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Abstract

Soft state in the middle tier is key to enabling scalable
and responsive three tier service architectures. While soft-
state can be reconstructed upon failure, replicating it across
multiple service instances is critical for rapid fail-over and
high availability. Current techniques for storing and man-
aging replicated soft state require mapping data structures
to different abstractions such as database records, which
can be difficult and introduce inefficiencies. Tempest is a
system that provides programmers with data structures that
look very similar to conventional Java Collections but are
automatically replicated. We evaluate Tempest against al-
ternatives such as in-memory databases and we show that
Tempest does scale well in real world service architectures.

1 Introduction

Service-Oriented Architectures (SOAs) have emerged as
the paradigm of choice for structuring large datacenter-
hosted systems. Most contemporary large-scale applica-
tions are built as SOAs: online stores, search engines, en-
terprise software and financial infrastructure are some ex-
amples. The canonical design for such systems is a three-
tier architecture: a first tier load-balancing proxies sends
requests to a second tier of state-less service logic which in
turn accesses and updates a third tier of durable databases
or filesystems.

Soft state in the service tier is key to building highly re-
sponsive and scalable SOAs. Soft state is characterized as
data that does not have to be stored durably and can be re-
constructed at some cost [33, 18, 14] — examples include
short-lived user sessions, stored aggregates and transforma-
tions on large datasets, and general purpose write-through
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caches for files and database records. Third-tier constructs
are extremely fault-tolerant but correspondingly slow and
expensive, and soft state is typically used to limit their role
in performance-critical data paths. For example, the devel-
oper of an online travel service might use the memory of
the service instance to store intermediate choices made by a
user during the booking process, so that only the final sale
transaction — a small fraction of all user activity — hits the
third-tier database.

In this paper, we consider the availability of soft state
stored in the service tier. When soft state is lost or made
unavailable due to service instance crashes and overloads,
reconstructing it through user interaction or third-tier re-
access can be expensive in time and resources. Replicat-
ing soft state provides applications with two critical capa-
bilities: rapid fail-over to other instances during crashes
and fine-grained load-balancing across instances to prevent
overload [33]. For example, a user request can be trans-
parently redirected during a crash or overload to a different
service instance that has up-to-date session context, without
requiring her to log in again.

Many options exist for adding high availability to
programs that manipulate soft state and these can be
broadly classified into three categories: clustered appli-
cation servers [3], messaging toolkits, and collocated in-
memory databases. However, all these options require
the developer to write code in “state-aware” ways, map-
ping data structures to special replication-aware containers,
replicated state-machine stores and database-style records,
respectively. Such mapping needs to be done carefully
to avoid performance issues — for example, storing fine-
grained variables in a database could result in severe locking
contention [1]. However the natural way for programmers
to store and manage soft state in a service is to use con-
ventional in-memory data structures such as hash tables or
linked lists.

In this paper, we present Tempest, a Java runtime library
designed for easy storage and replication of service-level
soft state. Tempest provides developers with TempestCol-
lections: custom data structures that look similar to conven-
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tional Java Collections [27]. Data stored in these structures
is transparently replicated across multiple machines, pro-
viding fail-over and load-balancing for soft state with zero
extra effort by the developer. Under the hood, Tempest uses
a fast but unreliable IP multicast operation to spread/broad-
cast invocations to multiple service instances and then uses
gossip-based reconciliation to maintain replica consistency
in the face of faults and overloads. Additional adaptive
mechanisms are used to maintain high responsiveness dur-
ing failures.

High-performance in-memory databases are used ex-
tensively to store soft state in currently deployed sys-
tems [5, 22] and we show that Tempest outperforms them
by more than an order of magnitude in large-scale SOA set-
tings. Real-world SOAs often have many services interact-
ing with each other to perform complex tasks — for exam-
ple, a first-tier front-end could contact a hundred second-
tier services to assemble a webpage [15]. Further, each ser-
vice is potentially contacted in parallel by a large number of
load-balancing first-tier front-ends. Tempest scales in both
the number of front-ends querying a single service and the
number of services being queried by a single front-end. In
contrast, in-memory databases fail to scale in these dimen-
sions due to contention, large latency variations and inef-
ficiencies in cross-process interactions between the service
and the database.

Accordingly, the contributions of this paper are as fol-
lows:

• We present a Java runtime library that exposes data
structures to programmers that are transparently repli-
cated across multiple nodes.

• We describe the gossip-based mechanisms used within
the system for rapidly replicating data and speeding-up
access to it.

