resides in the test cluster and the administtadr storage servers reside in the storage
cluster. The average network latency and bandwidth betweetications on the test cluster and
storage cluster is 1.7 ms and 12.5 MB/s (100 Mbs), respégtiVbe average latency and bandwidth
between applications within the storage cluster is 1.6 mdgi&m MB/s (360 Mbs). All data is stored
to disk on the storage cluster using BerkeleyDB which hasvarege latency and bandwidth of 4.1
ms and 17.3 MB/s, respectively. Signature creation/vatifio takes an average of 6.0/0.6 ms on
the test cluster and 3.2/0.6 ms on the storage cluster. Bdtidef the SHA-1 routine on the storage
cluster is 80.0 MB/s. Finally, DHTookup() and DHTpubl i sh() take an average of 4.2 ms and
7.2 ms, respectively.
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Figure 11.4: Increasing the deployment’s tolerance tat$aduces the system throughput since
the system must transfer more data with each write opetation

(create(), snapshot (), put()) interact with the DHT over five times. Furthermore, mukipl
DHT publ i sh() operations to the same identifier often take longer thanaggdesince (locally to
a DHT server)publ i sh() sometimes competes with other BerkeleyDB operations ferafighe
disk (e.g. BerkeleyDB log cleaning).

Figure[IT.h shows how the size of a configuration affectsesyshroughput. In this
experiment, we vary the deployment to tolerate varying nemal faults, f, in a configuration. For
each arrangement, the size of a configuratiorfis-3. When the size of the configuration increases,
the system must transfer more data with each write operalibe extra messages and bandwidth
reduce write throughput. As expected, because the quoratoqals require©(n) messages, the
throughput roughly decreases linearly with the number oft$atolerated. We would expect the
throughput to drop more quickly for designs based on Bynerdigreement because those protocols

requireO(n?) communication.

11.3 PlanetLab Deployment

Next, we report on results from a deployment of Antiquity darfetLab. For reasons

illustrated in Figurd_TTl5, the focus of our evaluation o flanetLab deployment is not on its
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CDF of Operation Latency (PlanetLab Deployment)
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Figure 11.5: The latency of operations on PlanetLab varigglyw depending on the membership
and load of a configuration. As an example, this graphs phet<DF of the latency for appending
32 KB to logs stored in the system. The table highlights keptsdn the curves.

performance but data maintenance over time. That grapk thietCDF of the latency of more than
800 operations that append 32 KB of data to logs in the systé@ims accompanying table reports
several key points on the curve. Given the best of circunesnthe latency of aappend()
operation can be as low as one second. However, when cortfangeanclude distant or overloaded
servers or bandwidth is restricted on some path, the latencgases considerably. Because of the
characteristics of the PlanetLab testbed, many operasignsery slow.

Our deployment of PlanetLab focuses on how the design miaintiata over time, es-
pecially as machines fail. We built a simple test applicatibat writes logs to the system and
periodically checks that they are still available. Each ¢ogsists of one key-verified extent (the
log head) and an average of four hash-verified extents (th&auof hash-verified extents vary
uniformly with an average of four). Key-verified extents yan size uniformly up to 1 MB; all
hash-verified extents are 1 MB. The average size of a log is8.50.5 MB log head and 4 x 1MB
hash-verified extents). The test application stores 18339 (18,779 log heads and 75,085 hash-
verified extents) totaling 84 GB. After writing an extent teetsystem, this test application records
a summary of the extent in a local database. No data was I, though 10% of the servers
suffered permanent failures.

We perform various tests to measure the efficacy of the Aityigleployment. First, we
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measure the percent of extents with at least a quorum otespévailable and in a consistent state
in SectionCIT.3]1. This test is important since it measunespercent of extents where progress
can be made. Next, In Sectibn 1T13.2, we measure the costinfaimng secure logs in terms of
replicas created. In particular, we measure the averagbeuai replicas created per unit time and
the total number of replicas created. This test measuresytems ability to maintain sufficient

replication levels in response to server failure.

11.3.1 Quorum Consistency and Availability

In this section we measure the quorum consistency and bifylaOur first experiment
uses an application to periodically read an extent. Evergel®nds, it selects at random an entry
from the database and attempts to contact a quorum of thersdmesting that extent. It reports
whether it was able to reach a quorum of servers. It also gsrifiat the replicas are in a consistent
state and that state matches what was written. Our seconsLinee@ent uses a server availability
trace, server database log, and extent configuration tapeoa similar consistency and availability
metric. The first experiment measures the expected applicaerformance and includes inter-
mittent effects such as server load, network performarice, whereas, the second measurements
ignore such effects and simply use server availability.

Figure[I16.(a) shows the results of this first test. Theig-stxows the two month duration
of the test. The top curve shows the percentage of succepsfulm checks. A software bug
between May 13 through 23 caused over half the servers nespnd to RPC requests. Periodic
server application reboot temporarily masked the bug. Beitperformance continued to degrade
until the problem was solved on May 23. Over the life of the (esluding the May 13 through 23
interruption), 94% of checks reported that a quorum of gsmnues reachable and stored a consistent
state of the extent. This figure matches a computed estiroated number of valid configuration.
Using a monitor on the remote hosts, We have measured thagevewailability of machines in
PlanetLab to be 90%. Note, this figure indicates that the m®d@, not necessarily that the node
can be reached over the network. Given that measurementpwlel wxpect a quorum of 5 (out of
7) servers to be available 94% of the time.

