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Abstract

Data centers constructed as clusters of inexpensive ma-

chines have compelling cost-performance benefits, but de-

veloping services to run on them can be challenging. This

paper reports on a new framework, the Scalable Services

Architecture (SSA), which helps developers develop scal-

able clustered applications. The work is focused on non-

transactional high-performance applications; these are

poorly supported in existing platforms. A primary goal was

to keep the SSA as small and simple as possible. Key ele-

ments include a TCP-based “chain replication” mechanism

and a gossip-based subsystem for managing configuration

data and repairing inconsistencies after faults. Our experi-

mental results confirm the effectiveness of the approach.

1 Introduction

Large computing systems are often structured as Service

Oriented Architectures (SOAs), for example using Web Ser-

vices platforms. In such systems, clients access services in

a request-reply model. Each service is self-contained, offers

its own API, and handles its own quality of service or avail-

ability guarantees, for example by arranging to be restarted

after a failure.

While many services need to maintain availability in the

face of challenging operating conditions (including load

fluctuations, transient network disruptions, and node fail-

ures), building services with these properties is difficult.

Existing Web Services platforms offer load-balancing and

restart mechanisms for transactional services implemented

using a three-tier database model, but not for services im-

plemented using other technologies. Developers of non-

transactional web services must implement their own mech-

anisms for replicating data, tracking membership and live-
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ness, redirecting requests during failures to minimize client

disruption, and detecting and repairing inconsistencies.

Our premise in this paper is that for many services, the

transactional model is a poor fit and hence that tools aimed

at non-transactional web services systems will be needed.

We recognize that this is debatable.

Vendors have generally argued that only transactional

systems offer the hooks needed to support automated scala-

bility, self-repair and restart mechanisms. Key to this argu-

ment is the ease with which interrupted transactions can be

rolled back (and restarted, if needed), and the relative sim-

plicity of cleaning up a database after a crash. Yet the trans-

actional programming model also brings constraints and

overheads, were this not the case, the transactional model

would long ago have become universal.

Some of these constraints relate to the challenges of

maintaining a clean separation of code and data; not all ap-

plications can be structured in this manner. Transactional

rollback and restart can be costly, and restarting a database

after a crash incurs delays while cleanup code runs. High

availability is difficult to acheive in the transactional model;

the fastest database replication schemes (asynchronous log

replay) suffer from failure scenarios that can require inter-

vention by a human operator; yet the higher fidelity schemes

require expensive multi-phase commit protocols and hence

may not give adequate performance. Today, clustered three-

tier database products are powerful solutions, but they nego-

tiate these potential pitfalls in ways that preclude important

classes of applications.

Our motivation is to show that a simple and remark-

ably inexpensive infrastructure can support clustered exe-

cution of a significant class of non-transactional services.

The work reported here focuses on services that don’t fit

the transactional paradigm, typically for reasons of perfor-

mance - ones that operate directly on in-memory data struc-

tures or simple non-transactional files. To simplify our task,

we assume that these services are capable of handling out-

of-order writes, and that processes implementing them ex-

perience only crash failures. As will be shown below, our

assumptions hold for a very large group of applications.



The SSA was built using epidemic (gossip) communi-

cation protocols in conjunction with a novel variant of the

chain replication scheme which has evolved from the mech-

anism first proposed in [14]. Gossip based infrastructures

are beneficial because they are:

• Simple to implement

• Rapidly self-stabilizing after disruptions

• Analytically appealing

This paper reports on the architecture and performance

of the platform, and explores the limitations of its underly-

ing techniques. More specifically, the experiments are de-

signed to help us fully understand the fundamental proper-

ties of a single partitioned replicated service – and thus gain

a firm grasp on the behavior of the SSA’s building blocks.

We defer for future work the full scale evaluation of multi-

ple services deployed and running at the same time.

The SSA currently runs on a tightly coupled cluster of

blade servers. We show that developers can tune parameters

to trade overhead for speed of repair and we believe that our

results validate the approach.

2 Application model

Our work focuses on datacenters supporting one or more

services deployed within a cluster of compute nodes. For

example, an e-tailer might implement a front-end service

that builds web pages, parallelizing the task by dispatch-

ing sub-tasks to services to rank product popularity, main-

tain personal blogs, compute recommendations, track in-

ventory, schedule shipping, and so forth. The front-end

service would probably just be cloned, with identical repli-

cas that build pages, while the back-end services might be

partitioned into subservices for scalability using some key

(for example product-id), and subservices cloned for fault-

tolerance and load-balancing. This is a common model;

Jim Gray and others have suggested that such a system be

termed a “farm” consisting of “RAPS” (reliable array of

partitioned services) and “RACS” (reliable array of cloned

server processes; see Figure 1) [5].

Up to the present, this structure has arisen mostly in very

large datacenters and is supported primarily in the context

of three-tier database architectures. However, we believe

that similar architectures will be needed more widely, be-

cause the need to tolerate heavy loads is increasingly ubiq-

uitous, and economic considerations favor clustered solu-

tions. For example, game servers require scalability for sit-

uations in which there are many users; military systems re-

quire scalability to support new generations of integrated

applications; hospital automation is putting new demands

on medical information subsystems. In a wide range of

everyday settings, the rollout of SOAs and the ease of ap-

plication integration they support will place services under

growing load.

