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Packet Processors

* Essential for evolving networks
— Sophisticated functionality
— Complex performance enhancement protocols




Packet Processors

* Essential for evolving networks
— Sophisticated functionality
— Complex performance enhancement protocols

* Challenges: High-performance and flexibility
— 10GE and beyond
— Tradeoffs



Software Packet Processors

* Low-level (kernel) vs. High-level (userspace)

* Parallelism in userspace: Four major difficulties
— Overheads & Contention
— Kernel network stack
— Lack of control over hardware resources
— Portability



Overheads & Contention

* Cache coherence
e Memory Wall
 Slow cores vs. Fast NICs
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Kernel network stack & HW control

 Raw socket: all traffic from all NICs to user-space
* Too general, hence complex network stack
 Hardware and software are loosely coupled
e Applications have no control over resou

I Raw socket
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Portability

 Hardware dependencies

* Kernel and device driver modifications
— Zero-copy
— Kernel bypass
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NetSlice

* Give power to the application
— Overheads & Contention

— Lack of control over hardware resources
» Spatial partitioning exploiting NUMA architecture
— Kernel network stack

e Streamlined path for packets

— Portability
* No zero-copy, kernel & device driver modifications
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NetSlice Spatial Partitioning i—g-
* Independent (parallel) execution contexts
— Split each Network Interface Controller (NIC)

* One NIC queue per NIC per context
— Group and split the CPU cores

— Implicit resources (bus and memory bandwidth)

Temporal partitioning Spatial partitioning
(time-sharing) (exclusive-access)



NetSlice Spatial Partitioning Example

e 2x quad core Intel Xeon X5570 (Nehalem)
— Two simultaneous hyperthreads — OS sees 16 CPUs
— Non Uniform Memory Access (NUMA)

* QuickPath point-to-point interconnect

— Shared L3 cache
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Streamlined Path for Packets

Inefficient conventional network stack
— One network stack “to rule them all”
— Performs too many memory accesses

— Pollutes cache, context switches, synchronization,
system calls, blocking API
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Portability

* No zero-copy
— Tradeoffs between portability and performance

— NetSlices achieves both

* No hardware dependency

e A run-time loadable kernel module



NetSlice API

* Expresses fine-grained hardware control
* Flexible: based on ioctl
* Easy: open, read, write, close

1: #include "netslice.h" 19: for (;;) {

2: 20: ssize_tcnt, went = 0;

3: structnetslice_rw_multi { 21: if ((cnt = read(fd, iov, IOVS)) < 0)

4: int flags; 22:  EXIT_FAIL_MSG("read");

5:} rw_multi; 23:

6: 24: for (i = 0; i<cnt; i++)

7: structnetslice_cpu_mask { 25:  /*iov_rlen marks bytes read */

8: cpu_set_tk _peer, u_peer; 26:  scan_pkg(iov[i].iov_base, iov[i].iov_rlen);
9: } mask; 27: do{

10: 28: size_twr_iovs;

11: fd = open("/dev/netslice-1", O_RDWR); 29:  /* write iov_rlen bytes */

12: 30:  wr_iovs = write(fd, &iov[wcnt], cnt-wcent);
13: rw_multi.flags = MULTI_READ | MULTI_WRITE; 31: if (wr_iovs< 0)

14: joctl(fd, NETSLICE_RW_MULTI_SET, &w_mult); 32: EXIT_FAIL_MSG("write");

15: ioctl(fd, NETSLICE_CPUMASK_GET, &mask); 33: wcnt += wr_iovs;

16: sched_setaffinity(getpid(), sizeof(cpu_set_t), 34: }while (wcnt<cnt);

17: &mask.u_peer); 35:}

18



NetSlice Evaluation

 Compare against state-of-the-art
— RouteBricks in-kernel, Click & pcap-mmap user-space

Additional baseline scenario
— All traffic through single NIC queue (receive-livelock)

What is the basic forwarding performance?
— How efficient is the streamlining of one NetSlice?

How is NetSlice scaling with the number of cores?



Experimental Setup
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* R710 packet processors
— dual socket quad core 2.93GHz Xeon X5570
(Nehalem)
— 8MB of shared L3 cache and 12GB of RAM

* 6GB connected to each of the two CPU sockets
* Two Myri-10G NICs

e RI00 client end-hosts
— four socket 2.40GHz Xeon E7330 (Penryn)
— 6MB of L2 cache and 32GB of RAM



Simple Packet Routing

* End-to-end throughput, MTU (1500 byte)

packets
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Linear Scaling with CPUs

e |Psec with 128 bit key—typically used by VPN
— AES encryption in Cipher-block Chaining mode
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Software Packet Processors

* Can support 10GE and more at line-speed
— Batching

* Hardware, device driver, cross-domain batching

— Hardware support
* Multi-queue, multi-core, NUMA , GPU

— Removing IRQ overhead

— Removing memory overhead
* Including zero-copy

— Bypassing kernel network stack



Software Packet Processors
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Software Packet Processors
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Software Packet Processors
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Software Packet Processors
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Software Packet Processors
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* Optimized for RX path only
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Software Packet Processors
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Discussions

* 40G and beyond
— DPI, FEC, DEDUP, ...

e Deterministic RSS

* Small packets



Conclusion

* NetSlices: A new abstraction
— OS support to build packet processing applications
— Harness implicit parallelism of modern hardware to scale
— Highly portable

* Webpage: http://netslice.cs.cornell.edu