The lower curve on the plot shows the percentage of checkéailed due to RPC failures,
network disruptions, and other timeouts. We attempt tohr@aguorum through 5 different gateways
before marking a check failed. Our measurements show th&i @p% of the failed checks may

be caused by components outside of Antiquity. This pergenilacreases as the load on PlanetLab
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increases. Furthermore, the high load causes a number mfuitptprocesses to be terminated due
to resource exhaustion. Thus, the actual percentage oistemsquorums (shown next) is higher
than the 94% measured from the application.

Figure[ITIb.(b) shows the results of the second test. Thasxshows the two month
duration of the test. The top curve shows the percentagetefitsxwhere a quorum is available and
consistent as measured by a server availability tracebds¢alog, and extent configuration. The
server availability trace ignores the software bug; as alt,amtil May 23, 100% of the extents had
at least a quorum available and consistent. After May 23 ,gvew server churn increased, tripling
from 24 server failures per hour to 76. The cause for the as@én server churn is a watchdog
timer that restarts a server's Antiquity application whefsiunresponsive for over six minutes.
Figure[IT¥ shows the number of servers available and skilumes during each hour of the test.

11.3.2 Quorum Repair

Antiquity’s repair process is critical to maintain the dahility of a quorum of servers for
each extent. Figule_T1.8 plots the cumulative number ofa@plcreated in the PlanetLab deploy-
ment. During the period of observation, Antiquity initiaireated a total of 657,048 extent replicas
(each of the 93,864 extents were initially created with Ticap). The replicas initially accounted
for 577 GB of replicated storage (84 GB of unique storage).

In order to maintain the availability of a quorum of servekstiquity triggers a quorum
repair() protocol when less than a quorum of replicas are availabéehEepai r () replaces at
least three replicas since that is the least number of uablaiservers required to triggeepai r ()
with f = 2. The deployment experienced an average of 114 failurelsquer(Antiquity application
failures). In response to failures, Antiquity triggenegpai r () 92 times per hour. As the number
of unavailable servers accumulated, nearly every failtiggered arepair (). Eachrepair()
replaced an average of four replicas. As a result, Antigciigated a total of 653,028 replicas due
torepair() during the two month period of observation which cost théesydess than 0.31 KB/s
(320 Bps) per server due tepai r (). Coupled with maintaining the availability and consisienc
of up to 97% of the extents, this demonstrates that Antigsityapable of maintaining sufficient

replication levels in response to server failure.
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11.4 A Versioning Back-up Application

Finally, we have built a versioning back-up applicationttst@res data in Antiquity. The
application translates a local file system into a Merkle @mseshown in Figur€&8.4 and used in
similar previous system5 [MT8b, DKK)1]. The application records in a local database when data
was written to the infrastructure. It checks the local dasgbbefore archiving any new data. This
acts as a form of copy-on-write, reducing the amount of datasimitted.

We stored the file system containing the Antiquity prototypeurce code, object code,
utility scripts, etc.) in PlanetLab. The file system is retgm in 15 1-MB extents. The system has
repaired two of the 15 extents while ensuring both consisteimd durability of the file system.

11.5 Experience and Discussion

Putting it all together, Antiquity maintained 100% durdélgiend 97% quorum availability
of 18,779 logs broken into 93,864 extents. On average, wisameer failed, it took the system 30
minutes to detect and classify the server as failed (valuénmefout) and three hours to replace
replicas stored on failed server with less than a quorumroémeing replicas available. Once repair
completed for a particular extent, at least a quorum of senw@as again available. Reflecting on
our experience, the structure of the secure log made thiasiardask for three reasons.

First, maintaining the integrity of a secure log is easi@ntlother structures since the
verifier for the log (and each extent) defines the order of agpend cryptographically ensures
the content. In particular, there is only one sequence ofagig that results in a particular verifier.
This verifier is used as a predicate to ensure that new writea@pended to the log in a consistent
fashion. Furthermore, this verifier is used by the storageesy to ensure that each replica stores the
same state. In the deployment, this verifier was a criticaimanent used to ensure the consistency
and integrity of the log and all of its extents. Furthermatds cheap to compute, update, and
compare.

Second, a storage system that implements a secure log isradlaypiddleware in a larger
system. The secure log abstraction bridges the storagensystd higher level applications together.
In fact, the secure log interface implemented by Antiquityairesult of breaking OceanStore into
layers. In particular, a component of OceanStore was a pyineglica implemented as a Byzantine
Agreement process. This primary replica serialized angtographically signed all updates. Given

this total order of all updates, the question was how to durstore and maintain the order? Fur-
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thermore, what should be the interface to this storage syst#en append-only secure log answered
both questions. The secure log structure assists the steyatem in durably maintaining the order
over time. The append-only interface allows a client to &ziaatly add more data to the storage
system over time. Finally, when data is read from the stosagéem at a later time, the interface
and protocols ensure that data will be returned and thatredudata is the same as stored.

Finally, self-verifying structures such as a secure logl lfremselves well to distributed
repair techniques. The integrity of a replica can be chedteally or in a distributed fashion. In
particular, we implemented a quorum repair protocol whieeestorage server replicas used the self-
verifying structure. The structure and protocol providealgh of the contents of the latest replicated

state and ensured that the state was copied to a new configurat



176

Quorum Availability and Consistency (PlanetLab Deployment)
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Figure 11.6: Quorum Consistency and Availability. (a) Beic reads show that 94% of quorums

were reachable and in a consistent state. Up to 90% of failedks are due to network errors and

timeouts. (b) Server availability trace shows that 97% afrgms were reachable and in a consistent
state. This illustrates the increase in performance oyewfere timeouts reduced the percent of
measured available quorums.
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Available Servers and Server Failure (PlanetLab Deployment)
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Figure 11.7: Number of servers with their Antiquity apptioa available per hour. Additionally,
number of failures per hour. Most failures are due to restgathe unresponsive Antiquity instances.
As a result, a single server may restart its Antiquity amtian multiple times per hour if the
instance is unresponsive.
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Part V

Related and Future Work
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Chapter 12

Related Work

This thesis focuses on wide-area distributed storageragsth benefits from prior anal-
yses and experience of many prior systems. Tabld 12.1rdkest a portion of the design space of
many systems that utilize replication. We discuss the systnd analyses further.