• We evaluate Tempest on two datacenter-style testbeds
— the Emulab testbed at Utah [30] and a 255 node
cluster at Cornell. We show that Tempest maintains
rapid responsiveness under heavy loads and outper-
forms in-memory and on-disk databases while scaling
in two important dimensions — the number of front-
ends accessing a single service and the number of ser-
vices composing a single response.

The remainder of this paper is structured as follows: Sec-
tion 2 describes the interface and semantics provided by
TempestCollections to service developers. Section 3 de-
scribes the protocols and mechanisms used by Tempest to
implement the TempestCollection abstraction, and Section
4 provides an evaluation of Tempest on datacenter testbeds.

2 The TempestCollection Abstraction

2.1 Service Model

Services are self-contained entities designed to support
interoperable machine to machine interaction over a net-
work [31]. Each service exposes an API through which a
set of methods can be invoked by clients, and each service
offers its own quality of service and availability guarantees.
Take for example the interface of a shopping cart service as
listed in Figure 1.

public interface ShoppingCartIF extends Iterable {
update int add(String itemSymbol, int count);
update int remove(String itemSymbol, int count);
update int update(String itemSymbol, int count);
read int check(String itemSymbol);

}

Figure 1. ‘Shopping Cart’ service interface.

Add, remove and update do the obvious things; these are
classified as update operations because they change state.
Check is a read operation; it retrieves the current number of
items in the shopping cart for the symbol of interest. Clients
issue add/remove/update and check requests against
the service; the service processes each request and in return
sends back a reply. This simple example can be trivially ex-
tended to services like item browsing history, product avail-
ability, product rating, or caching services.

In this work we assume that business logic is collocated
with soft state stored in the memory of the service instance;
as mentioned before, this is a natural design choice for ap-
plications requiring scalability and responsiveness. For ex-
ample, storing shopping cart information in-memory allows
the service to handle a large quantity of browsing traffic that
otherwise would have reached the third tier. A developer
implementing the shopping cart service in Java could use
different data structures to store the state of the cart; a natu-
ral way would involve using a hash table to store mappings
between item identifiers and corresponding counts.

Service state is modified by updates sent to it through its
interface — in the conventional three-tier setup, this refers
to database state hidden by the service, but in our case it in-
cludes soft state maintained by the service. In our shopping
cart example, items are added to or subtracted from the cart.

The implementation of a service as a Java application
running on a single node is obviously prone to crashes, over-
loads and slowdowns. Our goal is to transparently replicate
a service on multiple nodes while retaining the program-
ming ease and familiarity of Java’s built-in Collection data
structures. Accordingly, we provide developers with Tem-
pestCollections — data structures very similar to vanilla
Collections but providing automatic replication of the data
stored in them.
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2.2 TempestCollection: Syntax and Se-
mantics

TempestCollections are syntactically identical to stan-
dard Java Collections. For example, a TempestHashtable
exposes get and put methods while a TempestSet has
add,remove methods. Like most Java Collections, ob-
jects stored in a TempestCollection cannot be modified in
place. For example, to change a field inside an Object stored
in a TempestSet, the programmer would have to remove the
Object, modify it and then re-insert it into the set.

This is a very common programming idiom within the
Java Collections framework. For example, Java TreeSets
provide ordered iteration over their elements, and changing
the value of an item in-place can push the TreeSet into an
inconsistent state by modifying the outcome of compare op-
erations. Programmers are expected to instead change val-
ues by removal, modification and re-insertion if they want
the TreeSet to remain consistent and ordered. In general,
many Collections involve comparisons through equals
and compareTo — such as HashMaps, TreeSets or Hash-
Sets — and do not allow safe in-place modification of ob-
jects stored within them. In this respect, TempestCollec-
tions offer identical semantics.

To prevent accidental modification of stored items,
TempestCollections implement by-value parameter passing.
Deep clones of added Objects are stored within the Tem-
pestCollection and clones of stored Objects are returned by
accessor functions. For example, calling put(K, A) on
a TempestHashMap will result in a clone A′ being stored
within the collection, and calling get(K) will return A′′

to the programmer.
However, the Tempest runtime can alter the contents of

TempestCollections by adding and / or removing items to
keep collections consistent across replicas. TempestCollec-
tions provide eventual consistency — all replicas converge
to the same set of objects [10, 8]. An implication of this
model is that the programmer is not provided with ACID
transactions; however, this is not a major limitation for soft
state management [8]. In many soft state applications, data
stored within structures is naturally immutable — for in-
stance, a browsing history service that stores a list of item
identifiers. For others, updates do not depend on current
state — for example, a map from users identifiers to last
viewed items. Even if the soft state is manipulated with ar-
bitrary operations, it is expected by definition to not have
strong semantics — the user is always asked to verify the
contents of a shopping cart or the final itinerary of a travel
plan before committing to it.