Our goal is to make it easy to build RAPS and RACS

from traditional, non-replicated, web service applications

designed for quick responsiveness. However, we also want

to build the simplest platform capable of accomplishing this

task.

UpdatesQueries Data Center

... ... ...

Service 1 (a set of RACS)

Subservice (a RACS) k

...

ChainGossip Traffic

... RAPS

Figure 1: Datacenter abstractions.

2.1 Elements of the model

A service is simply an application that provides inter-

faces that manipulate objects of unspecified nature:

• A query operation reads some object and returns a

computed value.

• An update operation modifies one or more objects.

One unusual assumption made in our work is that many

services can process updates out of order. More precisely,

we focus on services that

• Can respond “correctly” to queries even if some up-

dates are temporarily missing.

• Converge into a state determined entirely by the set of

updates, so that if two members of some subservice re-

ceive the same updates they will be in equivalent states,

even if those updates were delivered in different or-

ders.

• Guarantee idempotence: a reissued query or update re-

turns an equivalent result.

What this amounts to is that the SSA should deliver updates

as soon as it can even if they are not in order. Of course, one

way that an application might process out of order updates

is simply to delay processing them until it can sort them into

order, but we believe that for many uses, it will be possible

to act on an update or query immediately upon receiving it.

The SSA can support RAPS, RACS and combinations: a

RAPS of RACS. A service that can be structured as a RAPS

must have a partitioning function that can be used to map



each operation to the subservice that should execute it. Ex-

isting systems typically implement partitioning functions in

one of two ways:

• Client side. The service exports its partitioning func-

tion, so that clients are able to locally implement the

logic mapping requests to subservices. For example,

the cluster might control the DNS, or could influence

the creation of web pages by modifying URLs, so that

clients will be directed to an appropriate subservice. In

the limit, the servers might export actual code that the

client runs.

• Server side. The partitioning logic is situated on a

load balancing component resident in the server clus-

ter. The load balancer sprays requests over the subser-

vices in accordance with server logic.

The SSA supports the latter approach, offering a mecha-

nism that assists the load-balancing component in tracking

membership so that it can appropriately route queries and

updates.

Finally, we assume that processes are fail-stop: should a

failure occur, the process halts, and will eventually be de-

tected as faulty. However, a failure may be transient: a pro-

cess can become temporarily unavailable, but then restart

and recover any missing updates.

2.2 Discussion

Our model is not completely general, and for this reason

some discussion is needed. Consider the following exam-

ple: we wish to support a scalable inventory service that

receives updates corresponding to inventory consumption

and re-stocking. Queries against such a service would com-

pute and return an inventory count as of the time the query

was processed. But inventory can change in real-time. The

identical query, reissued a moment later, might yield a dif-

ferent result and yet both would be correct. Thus, responses

reflecting a reasonably current server state are acceptable.

On the other hand, a response reflecting a very stale state

would be incorrect: A client should not be offered a pro-

motional price on a plasma TV if the last unit was actually

sold hours ago. In short, the inventory service should re-

flect as many updates as possible in the replies it gives to

requests, but any reply is correct provided that it was based

on a recent state. Below, we shall see that the SSA allows

brief inconsistencies but that they can be limited to a few

seconds.

Operations against the inventory service happen to be

commutative, hence the service can process updates out of

order. But many kinds of services can handle out of order

updates, if for no other reason than that in many settings,

each update is uniquely sequenced by its source, permitting

the service to sort updates and to process queries against the

sorted database.

Our group has held discussions with operators of sev-

eral large datacenters, and concluded that many services

have the kinds of properties just cited: ability to respond

based on a reasonable current state, and to handle out-of-

order updates. The SSA is a good match for “personal-

ization” services ([11] [13] [15] [2]); these deal primarily

with weakly consistent data, caching proxies, transforma-

tion proxies, and all sorts of services in which replies are

intrinsically “noisy”, such as services that report data gath-

ered from remote sensors. Of course, a datacenter would

also host some kinds of services ill-matched to our model,

but because we are working with Web Services, services

running on the SSA can easily interact with services that

employ other solutions.

2.3 Consistency semantics

The SSA implements stochastic consistency semantics:

an application will only observe an inconsistency if a fault

occurs, and even then only for a period of time associated

with our repair protocol, and only if it has the bad luck to

query a node impacted by the failure. This window can

be made small, so that applications are unlikely to observe

a problem, or permitted to grow somewhat larger, depend-

ing upon the cost of inconsistency and the relative value,

to the end-user, of faster response time versus lower risk of

an observed fault. In the experimental work that follows,

we measure these windows for scenarios representative of

conditions that arise in realistic settings.

3 The SSA Framework

The basic operation of the SSA is as follows. As queries

or updates are received in the cluster, they are passed

through a partition mapping component, which directs the

request to an appropriate RACS. We will use the term sub-

service rather than RACS in the remainder of the paper.

To create a subservice the developer must first implement

a non-replicated service program. This is then cloned using

the SSA platform. Each replica is placed on a separate node,

and the replicas are then linked using TCP to create a chain

(see Figure 1). We therefore have a 1:1 mapping between a

subservice and a chain.