12.1 Logs

The log-structured file system (LFS) [MRQ7] used a log abstraction to improve the
performance of local file systems. Schneier and Kelsey [$k88 SUNDR [CLKMS04] demon-
strated how to use a secure log to store data on an untrustederenachines. They do not address

how to replicate the log.

12.2 Byzantine Fault-Tolerant Services

Byzantine fault-tolerant services have been proposediforheet the challenges of unse-
cured, distributed environments. FarSite [ABTZ], OceanStoré [RE®3], and Rosebud [RLD3]
aim to build distributed storage systems using Byzantin#-talerant agreement protocols [LSFP82,
[CL99). Abd-El-Malek et al[[AGG 05], Goodson et al[[GWGRD3], the COCA projeCi [ZSv00],
Fleet [MRTZ01], and Martin and AlvisiC[MAQ4] build reliableservices using Byzantine fault-
tolerant quorum protocol§ IMR®7]. HQ Replication combilbesh Byzantine fault-tolerant agree-
ment and quorum protocols to reduce communication for timencon case and order conflicting
updates. Martin and Alvisi define a protocol that allows tbafiguration to be changed with the
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System Byzantine | wide- mutable aggregation | update maintenance

security ‘ durability ‘ consistency

tolerance area efficiency efficiency

Antiquity Y Y Y Y Y Y Y Y Y
"~ Pond[REG 03] Y Y Y Y Y Y N N N

Byzantine AgreemenLILSPRZ.och90] Y ? Y Y Y Y N N ?

Castro/Liskov[[CLIb]

HQ Replicationl[CML™06] Y ? Y Y Y Y N Y ?

Byzantine QuorumdIMRY7] Y ? Y Y Y Y N Y N

cMu @,m]

Dynamic Byzantine Quorums.IMAD4]| Y ? Y Y Y Y N Y Y

COCA [ZSvO0] Y ? ? Y Y Y ? Y ?

Chain ReplicatiorllvsU4] N N Y N Y Y N Y Y
" Secure Logl[SKO. CPHO1] N N Y Y ? Y 2 Y N/A

Venti [QD0 N N Y ? Y ? N Y N/A

Rosebudl éjtm] Y ? Y ? Y Y N N ?
T Etna[MGMO04] N Y Y N Y Y N Y 2

Carbonite[[CDF 0€] N Y N N/A Y NIA N NIA Y

Glacier [HMDO%)] N Y N N/A Y N/A Y N/A ?

OpenDHT N Y ? N Y N N ? ?

Dhash[[Caf03]

PAST [DRO1]

TotalRecall[BIC 04] N Y ? N Y ? N ? Y

Myriad [CMPZ0Z], EMC [Cal], N ? ? Y ? N ?

Distributed DBs|[DGH_87]

(i.e. Mirroring)

GFSIGGLUB] N ? ? N ? ? Y Y Y

RAID@] N N Y N ? ? N Y Y

Harp

Petal [LT96]

Table 12.1: System Comparison

help of an administrator. None of the agreement or quorurtesysreactively trigger reconfigura-
tion.

12.3 Wide-area Distributed Storage Systems

Many researchers have used distributed hash table (DHRpodmgy to build wide-
area distributed storage systems. Notable examples atmo@ar [CDH 06], CFS [DKKT01],
Glacier [HMDO5], lvy [MMGCU02],PAST [DROL], Total Recall [BC*04], and Venti[[QDOR]. Car-
bonite and Total Recall optimize for the wide-area by redg¢he number of replicas created due
to transient failures. Glacier uses aggregation to redigrage overheads. lvy uses a log structure
similar to Antiquity; however, the log is block-based iresleof extent-based. None of these systems
implement a Byzantine consistency algorithm. Chain Regibo [vS04] and Etnd [MGM04] both
implement consistency protocols, but assume fail-stdpres.

12.4 Replicated Systems

Replicated systems like GFSTGGI03], Halp [LGEl], Petal [LT96], RAID [PGK8B],
and XFS [ADN"99] have been shown to reduce the risk of data loss. GFS andakeSuse

aggregation. These systems target well-connected emvants.
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Distributed databases [DGH7], distributed operating systems such as Amoeba TP,
online disaster recovery systems such as Myifiad [LMPZ0aj, BMC storage systems [Cor] use
the wide-area replication to increase durability. Myriad &MC replicate data between a primary
and backup site. Wide-area recovery is initiated after failere; single disk failure is repaired
locally with RAID.

12.5 Replication analysis

The use of a birth-death data-loss model is a departure frewviqus analyses of reli-
ability. Most DHT evaluations consider whether data wouldvive a single event involving the
failure of many noded [DKKO01,[BROB[WKOR]. This approach does not separate duralfitity
availability, and does not consider the continuous bantwidnsumed by replacing replicas lost to
disk failure.

