NetSlices: Scalable Multi-Core Packet
Processing in User-Space

Tudor Marian, Ki Suh Lee, Hakim Weatherspoon
Cornell University

Presented by Ki Suh Lee

Packet Processors

* Essential for evolving networks
— Sophisticated functionality
— Complex performance enhancement protocols

Packet Processors

* Essential for evolving networks
— Sophisticated functionality
— Complex performance enhancement protocols

* Challenges: High-performance and flexibility
— 10GE and beyond
— Tradeoffs

Software Packet Processors

* Low-level (kernel) vs. High-level (userspace)

* Parallelism in userspace: Four major difficulties
— Overheads & Contention
— Kernel network stack
— Lack of control over hardware resources
— Portability

Overheads & Contention

* Cache coherence
e Memory Wall
 Slow cores vs. Fast NICs

100Mbps
200MHz

Processor - Network
Impedance Mismatch

Network Bandwidth / CPU Speed [Mbps/MHZz]

1975 1980 1985 1990 1995 2000 2005 2010 2015
Year

Kernel network stack & HW control

 Raw socket: all traffic from all NICs to user-space
* Too general, hence complex network stack
 Hardware and software are loosely coupled
e Applications have no control over resou

I Raw socket

- ‘Iﬂﬂml tx/g%m

Portability

 Hardware dependencies

* Kernel and device driver modifications
— Zero-copy
— Kernel bypass

Outline

* NetSlice
e Evaluation
 Discussions

e Conclusion

NetSlice

* Give power to the application
— Overheads & Contention

— Lack of control over hardware resources
» Spatial partitioning exploiting NUMA architecture
— Kernel network stack

e Streamlined path for packets

— Portability
* No zero-copy, kernel & device driver modifications

\

NetSlice Spatial Partitioning i—g-
* Independent (parallel) execution contexts
— Split each Network Interface Controller (NIC)

* One NIC queue per NIC per context
— Group and split the CPU cores

— Implicit resources (bus and memory bandwidth)

Temporal partitioning Spatial partitioning
(time-sharing) (exclusive-access)

NetSlice Spatial Partitioning Example

e 2x quad core Intel Xeon X5570 (Nehalem)
— Two simultaneous hyperthreads — OS sees 16 CPUs
— Non Uniform Memory Access (NUMA)

* QuickPath point-to-point interconnect

— Shared L3 cache

cpU| [cPul | Implicit|{|Processors NIC 0 1 NIC N
inter-socket RAM, ||[CPU| CPU IX/Tx tX/TX _
0.8 | (2,10 link NetSlice 0
CPU| [CPU | PCle 0 8 Queue 0 Queue O
4,121 (6,14
: - RAM, ||[CPU| CPU tx/rx tX/rx)
.I I NetS1 1
Memory— L3 cache PCle 1 9 Omets [OmeTe o e ice
. Hyper-threads . s
integrated memory . || RAM, ||[CPU| CPU tX/rx TX/TX NetSlice i
controller || PCle i | [i+8]||| Queue i Queue i etsliced

Streamlined Path for Packets

Inefficient conventional network stack
— One network stack “to rule them all”
— Performs too many memory accesses

— Pollutes cache, context switches, synchronization,
system calls, blocking API

per-CPU backlog
queue(s)

per-socket buffer plication

per- NIC D buffer

A “window |
NIC buffer “ NAPI (bypass) .>
| IIIIII o \/

1
al address ! User address
space ' space |

On-device RAM Resident (system) RAM

Portability

* No zero-copy
— Tradeoffs between portability and performance

— NetSlices achieves both

* No hardware dependency

e A run-time loadable kernel module

NetSlice API

* Expresses fine-grained hardware control
* Flexible: based on ioctl
* Easy: open, read, write, close

1: #include "netslice.h" 19: for (;;) {

2: 20: ssize_tcnt, went = 0;

3: structnetslice_rw_multi { 21: if ((cnt = read(fd, iov, IOVS)) < 0)

4: int flags; 22: EXIT_FAIL_MSG("read");

5:} rw_multi; 23:

6: 24: for (i = 0; i<cnt; i++)

7: structnetslice_cpu_mask { 25: /*iov_rlen marks bytes read */

8: cpu_set_tk _peer, u_peer; 26: scan_pkg(iov[i].iov_base, iov[i].iov_rlen);
9: } mask; 27: do{

10: 28: size_twr_iovs;

11: fd = open("/dev/netslice-1", O_RDWR); 29: /* write iov_rlen bytes */

12: 30: wr_iovs = write(fd, &iov[wcnt], cnt-wcent);
13: rw_multi.flags = MULTI_READ | MULTI_WRITE; 31: if (wr_iovs< 0)

14: joctl(fd, NETSLICE_RW_MULTI_SET, &w_mult); 32: EXIT_FAIL_MSG("write");

15: ioctl(fd, NETSLICE_CPUMASK_GET, &mask); 33: wcnt += wr_iovs;

16: sched_setaffinity(getpid(), sizeof(cpu_set_t), 34: }while (wcnt<cnt);

17: &mask.u_peer); 35:}

18

NetSlice Evaluation

 Compare against state-of-the-art
— RouteBricks in-kernel, Click & pcap-mmap user-space

Additional baseline scenario
— All traffic through single NIC queue (receive-livelock)

What is the basic forwarding performance?
— How efficient is the streamlining of one NetSlice?