3.1 Gossip based chain replication

The replication scheme has evolved out of the chain

replication mechanism first introduced in [14]. The orig-

inal scheme was developed as a means of obtaining high

throughput and availability for query and update requests

without sacrificing strong consistency guarantees. As it



stands, the gossip based chain replication behaves in the

following manner during normal operation – when nodes

aren’t failing or restarting:

• Update operations are forwarded to the head of the

chain, where the request is processed using the local

replica. The state changes are passed along down the

chain to the next element, which in turn updates it’s

state and performs the same operation until the tail is

reached.

• Queries can either be directed towards a randomly

selected process in the group or to a specific one.

The strongest consistency guarantee is acheived if all

query operations are targeted at the tail of the chain

node, which is the case for the vanilla chain replica-

tion scheme; however this eliminates the opportunity

to load-ballance.

Faults and node restarts can disrupt the “primary” com-

munication pattern of the SSA. If the head of a chain fails,

update sources will need to discover a new head; if an inner

node crashes the chain may break, and if the tail crashes,

acks might not be sent back. During such periods, a sub-

service (or some of its members) can become inconsistent:

processes will miss updates and hence queries will return

outdated results. To repair these inconsistencies, the SSA

implements a “secondary” update propagation mechanism:

it uses gossip protocols to rapidly detect and repair incon-

sistencies, while simultaneously orchestrating repair of the

chain. The gossip rate can be tuned: with a higher rate over-

heads rise but repair occurs more rapidly; with lower rates,

repair is slower but overheads drop. The subsections that

follow discuss the two core mechanisms in greater detail.

A second class of faults are transient and relate to the

behavior of TCP when a node is subjected to stress, such

as a burst of traffic. In these cases, the OS tends to lose

packets and the effect is that TCP will impose congestion

control mechanisms and choke back. Updates will cease to

propagate down the chain, even though most of the nodes

involved could still have ample capacity. Below, we will

show that when such a problem arises, gossip will route data

around the congested nodes, and will also deliver missed

updates to the overloaded nodes when the problem ends.

In the original chain replication scheme the queries are

directed to the tail of the chain. Since there is no additional

epidemic communication, any update known to the tail is

stable because it must first have been seen by all the mem-

bers of the chain. To maintain such an invariant, the original

paper includes mechanisms to ensure that a request really

reaches the head of the chain, that updates are passed down

the chain and applied in a strictly FIFO manner even when

nodes fail and the chain is restructured, and that queries

are sent to the tail of the chain. Strong consistency follows

easily because query requests and update requests are pro-

cessed serially at the tail element.

The gossip based chain replication weakens the model

in two key respects. First, our solution might sometimes

use the “wrong” head of the chain, for example if an up-

date source is operating with inaccurate membership infor-

mation. Second, updates might sometimes arrive out of or-

der, for example if the chain is disrupted by a failure and

some updates arrive via the gossip protocol. These changes

substantially simplify the algorithm but they also weaken

the properties of the solution. A less significant change is

that we load-balance queries over the members of the chain;

this weakens consistency, but in ways that seem to match

the class of applications of interest, and has the potential to

greatly improve query performance.

3.2 Epidemic dissemination

As noted earlier, SSA uses gossip to detect and repair the

inconsistencies that can arise after a failure or when a node

joins. The basic idea is simple: each process in the system

runs a periodic local timer, without synchronization across

processes. When a timer expires, a process computes a sum-

mary (also called a “digest”) of its state1 - a list of things that

it “knows”. This summary is sent to a randomly selected

peer (or subset of peers). Quick delivery is more important

than reliability for gossip messages, hence we favor UDP

datagrams over TCP for this kind of communication. The

recipient compares the gossiped information with its own

state, identifying information known to the sender but un-

known to itself, or known to it but apparently unknown to

the sender. It then sends back a gossip reply (again, using

an unreliable datagram protocol) containing information the

sender might find useful and requesting information it lacks.

Receiving this, the originator of the exchange will send a fi-

nal message containing any data that was solicited by the

receiver. Gossip messages are bounded in size.

Thus during a “round” each process will send a message,

perhaps eliciting a reply, and perhaps will respond to that

reply. In the worst case, a round results in 3 messages per

process. The load imposed on the network will thus be lin-

ear in the number of processes, but any individual process

will see a constant load (independent of system size).

The SSA gossips about membership, failures, recoveries

and application state, using this information to initiate re-

pairs. One form of repair involves disruption to a chain: if a

fault breaks a chain or disables the head of a chain, gossip is

used to detect the problem and repair involves designating

a new head for the chain or establishing a new TCP con-

nection bridging the gap. A second form of repair involves

lost updates: if subservice A has a member m that knows

1We assume that all forms of information are uniquely named and that

updates are ordered separately by each update source.



of update X and a member m′ that lacks X , gossip can be

used to detect this and m can then send X to m′ directly

(without waiting for the chain to be repaired).