Fault-tolerant storage systems designed for single-gitgars typically aim to continue
operating despite some fixed number of failures. Thesersgsditen choose the number of replicas
with an eye to a voting algorithm to ensure correct updatéisampresence of partitions or Byzantine
failures [LGG"91,[CLO2 [GBHCOD, SEV04,[LS00).

Our birth-death model is a generalization of the calcutetithat predict the MTBF for
RAID storage system$ [PGKB8]. Owing to its scale, a distedusystem has more flexibility to
choose parameters such as the replication level and nurhteplica sets when compared to RAID
systems.

Blake and Rodrigues argue that wide-area storage systatherunreliable nodes can-
not store a large amount of dala IBRO03]. Their analysis igthas the amount of data that a host
can copy during its lifetime and mirrors our discussion @dibility. We come to a very different
conclusion because we are considering a stable system m&nbw/here data loss is driven by
disk failure. Blake and Rodrigues assumed a system withramdtmembership turnover.

FAB [SEV04] and Chain Replicatiofi_[vSD4] both consider how the nunatb@ossible
replica sets affects data durability. The two come to ogposdnclusions: FAB recommends a
small number of replica sets since more replica sets providee ways for data to fail. Chain
replication recommends many replica sets to increaserrpgeillelism and thus reduce repair time.
These observations are both correct: choosing a repliczplant strategy requires balancing the
probability of losing some data item during a simultaneailsife (by limiting the number of replica
sets) and improving the ability of the system to tolerateghéi average failure rate (by increasing
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the number of replica sets and reconstruction parallelism)

Nath et al [NYGSO0B6] demonstrates that most correlated rieslare small, involve few
servers, and are predictable given the failure of a servgr {g@thin the same site). Further, most of
these small correlated failure events do not cause dataioss they likely do not destroy all the
replicas for a particular objects. However, large coreslafailure events that cause many servers
to fail simultaneously occur very infrequently and are wajictable [NYGS06]. As a result, mod-
els used to estimate the number of replicas to create shounklder correlated failures; however,
deployed systems that use simple replica placement segategch as random (with small optimiza-

tions) are often sufficient to avoid most observed corrdléédures.

12.6 Replicated systems

Petal [LT96], DDS[GBHCU0], Map Redude [DG04], xS TADNE], and Harp[LGG 91]

all employ replication to deal with failures. They are desid for LANs where bandwidth is plen-
tiful and transient failures are rare. As a result they camtam a small, fixed number of replicas
and create a new replica immediately following a failure.

Distributed databases [DGH7] use wide-area replication to distribute load and ineeea
durability. These systems store mutable data and focuseondst of propagating updates, a con-
sideration not applicable to the immutable data we assume.

Total Recall is the system most similar to our wdrk [BT@]. We borrow from Total Re-
call the idea that creating and tracking additional reglican reduce the cost of transient failures.
Total Recall's lazy replication keeps a fixed number of i&gsdi and fails to reincorporate replicas
that return after a transient failure if a repair had beeffiopered. Total Recall must also use in-
trospection or guessing to determine an appropriate highrwaark that Carbonite can arrive at
naturally.

Glacier [HMDO5] focuses on durability despite correlatadures, while we aim to with-
stand only those bursts of failures that one would ordipaipect with random uncorrelated fail-
ures.

Beehive [RS04] creates and places replicas of objects tbartaeget lookup latency. The
techniques in this paper use replication to provide onlalility; we rely on routing optimizations
to reduce latency [DLS04].

Our systems store data in the DHT; an alternative is to state on designated storage
servers and use the DHT to store pointers to those nddes TRE@T00]. This arrangement
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simplifies replica maintenance since much less data nedmsrwaintained in the DHT.

Many systems use mirroring to maintain data durably in theevéreal[Car, PMFOZ].
Data is replicated between a primary and backup sites atldefureplicated locally at each site
using RAID. Wide area recovery is initiated only after siédudre; individual disk failure can be
repaired locally. The techniques presented in this pageredevant since the amount of data to be

transferred after a failure is large compared to the wida astwork link capacities.

12.7 Digital Libraries

Digital libraries such as LOCKS$E [MR@3] preserve journals and other electronic doc-
uments for significantly long periods of time. Durability dbcuments is the primary goal and
availability is secondary. The documents are read-only carthot be updated. The documents
are replicated at many sites to maintain durability. Manyhef documents stored do not have an
“‘owner”; as a result, the system relies on voting to mainta@integrity. This design is different
than a distributed wide-area on-line archival storageesysivhere there is an owner for each doc-
ument. Furthermore, the document can be modified and themyshsures that the stored state
reflects changes made by the owner.
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Chapter 13

Future Work

In this chapter, we revisit the assumptions and limitatiohthe approach described in

previous chapters, discussing opportunities for futurekwizat we hope to pursue in the future.

13.1 Proactive Replication for Data Durability

Wide-area storage systems replicate data for durabilitgzomimon way of maintaining
the replicas is to detect server failures and respond byticgeadditional copies. This reactive
technique can minimize total bytes sent since it only ceadplicas as needed. However, it can
create spikes in network use after a failure. These spikgoverwhelm application traffic and can
make it difficult to provision bandwidth.

Most existing distributed wide-area storage systems useadtive technique to maintain
data durability [BTC04,[CDH06,[DLS"04,[HMD0%,[RGK"05]. The bandwidth needed to sup-
port this reactive approach can be high and bursty: eachaisezver fails permanently, the system
must quickly produce a new copy of all the objects that theesdnad stored [BR03]. Quick repli-
cation is especially important for storage intensive agpions like OceanStore/Porid [REG],
OverCite [SLCG06], or ePOSTIIMPHDU6] where data loss must be minimized.|8\feiactive sys-
tems can be tuned to provide durability at low total cbst [CIDE], the need to repair quickly can
cause dramatic spikes in bandwidth use when respondinguoef In many settings, provisioning
for high peak usage can be expensive.

