
X1: Commodity Clusters with Real-Time Reflexes

Tudor Marian, Mahesh Balakrishnan, Hakim Weatherspoon, Ken Birman
Cornell University
Ithaca, NY-14853

1 Introduction

An increasingly important class of applications requires
high-speed online processing of massive quantities of
real-time information — examples include sensor net-
work monitoring, deep packet inspection, financial cal-
culators, online gaming and mission-critical command-
and-control. Commodity clusters are used as compute
backends for such applications; however, the traditional
tiered architectures used in these clusters are too slow and
bulky to enable immediate processing of incoming real-
time traffic.

For example, imagine a backend datacenter for a sensor
network that needs to trigger alarms whenever it observes
correlated values across multiple inputs — perhaps to ob-
serve changes at a physical location that has different sen-
sors trained on it. Such a datacenter would have to scan
multiple gigabits per second of traffic to catch correlations
across packets. The partitioning techniques used to scale
conventional Internet services on commodity datacenters
would require incoming updates to traverse multiple lev-
els of intermediate nodes before they can be checked for
patterns, incurring seconds of overhead before the data-
center can respond to the real-time inputs.

X1 is a framework for building high-speed packet pro-
cessors that can sift through extremely high rates of tran-
sient data. Internally, X1 is a modified Linux kernel op-
timized for high-speed traffic inspection, using a range of
techniques that allows an inexpensive commodity blade-
server to process packets at line-speed. Externally, X1 ex-
poses programming abstractions that allow developers to
easily build packet processing applications that can scale
to multiple gigabits per second of traffic. Accordingly, X1
enables the construction of scalable clusters for process-
ing real-time data from inexpensive commodity blade-
servers.

In the sensor network example, the developer would in-
struct X1 to buffer packets whose headers satisfy a cer-
tain constraint (e.g., from sensors A, B and F) and sub-
sequently check if the content in these packets fit addi-
tional constraints (e.g., temperature field greater than 30
degrees). X1 decomposes such queries into a workflow
of modules, each of which has an associated buffer and

can potentially generate additional packets once it accu-
mulates enough input packets in its buffer.

In addition to enabling real-time clustered applications,
we envision X1 as an extremely sensitive first-response
layer that intervenes between high-speed networks and
traditional datacenters. The possible applications for such
a layer are numerous: X1 can aggregate packets and re-
duce the amount of traffic that hits the slower software
layers within a datacenter. Also, it can be used to design
and implement custom wide-area application and protocol
accelerators; in fact, we have already built a TCP/IP accel-
erator called Maelstrom [1] and a filesystem device called
SMFS [2] using the X1 architecture. Other uses include
intrusion detection and traffic monitoring, discarding un-
wanted traffic and alerting systems infrastructure before
nodes within the datacenter are affected.

Crucially, all these different applications can run on
a single platform of X1 blades, eliminating the device
sprawl that plagues modern datacenters. The presence
of a single unified platform for high-speed device imple-
mentation allows for easy installation and maintenance of
perimeter functionality.

Currently, we have a fully functional X1 implementa-
tion that’s able to process a Gigabit per second of data on
a cheap (less that 600$) machine with a 3 GHz processor
and a 1 Gbps NIC. As mentioned, we have working imple-
mentations of protocol and filesystem accelerators written
within the framework. Our current efforts are focused on
the exact abstractions to provide developers with, as well
as load-balancing techniques to spread incoming traffic
across racks of X1 blades.

References
[1] M. Balakrishnan, T. Marian, K. Birman, H. Weatherspoon,

and E. Vollset. Maelstrom: Transparent error correction for
lambda networks. In NSDI 2008: Fifth Usenix Symposium
on Networked Systems Design and Implementation (To Ap-
pear), 2008.

[2] H. Weatherspoon, L. Ganesh, T. Marian, M. Balakrishnan,
and K. Birman. Smoke and mirrors: Mirroring files over
high-speed long-distance links without performance loss. In
Submission, 2008.