Gossip is not a particularly fast protocol: in general, in-

formation requires log(N) rounds of the protocol to reach

N processes. On the other hand, if rounds occur frequently,

the delay before information spreads to all members of a

system may still be small, even in a large system. More-

over, gossip is astonishingly robust; there are exponentially

many paths by which information can pass from point A to

point B, hence almost any imaginable disruption short of a

lasting partitioning failure can be overcome.

The gossip protocols implemented in the SSA have been

designed specifically for use in our modified version of

chain replication, and with the goal of running in large clus-

ters or datacenters. Let σ be a group of processes, and let p

be a process in that group p,∈ σ. Each process has its own

view of the group, denoted view(p, σ). These views can

lag reality (for example if a process joins or leaves), and

different members might not have consistent views. Our

work assumes that the network within a cluster does not

partition, although there are low-probability failure patterns

that could temporarily partition some subservice in a logical

sense. Every round (time quanta, or step interval) process p

chooses a random subset of a particular size ξ ∈ view(p, σ)
and commences a dialog with each process in the set ξ. The

initial message is a compact state digest summarizing the

state of the sender. The follow up dialog consists of an ex-

plicit request of missing update operations.

Several details of the epidemic protocols employed in

the framework turned out to be important determinants of

system performance and behavior:

• Suppose that a process disseminates information via

epidemics about a subject s. Process p gossips about

subject s a finite number of times, as long as subject

s is hot, after which subject s is no longer gossiped

about.

• Explicit requests for copies of missed messages are

limited in size, to prevent a process that lagged behind

or just joined from trying to catch up all at once, which

would result in enormous messages and serious fluc-

tuations in system load. Instead, such a process may

need to catch up over many seconds.

• Explicit message requests are honored if the requested

messages are still in the bounded buffers. Once a mes-

sage has been delivered to the upper levels, and it has

been expunged from the buffers located at the gossiper

level, requests are simply ignored (the requesting pro-

cess would have to try to find the missing data else-

where). If data cannot be recovered, we signal this

to the application by delivering an exception upcall

(MISSING DATA) and leave it to the application to

decide how to handle the problem. The size of the

buffers is configurable, but this rule implies that cer-

tain kinds of failures may be unrecoverable within the

SSA.

• Digests are bounded in the number of messages they

advertise about in one single datagram packet, and

each round only a single digest is disseminated, even

if the subset view selected (randomly) has cardinality

greater than one.

• Messages that are potentially in transit are not retrans-

mitted to requesting processes. For example if a pro-

cess p makes an explicit request for a message m and

the request lands at process q that has already sent p a

copy of m in the recent past then m will not be retrans-

mitted.

• A process creates a digest based upon all the messages

received by means of any communication channels,

not just the epidemics (e.g.: the messages received by

FIFO chained channels).

• The message buffers are bounded, and once a message

has been delivered by means of an upcall it is prone to

be replaced by the replacement policy. The SSA im-

plements several replacement policies: simple FIFO,

most advertised message in digests, most disseminated

message, most propagated message.

Although the SSA should work well on clusters with as

many as thousands of nodes, companies like Google and

Amazon reportedly operate centers with tens of thousands

of machines in them, and are said to deploy some popular

services on huge numbers of nodes. Were we to use the

SSA in such settings, our gossip protocol might need to be

revisited to ensure that messages do not become excessively

large. One way to accomplish this might be to modify the

epidemic protocol using spatial distributions to improve the

performance [8]. Such an approach would let us restrict

information to the vicinity of the nodes where it might be

needed, in effect adding an additional layer of hierarchy to

the architecture. We believe the required changes would be

relatively minor.

3.2.1 Epidemic Analytical Model

One benefit of using gossip in the SSA is that we can use

analytical methods to predict the behavior of a cluster, com-

plementing our experimental work.

A basic result of epidemic theory states that simple epi-

demics eventually infect the entire population with proba-

bility 1. Moreover starting with a single infected site this

is achieved in expected time proportional to the log of the



population size [3]. The protocol roughly falls under the

category of a push-pull model, and the exact formula for it

can be expressed as log2(n) + ln(n) + O(1) for large val-

ues of n, where n the number of sites participating in the

epidemic spread.

Let pi be the probability that a site remains susceptible

(not touched by the epidemic) after the ith round of the pro-

tocol. A site remains susceptible after the i + 1th round if

it was susceptible after the ith cycle and it is not contacted

by any infectious site in the i + 1th round. The recurrence

relation that we obtain is: pi+1 = pi

(

1 − 1
n

)n(1−pi)
.

Since infection starts with one site, for any randomly

chosen site p0 = 1 − 1
n

. Thus, as a function of the rate

of gossip, we can predict the delay before a typical pro-

cess that has been disrupted by a failure will learn about

inconsistency introduced by the failure and can initiate re-

pair. For example, if the model predicts that for a given

gossip rate, a broken chain should be repaired within 1.5

seconds, one can anticipate that the disruption associated

with a failure should be limited to the maximum number of

updates that would be sent to a given subservice during a

1.5 second window. Moreover, if we know how large the

typical update is, in bytes, and we know the size limit on

data sent in response to explicit requests, we can predict

the amount of time that will be needed to repair the result-

ing data inconsistency. These capabilities should help the

developer parameterize the cluster to balance overhead for

gossip against repair times desired by the application.