Proactively replicating objects before failures occurnsatternative to maintaining data
durability. In particular, proactive replication condtigircreates additional redundancy at low rates.

This technique evens out burstiness in maintenance traffghlfting the time at which bandwidth
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is used. Instead of responding to failures, a proactive teaamce system operates constantly in the
background, increasing replication levels during idlequs. Operating proactively in this manner
results in a predictable bandwidth load: server operatmisi@twork administrators need not worry
that a sudden burst of failures will lead to a correspondiagstbin bandwidth usage that might
overwhelm the network. Instead, any burstiness in netwséage will be driven by the application’s
actual workload. The question is whether this method c#rpsivent data from being lost.

Tempo [SHD-06] proposed by Sit et al. is a proactive maintenance schémntrast
to systems that use as much bandwidth as necessary to meehaliuspecification (given ex-
plicitly [BTC*04] or in the form of a minimum replication levé[ [DI$4]), each server in Tempo,
a proactive replication system, operates under a bandwidiget specified by the server operator.
A budget is attractive because it is easy for the user to carfigoandwidth is a known, measur-
able and easily understood quantity. The servers coopanatattempt to maximize data durability
within their individual budgets by constantly creating neplicas, whether or not they are needed
at the moment. While systems that specify a number of repliespond to failures by varying the
bandwidth usage in an attempt to maintain that replicatimel| proactive replication systems in-
stead effectively adjusts the available replication lestédject to its bandwidth budget constraints.
Tempo showed that in a simulation based on PlanetLab measuats over a 40 week period, proac-
tive replication can maintain more than 99.8% of a 1TB waakldurably using as little as 512 bytes
per second of bandwidth on each server. With 2K per secondgueer, no objects were lost: this
amount of bandwidth is comparable to that used by reactigtesys but proactive replication uses
this much more evenly.

Proactive replication with constant repair traffic is aremssting concept and deserves
further investigation. For instance, it could be used in dm® where maintaining a constant data
repair rate might be as important as maintaining the minimiiar example, a storage system with
proactive repair can better ensure quality of service (egponse time) observed by applications
by dedicating a specified amount of the bandwidth budgetdipair. Sensor networks that monitor
and store samples of their environment are another exampbactive repair would allow designers
to better calculate expected lifetime of the sensor netwaded on expected power usage due to

proactive repair.
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Open-loop Closed-loop
(No information) (Use monitor info)
E.g. Folklore
(1) schedule Periodic Reactive
(2) redundancy
(3) placement

E.g. Sostenuto Constant-rate E.g. Most DHT’s

(1) schedule (1) schedule
(2) redundancy (2) redundancy
(3) placement (3) placement

Figure 13.1: Design Space for Repair Algorithms.

13.2 Closed-loop, Proactive Repair, for Data Durability

Both reactive and proactive repair schemes discussedasedzloop systems, they mon-
itor the number of available replicas in order to decide Wwhiata object to repair. In particular,
closed-loop systems, sense and respond to the currenbstagystem. For example many systems
monitor server availability and keep track of the set ofiegd that are stored on each server. Once
repair is initiated, the storage system can make an inforheetsion on the number of new replicas
to create.

Open-loop systems are an alternative. An open-loop stosggiem does not use any
monitored information. As a result, an open-loop systenioparally creates new replicas regard-
less of the number of available replicas and whether anycaphave actually failed or not. The
simple analysis in Sectidn 4.1.1 is an example of an opep-dystem.

Servers in open-loop systems independently decides wheneate an additional replica
for a data object and where to store the new replica. Thise'déss” form of replication is poten-
tially easier to design and implement. However, to ensungesevel of data durability, an open-loop
system uses the most resources of any algorithm propossdahuFigurd 1311 shows the design
space. Nevertheless, this state-less form of replicatiay Ime ideal in environments where commu-
nication required for monitoring and coordination is exg@ea. Such environments include sensor
networks. Open-loop storage systems could be used to gusadre data with an expected and
constant communication cost.
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13.3 Administrator Discussion

The dynamic Byzantine quorum protocol presented in [Pdint evaluated in PaflV
relies on an administrator which is a potential vulner&piliThe administrator is assumed to be
trusted, non-faulty, and always available. As a resultpéation of these assumptions could threaten
data durability or integrity.

There are three attacks a faulty or malicious administresor perform. First, a faulty
administrator may create configurations with many faultrage servers for a data object. Such
configurations could ignore protocol preventing the cligain making changes to the data or pre-
venting data from being stored durably. Second, a faultyiadtnator may be unavailable for long
periods of time preventing necessary configuration chafigesoccurring. Configuration changes
are necessary to maintain data durability since a new camafign is required to replace failed
servers. Finally, a faulty administrator may assign digjaonfigurations with the same configura-
tion sequence number. Disjoint configurations could cradt@k consistency [LKMSU4], disjoint
data modification paths where the client is unaware of thaipheipaths.

Creating anadministrator replicated servicean reduce or eliminate the above attacks.
Replicating the administrator into independent processesrequiring the administrator replicas
to agree to authorize and sign configurations would make dneirastrator appear to be a fail-
stop entity, either follows protocol correctly or produaes results. The administrator replicated
service could tolerate up tb faulty or failed administrator replicas and produce cdrresults. It
would produce no results with more thdrfaulty or failed replicas. The system requires human
intervention with more thar administrator replica failures since the service couldumtold any

guarantees.