How is NetSlice scaling with the number of cores?

Experimental Setup

CPU| |CPU
19 | (3.11

CPU| (CPU
,’13 7.15 Mem Bus

L3 cache _|/ El_/[emory

o 0.8] [2.10 l
R900/ R900 R900 RB9U0 CPU| [CPU
> - 4.12] [6.14
Egress Ingress — jee* emory, .I L3 cache I
Router Router_n‘l‘oGbE 4x1GbE A
tegrate or

x1GbE JIOGbBE

CX4

IOGbE LR optical

CX4 SiI}EIe_mOde fiber S

(Al
/rx queues (0-8)

tx

* R710 packet processors
— dual socket quad core 2.93GHz Xeon X5570
(Nehalem)
— 8MB of shared L3 cache and 12GB of RAM

* 6GB connected to each of the two CPU sockets
* Two Myri-10G NICs

e RI00 client end-hosts
— four socket 2.40GHz Xeon E7330 (Penryn)
— 6MB of L2 cache and 32GB of RAM

Simple Packet Routing

* End-to-end throughput, MTU (1500 byte)

packets
12000 -

10000 | 97 9.7

2 74% of

2 soo0 | /O kernel

= 5.6

a 6000 -

i -

2

S 4000 -

< 2.3 2.3 1/1lof
2000 - I LNetSlice

0 T I T T

kernel RouteBricks NetSlice pcap pcap-mmap Click user-
space

Linear Scaling with CPUs

e |Psec with 128 bit key—typically used by VPN
— AES encryption in Cipher-block Chaining mode

10000 - 9.2

9000 - 8.5
8000 -
7000 -

(S)
o O
o O
o O

Throughput (Mbps)
N
o
o
o

N W
o O
o O
o O

1000 -

o
_

2 4 6 8 10 12 14 16
of CPUs used

Outline

e Discussions

e Conclusion

Software Packet Processors

* Can support 10GE and more at line-speed
— Batching

* Hardware, device driver, cross-domain batching

— Hardware support
* Multi-queue, multi-core, NUMA , GPU

— Removing IRQ overhead

— Removing memory overhead
* Including zero-copy

— Bypassing kernel network stack

Software Packet Processors

T e |t | oo | it | oomin
Raw socket J x x V User
RouteBricks « J x x Kernel

PacketShader J J x x User
PF_RING x V x J User
netmap « J V x User

Kernel-bypass x J V x User
NetSlice J J x J User

Software Packet Processors

RouteBricks V J x Kernel
PacketShader J J x User
PF_RING x V V User
netmap « V x User
Kernel-bypass x J x User
NetSlice J J J User

Software Packet Processors

Raw socket User

VIR, %
PacketShader J J x User
PF_RING x V V User
netmap « V x User
Kernel-bypass x J x User
NetSlice J J J User

Software Packet Processors

User

Raw socket

“ J Kernel
v v
PF_RING x V User
v
X
NetSlice V J User

Software Packet Processors

s | pottin | oo | rorbiy | voman
Raw socket J x x V User
RouteBricks V J x x Kernel
PacketShader J V x x User
PF_RING x J x J User
v vIEl X -
X v Il X -
NetSlice J J x J User

Software Packet Processors

T s | sy | iy | ooman
Raw socket J x x V User
RouteBricks V J x x Kernel
PacketShader J J x x User

* Optimized for RX path only

netmap « V « x User
Kernel-bypass x J J x User
NetSlice J J x J User

Software Packet Processors

T e |t | oo | it | oomin
Raw socket J x x V User
RouteBricks V J x x Kernel

PacketShader J J x x User
PF_RING x V x V User
netmap « J J x User

Kernel-bypass x J « x User
NetSlice J J x J User

Discussions

* 40G and beyond
— DPI, FEC, DEDUP, ...

e Deterministic RSS

* Small packets

Conclusion

* NetSlices: A new abstraction
— OS support to build packet processing applications
— Harness implicit parallelism of modern hardware to scale
— Highly portable

* Webpage: http://netslice.cs.cornell.edu