4 Membership

Some readers may be curious about what will seem to be

a chicken-and-egg problem. On the one hand, we use gos-

sip epidemics to propagate information about membership

changes. Yet the gossip protocol uses membership informa-

tion to select gossip peers. In practice, our solution starts

with approximate membership information (extracted from

a group management service component that list the nodes

in the cluster and the rough mapping of services to those

nodes) and then refines this with incremental updates.

A different concern relates to behavior when member-

ship information is perceived differently at different nodes.

Although such a condition may arise during transitional pe-

riods, these quickly resolve as additional rounds of gossip

replace stale data with more accurate, recent information.

In our experiments, we have never observed a membership

inconsistency that persisted for longer than a few hundred

milliseconds. The SSA is quite tolerant of short-lived in-

consistencies.

NonBlockingTransport(TCP/UDP)

Gossiper ChainLink

SubserviceProcess

SubserviceControl

HeartbeatMonitor

CustomUserServiceApp

Figure 2: The component stack of one subservice process

4.1 Failure and recovery

Process failure detection is accomplished by means of

two mechanisms:

• Detecting FIFO channels that break (in our case

they are TCP channels with low value for the

SO TIMEOUT property).

• A gossip-based heartbeat detection mechanism.

Once a process is deceased, the information is propa-

gated within the group in two ways. First, the process that

has detected the membership change feeds the event de-

scription into the chain itself. This is delivered in chain or-

der to every non-faulty process and where necessary, chain

repair procedure is undertaken. Second, the same detector

process starts up a backup gossip notification stream. This

is a “fast dying” epidemic: it spreads rapidly but also dies

out rapidly. The FIFO channels are rebuilt appropriately

by the processes that identify themselves to be affected by

the membership change, and the group converges to a stable

configuration. Moreover, update sources can use this update

to reconnect to a new head of any chain that may have lost

its previous head as a consequence of the crash.

Similarly, if a process wants to join, it starts by sending

a request to a random member of the group. As a conse-

quence, the group member will commence a membership

change protocol as described above. Again once all the

nodes receive the membership event and update their view,

convergence is achieved.

5 Implementation Details

The framework was implemented using the Java lan-

guage and its non-blocking I/O stack. The system de-

sign was strongly influenced by prior work on high-

performance services platforms, notably Welsh’s SEDA ar-

chitecture [16]: components are highly autonomous, decou-

pled, and event driven. There are only four distinct control

threads in the component stack of a process (see Figure 2),

namely one for the non blocking transport, the gossip ele-

ment, the TCP chain and for the heartbeat component. To

date, the SSA is roughly 8700 lines of code.



The tests reported here employ a hard-wired partitioning

function. However, the SSA is a work in progress, and the

full-fledged system will use a software partitioning mecha-

nism based on the web services request invocation model.

Although extracting the partitioning key from incoming re-

quests will impose some overhead, we do not expect per-

formance of the full-fledged system to deviate significantly

from what is reported below.

6 Experimental Results and Validation
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Figure 3: Update delay as seen by individual processes; nodes 3, 4,

5, and 6 in a chain. Gossip rate 1/160 digests/ms, update injection

rate 1/80 updates/ms.

Our experiments were conducted using the SSA frame-

work deployed on a tightly coupled homogeneous cluster

of 64 processing nodes. The nodes are connected by two

separate high speed Ethernet backbone planes. We experi-

mented with several configurations; some placed the control

traffic on a different switched Ethernet segment while oth-

ers aggregated both the control traffic and the data traffic

on the same segment. No significant differences were ob-

served, but this may be because our control traffic consisted

mainly of “fast-dying” epidemics, which put little stress on

the communication channels. In the future we hope to ex-

plore scenarios that generate exceptionally heavy control

traffic, which would allow us to explore the benefits of isola-

tion of that traffic with respect to data traffic. In the interest

of brevity we did not perform any experiments to evaluate

the load balancing component but we plan to do so in the

future.

All the experiments involved a single partitioned and

replicated service. For ease of exposition, this service im-

plements a simple wall-clock. The service itself maintains

the time, with updates coming from client applications that
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Figure 4: Update delay, as seen by the entire chain. Update injec-

tion rate 1/80 updates/ms, gossip rate left: 1/80 digests/ms, right:

1/160 digests/ms.
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Figure 5: Update injection time against delivery time at node3.

Update injection rate 1/80 updates/ms, gossip rate left: 1/80 di-

gests/ms, right: 1/160 digests/ms.

read a high-quality clock and send the current value. As

processes forward updates along the chain, they will track

the clock themselves. All of our partitioning scenarios in-

cluded at least four subservices, and each subservice in-

cluded between 8 and 32 processes. We expect these to be

typical cases for real deployments of the SSA. It should be

noted that small subservice sizes (say less than 4) can result

in degenerate behavior and are not appropriate configura-

tions for the SSA architecture.

We created a 1:1 mapping between service processes and

physical nodes, in order to avoid OS resource contention.

We experimented with groups of 8, 12, 16, 32 processes; by

convention the head of the chain for each group was called

node0, and all update requests for a partition were routed

towards this node. Since delivery delays in the chain were

measured relative to node0, all the statistics pertaining to

the group disregarded node0’s data.