13.4 OceanStore as an Application

The secure log interface is a primitive and its implemeatats a component in a larger
system. Because of its simplicity, narrow interface, aral/@ble properties, storage systems that
implement a secure log interface such as Antiquity can bi¢ dod deployed. The next phase is to
build a complete system layered on top of such a storagemy#ta interesting client of the storage
system could be OceanStore. OceanStore could utilize aget@ystem like Antiquity as a storage
service.

OceansStore can use the secure log interface to ensure ltbptates are stored durably
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and the order of updates are correctly maintained over tirhe. secure log interface and append-
only usage model is a good fit since OceanStore alreadyigesand cryptographically signs all
updates via a primary replica. The primary replica appeaatise storage system as a fail-stop client
since itis implemented as a Byzantine Agreement procesthéfmore, OceanStore clients can use
the secure log interface to ensure data read from the steyasgem at a later time will be returned
and that returned data is the same as stored.
A storage system such as Antiquity can benefit other compsrm#rOceanStore as well.

In particular, OceanStore aggressively caches data vandacy replicas. Instead of disseminat-
ing updates to secondary replicas, OceanStore can senficatains” of updates and secondary

replicas can pull new updates from the storage system asdeed

13.5 Summary

In this chapter, we summarized some of the more interestigcaallenging areas of
future work related to distributed wide-area on-line arahstorage systems. Of particular impor-
tance are notions of repair because repair affects theegfligiand correctness of the storage system.
Critical is deciding when to trigger repair, what infornmatishould be used, and other requirements
such as a signature from an administrator. Alternatively,swggest that maybe the minimum total
cost of repair is not the most important consideration,eraghconstant rate might be better. With a
constant repair rate, storage systems could give bettditygagservice guarantees to applications,
could be deployed in other environments such as sensor retwand could lend themselves to
simpler systems to build and analyze. These diverse prabifnstrate many unexplored issues

related to distributed wide-area on-line archival storag@ indicator of future research directions.
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Chapter 14

Concluding Remarks

As the amount of digital assets increase, systems thatetisaidurability, integrity, and
accessibility of digital data become increasingly impottdistributed on-line archival storage sys-
tems are designed for this very purpose. This thesis expkmeeral important challenges pertaining
to fault tolerance, repair, and integrity that must be asleld to build such systems.

The first part of this thesis explored how to maintain durgbilia fault tolerance and
repair and presents many insights on how to do so efficieRidyult tolerance ensures that data is
not lost due to server failure. Replication is the canonsmdution for data fault tolerance. The
challenge is knowing how many replicas to create and whestore them. Fault tolerance alone,
however, is not sufficient to prevent data loss as the lasiteewill eventually fail. Thus, repair is
required to replace replicas lost to failure. The systemtrmanitor and detect server failure and
create replicas in response. The problem is that not aleséailure results in loss of data and the
system can be tricked into creating replicas unnecessaiily challenge is knowing when to create
replicas. Both fault tolerance and repair are required &wvemt the last replica from being lost,
hence, maintain data durability.

The second part of this thesis explored how to ensure therityteof data. Integrity
ensures that the state of data stored in the system alwagstseflhanges made by the owner. It
includes non-repudiably binding owner to data and ensutiatyonly the owner can modify data,
returned data is the same as stored, and the last write ineetin subsequent reads. The challenge
is efficiency since requiring cryptography and consisténdiie wide-area can easily be prohibitive.

Next, we exploited a secure log to efficiently ensure intggWe demonstrate how the
narrow interface of a secure, append-only log simplifiesdiénsign of distributed wide-area storage
systems. The system inherits the security and integritypgntes of the log. We describe how
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to replicate the log for increased durability while ensgroonsistency among the replicas. We
present a repair algorithm that maintains sufficient regilim levels as machines fail. Finally, the
design uses aggregation to improve efficiency. Althoughpknthis interface is powerful enough

to implement a variety of interesting applications.

Finally, we applied the insights and architecture to a Rypi called Antiquity. Antiquity
efficiently maintains the durability and integrity of datehas been running in the wide area on 400+
PlanetLab servers where we maintain the consistency, ityaénd integrity of nearly 20,000 logs
totaling more than 84 GB of data despite the constant chuisenfers (a quarter of the servers

experience a failure every hour)..
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Appendix A

Durability Derivation

In this appendix we describe the mathematics involved inputing themean time to
data loss(MTTDL) of a particular erasure encoded block.

Considering the server failure model and repair procesesaritbed in Section 4.1.1, we
can calculate the MTTDL of a block as follows. First, we cédte the probability that a given

fragment placed on a randomly selected disk will survivel time next epoch as

00

ple) — /Ip‘;l(l)lT—edl (A1)
_ %e/pd(l)(l el (A-2)

wheree is the length of an epochy is the average life of a disk, angy(l) is the probability
distribution of disk lives. This equation is derived simijato the equation for the residual average
lifetime of a randomly selected disk. The ter‘mg reflects the probability that, given a disk of
lifetime I, a new fragment will land on the disk early enough in its iifet to survive until the next
epoch. The probability distributiopq(l) was obtained from disk failure distributions in" [PHO02],
augmented by the assumption that all disks still in servitar five years are discarded along with
their data.