We simulated two classes of failures:

• Transient failures - At some time t one process (typi-

cally node3) fails. The system must detect the failure,

repair the broken FIFO channel, and continue opera-

tion. At time t + ∆, the failed process recovers and

rejoins the chain. The join protocol would run, and the

previously failed node would become the new tail of

the chain. The scenario is intended to model a com-

mon case in which the failure detection mechanism

senses a transient problem (typically, a node that has

become overloaded or is unresponsive for some other



reason, such as garbage collection), and does not re-

spond to the heartbeat within the accepted window).

By reconfiguring the chain, the load on node drops,

and the problem will eventually resolve. It then re-

quests a rejoin. A node crash that results in a reboot

would result in similar behavior.

• Transient link congestion - In this case, all the nodes

in the subservice remain operational, but one of them

becomes overloaded, causing the TCP link to the up-

stream node to become congested and starving down-

stream nodes, which begin to miss updates. This sce-

nario models a behavior common in experiments on

our cluster: when a node becomes very busy or the

communication subsystem becomes heavily loaded,

TCP at the node upstream from it will sense con-

gestion and reduce its window size. If the impacted

node is in the middle of the chain, it ceases to relay

updates (or does so after long delays), hence down-

stream nodes fall behind. In effect, the chain repli-

cation scheme slows to a crawl. Here, the SSA ben-

efits from its gossip repair mechanisms, which route

missing updates around the slow node (and later, route

them to that node, when it recovers and needs to re-

pair its state). Moreover, knowing that gossip will kick

in, an upstream node can deliberately drop updates on

congested TCP connections.

We used our wall-clock service to evaluate the behav-

ior of the overall system in various scenarios and with dif-

ferent parameters. A stream of updates of various rates is

injected into the head of the chain (node0) for groups of

nodes. At a pre-established point in time, a victim node re-

ceives a command that forces it to halt (the node continues

to listen for commands that would restart it). This is ac-

complished by having node0 send a crash command to the

victim node once a certain number of updates were injected

into the chain. At this time, t, the victim node will stop

participating in the normal protocol and will handle only

wakeup commands from this moment onwards. The chain

detects the failure, repairs and announces the membership

change. After a number of updates have been injected since

the crash command was issued, node0 sends a wakeup com-

mand to the victim node. At this time, t+∆, the victim node

rejoins the group, it has to catch up by obtaining copies of

updates that it has missed. We experimentally determined

that 8 repetitions of each experiment were enough to yield

accurate measurements with low variance.

Figure 3 shows the update delivery delay for a set of four

consecutive nodes in a chain, starting with the victim node,

node3. The chain length is 8, and we report on a gossip

rate of 1 digest every 160 milliseconds at a steady update

injection rate of 1 update every 80 milliseconds. There are

three anomalies that can be seen on the graphs. The first

one is experienced by the victim node for updates injected

between 16 and 32 seconds after the start of the experiment.

The second is experienced by all the other nodes for update

messages injected at around 20 seconds after the start of the

experiment, while the third one is a smaller mixed burst for

updates injected at 65 seconds into the experiment. Note

that the y-axes have different scales to observe how the sys-

tem handles the transient failure better, therefore the third

anomaly appears to grow with the chain distance from the

victim node. The growth is not significant, since the cause

of this anomaly is an artifact of Java’s garbage collection

mechanism kicking in. As can be noted, node3 performed

recovery for the updates it has missed during the period it

was down, because the chain delivers new updates at the

moment of rejoin, all past updates were solely recovered by

means of epidemics. The second anomaly that shows up in

the update delivery delay for the nodes downstream from

the victim node reflects the period when the chain is bro-

ken. During the time it took for the failure detection mech-

anism to declare the node deceased, to start up the member-

ship change protocol, and for the membership information

to propagate, the chain is interrupted between node2 and

node4, and hence the updates circumvent the gap by means

of gossip. Updates can bypass nodes in the chain using the

gossip as it can be seen in the figure, but this phenomenon is

less likely as the node receiving the update is farther away

downstream from the victim node.

Figure 4 contains an aggregated view of the data in Fig-

ure 3 for the entire chain, at gossip rates of 1 digest every 80

milliseconds and 160 milliseconds showing that the behav-

ior of the scheme is not a fluke. Note that the delay of the

updates delivered at the victim node is significantly larger

than that of the nodes downstream of it in the chain.

We observed that even with sufficiently high gossip rate,

the only node to experience any significant inconsistency

window is the node that failed. Note that when the failed

node rejoins, queries are performed against its data before it

has time to fully recover. Once the chain is restored, all new

updates are received. There were rare cases when gossip cir-

cumvented the chain replication even though the chain was

not broken, but this happened only for gossip rates close to

the update injection rate. Later in this section we will show

that even with these rapid repairs, the gossip overhead is ac-

tually low (less than 0.07% of the messages were delivered

by gossip ahead of the chain for gossip rate identical to the

update injection rate).

Figure 5 contains a plot of update injection time against

update delivery time for the victim node. Ideally this is a

straight line because of chain replication. Note that once

the victim node recovers, it gracefully catches up and does

so quickly for both gossip rates identical and half the update

injection rate.

Now consider the link congestion case (Figure 6). In
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Figure 6: Update delay as seen by individual processes during per-

sistent link congestion – node2 drops 40% updates on upstream

and downstream FIFO channels; nodes 2, 3, 4, and 5 in a chain.

Gossip rate 1/160 digests/ms, injection rate 1/80 updates/ms.
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Figure 7: Inconsistency window against the ratio between injec-

tion rate and gossip rate (left - average, right - maximum), different

update injection delay.

this scenario, we modeled node2’s overload by dropping up-

dates on its inbound and outbound FIFO channels according

to a random distribution throughout the first three quarters

of the experiment (we experimented with 25%, 30%, 40%,

50%, 75% and we report on 40%). Updates that were ini-

tially dropped and eventually made their way through gos-

sip could later be sent via FIFO channels as shown by the

increasingly large density of dark (“FIFO delivered”) plots

closer to the tail of the chain. As before note that the y-

axes have different scales to observe the delays better. The

figures show that even for a gossip rate half the injection

rate (recall that this is the rate at which digests, not mes-

sages, are exchanged between two or more processes) the

epidemics could deliver messages with a delay of about 3.5-

4s for nodes 2 and 3, and at most 2s for the rest of the chain

during a congestion that took 75 seconds. The plot also

shows that delays increased with time, therefore if conges-

tion may span large periods of time, the gossip rate must be

carefully tuned to compensate for the losses induced by the
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Figure 8: Inconsistency window against gossip rate at the failed

node (left - average, right - maximum), update injection rate 1/40

updates/ms, different ∆ - time between node failure and rejoin as

number of consecutive updates missed by the victim node.
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Figure 9: Inconsistency window against gossip rate for the whole

chain (left - average, right - maximum), update injection rate 1/40

updates/ms, different ∆ - time between node failure and rejoin as

number of consecutive updates missed by the victim node.

congested TCP channels.

The second round of experiments quantified the average

and maximum inconsistency window for a service (the same

wall-clock), under various update injection rates and gossip

rates respectively. We define the inconsistency window as

the time interval during which queries against the service

return a stale value. Figure 7 shows that the inconsistency

window grows slowly as the gap between the update injec-

tion rate and the gossip rate widens (the graph’s x axis rep-

resents the ratio between the update injection rate and gos-

sip rate). This confirms that epidemics are a robust tunable

mechanism providing graceful degradation. Likewise, the

inconsistency window shifts in accordance with the update

injection rate. Finally, notice that the difference between the

maximum inconsistency window and the average inconsis-

tency window is two orders of magnitude. This reflects the

degree to which the victim node lags the other nodes during

the period before it has fully caught up.

Next we evaluated the inconsistency window of a ser-

vice running at a particular update rate, and for three dif-

ferent intervals in which the victim node is halted. Fig-

ures 8 and 9 show average and maximum inconsistency

windows for both the victim and for the other processes of

one subservice. As expected, the more messages the victim

node needs to recover, the larger the inconsistency window.

Again the difference between the average and maximum in-
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Figure 10: Delivery distribution for a chain, injection rate 10 up-

dates/s. Gossip rate left figure: 1/140 digests/ms, right figure:

1/250 digests/ms. On each graph left bars denote transient failure

(normal), right bars denote a transient failure corroborated with a

link congestion phenomenon modeled by 50% message drop on

the adjacent FIFO channels of node2 (degenerate).
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Figure 11: Delivery distribution for a chain, injection rate 50 up-

dates/s. Gossip rate left: 1/28 digests/ms, right: 1/50 digests/ms.

Same as Figure 10.

consistency windows is slightly more than an order of mag-

nitude, and this is attributable to the victim node – observe

that the two graphs denoting the maximum inconsistency

windows for the victim node and for the entire chain are

identical, which means that clients perceiving significant in-

consistency are the ones that are querying the victim node

while it is still recovering state.

Finally we performed a set of experiments to determine

the distribution of messages delivered by the chain vs de-

livered by gossip. As before, one transient failure affects

the wall-clock service. The runs are eight times longer than

the runs before (both in total experiment time and time the

victim node is halted).

Figure 10 and Figure 11 show the number of messages

delivered by the chain replication mechanism and the ones

delivered by the epidemics, for each of the nodes in a chain

(again we omitted the head of the chain node because its be-

havior is not representative, and in this experiment we have

chains of length 7). Obviously, node3, the victim, delivered

updates by means of the gossip repair mechanism. As the

nodes get further away from the victim node, more of the

messages were delivered by means of the chain, because

the repair mechanism relinked the chain and chain repli-

cation began to function normally. The speed with which

the chain is restored depends on the rate of the fast-dying

control gossip, and on the responsiveness of the failure de-

tection mechanism.

We found that less than 0.07% of the messages were de-

livered by gossip for the nodes to the left of the victim. This

confirms that gossip rarely is used to circumvent chain repli-

cation in the normal case.

A peculiar effect is noticeable in Figure 11, in that more

messages are delivered via gossip, even in the prefix part

of the chain, although the effect is also evident in the suf-

fix. It is more significant on the left hand side figure, where

the gossip rate is higher. Because we observed this phe-

nomenon only with update rates of 50 updates/s or more, we

suspect that the network stack is more efficient in dealing

with UDP packets then with TCP ones under heavy load.