Next, givenp(e), we can compute the probability that a block can be recoctstuafter
a given epoch as

me) = 5 ()i pe) (A3)

m=rn m

wheren is the number of fragments per block ani$ the rate of encoding. This formula computes
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the probability that at leash fragments are still available at the end of the epoch.
Finally, the MTTDL of a block for a given epoch size can be coiep as

00

MTTDL pjock(€) = e-_;i[l—pb(e)][pb(e)]i (A.4)
. Po(e
= e - (o) (A.5)

This last equation computes the average number of epoclixiaislexpected to survive times the

length of an epoch.
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Appendix B

Glossary of Terms

e Availability: Seedata availabilityor server availability

e Byzantine failure: an arbitrary fault that occurs during the execution of ageoL It en-
compasses those faults that are commonly referred to ash’éadlures” and "send-receive
omission failures”. When a Byzantine failure has occurtéd, system may respond in any
unpredictable way, unless it is designed to have Byzanéiok folerance.

These arbitrary failures are a superset of many failuresnaayg be loosely categorized as

follows:

a failure to take another step in the protocol, also known@asash failure.

a failure to send or receive some message, also known agasegide omission.

a failure to correctly execute a step of the protocol.

arbitrary execution of a step other than the one indicatetthé@yrotocol.

Steps are taken by processes, the abstractions that exbeypeotocols. A faulty process
is one that at some point exhibits one of the above failuregrokess that is not faulty is

correct.

e Byzantine fault tolerance: ability to defend against (or cope with) Byzantine failureda
still satisfy the specification of a protocol. For instancerrectly functioning components
of a Byzantine fault tolerant system will be able to reachgae group decision regardless
of Byzantine faulty components. There are upper bounds erpéinicentage of unreliable
components, however. Such algorithms are commonly claaizetl by their resiliencef,
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the number of faulty processes with which an algorithm cgsecdMany classic agreement
problems, such as the Byzantine Generals Problem, havelutibacunlessf < 3, wheren

is the number of processes in the system. SeeBjgantine failure

Byzantine process:a faulty process that at some point exhibits one of the Byzarilures.

See als@yzantine failure
Byzantine server: SeeByzantine process

Checksum: a digest or summary representation of a data object usecktti evhether errors
have occurred during network transmission or in storagee dimplest form of checksum
simply adds up the bits in the data object; however, such ensettannot detect a number of
errors such as reordering of the bytes in a data object tingar deleting zero-valued bytes,
and multiple errors which sum to zero. To provide protectaainst errors and security

against malicious agents requires use ofygtographic hasHiunction.
Cryptographic Secure Checksum:Seecryptographic secure hash function

Cryptographic Secure Hash: a secure digest or summary representation of a data object
used to check whether errors have occurred during netwarlstnission or in storage. The
additional security properties are collision resistance aninvertibility. Collision-resistant
means it should be hard to find two different data objec@sndY (X! =Y) such that hash
H(X) = H(Y). Uninvertible means that given only the secure hash of a daject,H (X)

for example, it is computational infeasible to compute tla¢adobject,X. These security

properties makes it difficult for error or a malicious attacto corrupt data without detection.
Configuration: Set of servers responsible for storing replicas for a palgicdata object.

Crash failure: A process that either follows protocol correctly, producesect results, or
produces no results. For example, permanently failed seigs is the same as a fail-stop
failure. See als®yzantine serveandcrash server

Crash process:a process that correctly follows specified protocol or peremdly fails.

Crash-recovery failure: A transient failure where a process eventually returns sitite
intact or a permanent failure where a process does not egnreSee alsarash-recovery

processpermanent server failurendtransient server failure
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Crash-recovery process:A process that fails angotentiallyrecovers (aka benign process).
See als@rash-recovery failurepermanent server failurandtransient server failure

Crash-recovery server: Seecrash-recovery process
Crash server: Seecrash process
Data: An opaque sequence of bytes.

Data availability: fraction of time a data object is available. The fractioniofe a system

can promptly return a requested data object.

Data durability: probability that a data object exists after a specific amotitime. See also

data failure rate

Data failure rate: number of times a particular (fixed-size) data object fads gnit time.

For example, the fraction of blocks lost per year (FBLPY) failure rate. In the special case
when the likelihood of failure remains constant as time gassich as with an exponential
failure distribution, the failure rate is simply the inversf the mean-time-to-failure (MTTF)

for a particular data object. See aldata durability.

Data fault tolerance: ability to tolerate server failure without loss of data.ntludes choos-
ing the type of redundancy, number of replicas, and wher¢ote seplicas. See alsmnfig-

uration, redundancydata repair, andserver failure

Data fault tolerance algorithm: set of procedures used to define the components of an

object’s configuration. See alsonfiguration data fault tolerance

Data fragment: An original or encoded piece of a data object. Erasure-gpdiaps a data
object broken intam original pieces (fragments) onto a larger sengdieces § > m) such
that the original pieces can be recovered from a subset ofadices. The pieces that are not
original are encoded. Since a piece may be as large as the whtd object, fragment and
replica are often used interchangeably. See déga replicg redundancy replication, and

erasure-coding
Data integrity: ensures data stored into and returned from the storagersgseethe same.

Data repair: the process of replacing replicas lost to server failure.
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Data replica: A whole copy of a data object. See aldata fragmentredundancyreplica-

tion, anderasure-coding
Disk: A non-volatile storage substrate often directly attaclued $erver.