7 Future development

The current SSA implementation uses gossip in situa-

tions where faster notifications might be helpful. For exam-

ple, we believe that when a node fails or joins, it would be

useful to spread the news as quickly as possible. We real-

ize that for some particular tasks gossip could be done more

efficiently. We are therefore exploring the use of IP multi-

cast for dissemination of urgent information as long as the

physical nodes are not on a public network segment. Ad-

ditionally, we plan to include support for the partitioning

of the services by means of registering partition function

handlers with a global data-center registry. Finally, as men-

tioned previously, we have implemented only the server side

load balancing scheme. We are considering ways to extend

our approach for use in settings where partitioning is done

on the client side, and hence client-side access to subservice

membership information is needed.

We are also developing a GUI assisted automated web

service deployment tool, focused on web service applica-

tions. Developers could simply drop a WSDL service de-

scription, tune a set / subset of parameters, and the system

will generate a XML description that can be used later on to

actually deploy the service automatically. The service will

be partitioned, replicated, and deployed on the fly on top of

the processing nodes.

7.1 Scaling up

To turn the SSA into a full scale platform, one of the

immediate future challenges is the necessity of evaluating

a full “RAPS of RACS” deployment. Multiple partitioned

and cloned services running on our tightly coupled cluster

would lead to a series of other issues that should be investi-

gated, such as:

• Placement – given a set of services, how to place the

clones on physical nodes in order to satisfy certain con-

straints (e.g. best response time).



• Caching placement – deciding if some services would

benefit if they are fitted with response caches, and ulti-

mately placing the cache components in a smart way.

• Service co-location – placing multiple service clones

on the same physical node to exploit fast IPC commu-

nication as opposed to network messages if the benefits

overweigh the cost incurred by resource contention on

the shared host.

• Management tools – developing tools that monitor ser-

vice properties such as response time, and react ac-

cordingly (e.g. by restarting new clones).

• Using VMM tricks – virtual machines can be used to

migrate transparently a collection of services on a dif-

ferent physical processor, or provide isolation guaran-

tees between co-located services.

8 Related Work

Broadly, the SSA can be seen as a platform that lever-

ages tradeoffs between weaker consistency (with a com-

pensating gossip repair mechanism) for higher availability

and simplicity. This is an old idea first explored in the

Grapevine [1] system, and later in systems like Bayou [4]

which offer a broad operational spectrum between strong

(ACID in the distributed database cases) and weak consis-

tency. Several database and distributed systems take advan-

tage of the same tradeoff, for example allowing multiple up-

dates to occur simultaneously at distinct replicas by speci-

fying a maximum accepted deviation from strong consis-

tency (continuous models) [17] [18], tolerating a bounded

number of consistency violations to increase concurrency

of transactions [9], or replication according to the need-to-

know principle [10]. Our work on the SSA is the first to

apply such thinking to a cluster computing environment.

The TACC [6] platform was designed to provide a clus-

ter based environment for scalable Internet services of the

sort used in web servers, caching proxies and transforma-

tion proxies. Service components are controlled by a front

end machine that acts as a request dispatcher and incorpo-

rates the load balancing and restart logics. If back-end pro-

cesses are detected to have failed, new processes are forked

to take over the load. TACC “workers” can be composed

to address more complex tasks (TACC stands for transfor-

mation, aggregation, caching and customization). SSA can

be seen as revisiting these architectural ideas in conjunction

with chain replication.

Database management systems (DBMS) simplify appli-

cations, have long supported clustered architectures, and

were the first systems to exploit the style of partitioning that

leads to a RAPS of RACS solution. However, unlike the

SSA, most database systems adhere closely to the ACID

model, at potentially high cost in terms of reduced avail-

ability during faults. Jim Gray et. al. discuss this prob-

lem in [5], ultimately arguing for precisely the weak update

model that we adopted here.

Application servers like the J2EE [12] offer persistent

state support by wrapping soft state business logic com-

ponents on top of a relational or object-oriented database.

They also target large-scale highly available services, and

hence we believe they could benefit from SSA-hosted ser-

vices. In a similar vein, the Ninja [7] framework makes it

easy to create robust scalable services. Ninja is arguably

more flexible than application servers in that it performs

connection management and automatically partitions and

replicates persistent state, but the framework takes a differ-

ent tiered approach to services based on bases, active prox-

ies and units, and represents shared state by means of dis-

tributed data structures.

9 Conclusion

Our paper presents the Scalable Services Architecture, a

new platform for porting a large class of service-oriented

applications onto clusters. The SSA was designed to be as

simple as possible, and at the core uses just two primitive

mechanisms: TCP chains that support a variant of chain

replication, and gossip epidemics which are used to man-

age configuration data and initiate repair after failures. With

appropriate parameter settings (specifically, given a gossip

rate that is sufficiently fast relative to the update rates seen

in the cluster), we find that the SSA can rapidly and au-

tomatically reconfigure itself after a failure and can rapidly

repair data inconsistencies that arise during the period when

the cluster configuration was still disrupted. Our goal is to

make the software available to a general user community in

2006.
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