Downtime: one contiguous interval of time when a server is unavailaB@ammonly referred

in the storage literature as a time-to-repair (TTR). See s#ssiontimandlifetime
Durability: Seedata durability.

durable means a data object exits. It is not possible to distinguistilable from durable in

a networked system limited to remote probing since datactbjean exist but not be imme-
diately available: if the only copy of a data object is on tligkdf a server that is currently
powered off, but will someday re-join the system with disktemts intact, then that data

object exists but is not currently available. See alata availability

Erasure-coding: Erasure-coding maps a data object brokeninariginal fragments (pieces)
onto a larger set af fragments it > m) such that the original fragments can be recovered from
a subset of alh fragments. The fraction of the fragments required is caltedrate, denoted

r. Optimal erasure codes such as Reed-Solorhon [B88¢[Plad9¥ [RV97] codes produce
n=m/r (r < 1) fragments where any fragments are sufficient to recover the original data
object. Unfortunately optimal codes are costly (in termmeimory usage, CPU time or both)
whenmis large, so near optimal erasure codes such as Tornado [kdd&3 97,[LMST98]

are often used. These require €)m fragments to recover the data object. Reducirggn

be done at the cost of CPU time. Alternatively, ratelessugeasodes such as LT [Lub02],
Online [May02], or Raptoi[Shad3], codes transform a dajaaiofmfragments into a prac-
tically infinite encoded form. Data loss occurs a sufficieatfion of fragments are lost due to
permanent server failure. Erasure-codes often providenehcy without storage overhead

of strict replication. See alsedundancyrate of encodingstorage overhead
Failure: Seepermanent server failurandtransient server failure

Fault tolerance: Seedata fault tolerance

Fault tolerance algorithm: Seedata fault tolerance algorithm

Fail-stop: A process that either follows protocol correctly, producesrect results, or pro-

duces no results. For example, permanently failed sers.i$ the same as a crash failure.



208

Failure rate: Seedata failure rate
Fragment: Seedata fragment

Immutable: Cannot change. Read-only. For example, an immutable dgatob read-only
and cannot change. See alaatable

Integrity: state of data stored in the system always reflects changes loyaithe owner. It
includes non-repudiably binding owner to data and ensuhiagonly the owner can modify
data, returned data is the same as stored, and the last svrigtuirned in subsequent reads.

See alsmon-repudiation data integrity andorder integrity.

Lifetime: time between when a component first enters and last leavestensy In terms
of sessiontime it is the time between the beginning of thé $iession and end of last ses-
sion. For example, a server’s lifetime is comprised of a neindf interchanging session and

downtimes.

Mean-time-between-failure (MTBF): the average time between failures, the reciprocal of
the failure rate in the special case when failure rate istamis Calculations of MTBF as-
sume that a system is "renewed”, i.e. fixed, after each failand then returned to service

immediately after failure.

Mean-time-to-failure (MTTF): average sessiontime.
Mean-time-to-repair (MTTR): average downtime.

Memory: A volatile storage substrate often directly attached toreese

Mutable: subject to change or alteration. For example, a mutableataést can change. A

mutable data object is readable and writable data objeetalBeimmutable

Node: a basic unit used to build systems. For example, in a dis&ibaystem, a server is a
particular type of node. A server satisfies remote request®aparticipates a in peer-to-peer
network. See alseerver

Non-repudiation: Cannot deny
Object: Seedata

Object availability: Seedata availability.
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Object durability: Seedata durability.

Order integrity: defines a single sequence of writes where each write has aauséguence
number and writes can be ordered based on sequence numaeot@lorder). For example,
in the absence of new writes order integrity often ensurés r@éurned from a storage system
was the most recently written data.

Permanent failure: Seepermanent server failure

Permanent data loss: data can no longer be retrieved or reconstructed from irdéion

within the system. See alsturability.

Permanent server failure: loss of data stored by a server. Examples include disk crash,
server reinstallation or departure from network withoutire. Permanent server failure re-

sults in loss of redundancy durably stored. 8ata durabilityandtransient server failure

Rate of encoding:size of the original data object divided by the encoded stoe.example,
the ratio between the number of fragments required to réaaighe whole data object and
the redundancy (total number of original and encoded frags)e

Redundancy: duplication of data in order to reduce the risk of permanaitd tbss. The total

number of whole copies or unique pieces of data. Seerafdiwationanderasure coding

Replica Location and Repair Service: A service used to locate and monitor data object
replicas and trigger a repair process when necessary. Sededh repair

Repair: Seedata repair.
Replica: Seedata replica

Replication: duplication of data to reduce the risk of permanent dataviassreating whole,
identical, copies of data. See algalundancyanderasure-coding

Server: a node that satisfies remote requests and/or participatepasr-to-peer network. A
server often is a computer with processor(s), memory, smatiber of disk drives, and a set

of networking ports.

Server Availability: The percent of time a server is capable of responding to stgjué& he

cumulative sessiontime divided by lifetime is a common measf server availability, which

is equivalent to the more commonly known expression in theage literaturg -y
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Server failure: Seepermanent server failurandtransient server failure

Sessiontime:one contiguous interval of time when a server is availablem@only referred

in the storage literature as a time-to-failure (TTF). Sse dbwntimeandlifetime.

Storage overhead:The total number of whole copies. Or the ratio between thanédncy
(total number of original and encoded fragments) and thelbmurof fragments required to

reconstruct the whole data object.
Time-to-failure (TTF): Seesessiontime
Time-to-repair (TTR): Seedowntime
Transient failure: Seetransient server failure

Transient server failure: Loss of server availability. Examples include server répoet-
work and power outage, and software crash where servensginam failure with data intact.
Transient server failure does not decrease data durabilityever, it does cause data to be-
come unavailable. Transient server failure does not (qunedy) affect systems primarily
concerned with data durability; however, it is not possiblesystems to perfectly distinguish

transient from permanent server failure.
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