To summarize, TempestCollections are data structures
exposing interfaces identical to those in the Java Collec-
tions framework and supporting similar semantics by not
allowing in-place modifications of stored Objects. The sole

deviation from the Java Collections framework – aside the
weak consistency implications – is that Tempest enforces
Object immutability by passing parameters by-value — a
side effect of this is the possibility for services to operate
on stale data.

3 Tempest Architecture
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Figure 2. Tempest architecture.

In this section we describe the mechanisms used to im-
plement replicated TempestCollections. Tempest services
reside on second-tier servers; a single server represents the
platform configuration on a single computer and might run
several services. A service instance stores data in one or
more TempestCollections. Multiple instances of a service
execute across different servers, and invocations to this ser-
vice are sent by first-tier front-ends to all the service in-
stances — see Figure 2 (front end initiates a multicast to the
servers that contain replicas of the same service instance).

The life-cycle of a Tempest invocation begins when a
client sends a request over the Internet to the datacenter,
which gets load balanced to a web-facing front-end node.
The front-end is then responsible for contacting a set of ser-
vices and aggregating individual service responses into a
composite result that it returns to the client. Front-ends use
IP multicast to perform web-service invocations on service
instances, allowing very rapid communication in the gen-
eral case; when multicast packets are dropped or delivered
at different orders across instances, gossip-based reconcil-
iation is used to repair gaps and errors in the TempestCol-
lections maintained by them.

3.1 Client Invocations

When a client request enters the datacenter at a front-end,
it’s tagged with a web service invocation identifier (wsiid)
consisting of a tuple containing the front-end node identifier
and sequence number. Front-end node identifiers are ob-
tained by applying the SHA1 consistent hash function over
the front-end’s IP address and port pair. Each Tempest re-
quest is thus uniquely identified by its wsiid.
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As mentioned previously, Tempest differentiates be-
tween updates and queries or reads. For updates, Tempest
uses IP multicast to send the operation directly to the full
set of Tempest servers that hold replicas of the service for
which the requests were intended. A hashing mechanism
is employed to determine which server instance is respon-
sible for replying. In the absence of message loss, which
common, IP multicast within datacenters is reliable and or-
dered.

For read requests, front-ends use an adaptive querying
mechanism. Each front-end periodically multicasts a bea-
con to each service and waits for unicast responses from
each instance. It selects the k instances that respond first —
where k is the redundant querying parameter — and subse-
quently directs service read invocations to these instances.

3.2 The Tempest Gossip Mechanism

Tempest is designed under the assumption that the mul-
ticast protocol used might not be fully reliable or might re-
cover lost packets at high latencies. If some replicas miss an
update, they can become inconsistent. Tempest uses a gos-
sip protocol to repair these kinds of inconsistencies rapidly.
Servers use a custom tailored gossip protocol to reconcile
differences between the TempestCollection replicas.

Tempest keeps track of all the operations performed at
the data structure boundary — this is possible due to our
by-value semantics of altering the collections. When an ob-
ject is added to a collection, it is annotated with the web
service invocation identifier of the corresponding invoca-
tion; when an object is removed from a collection, a death
certificate for it is created and annotated with the wsiid. A
death certificate is simply a means of retaining the informa-
tion necessary to identify which objects were removed from
a collection. In particular each TempestCollection keeps a
history of the removed objects in an internal private data
structure not exposed via the standard interface.

The anti-entropy mechanism works by having each
server “gossip about” the sets of web service invocation
identifiers (wsiids) that annotated objects in TempestCol-
lections. Suppose for example that during one gossip round
we have two service replicas r1 and r2 respectively engaged
in an exchange; let their sets of wsiids be denoted by w(r1)
and w(r1). If w(r1) = w(r2) no action is taken, otherwise
some invocations were missed by one (or both) and a “rec-
onciliation” phase is triggered:

• If w(r1) ⊂ w(r2) then r1 missed invocations and
holds a stale version of the state – as a result r1 re-
trieves from r2 the objects and death certificates an-
notated with the wsiids from the set w(r2) \ w(r1).
Objects referred by the death certificates are removed,
newly received objects are added; also r1’s set of wsi-
ids is updated accordingly: w(r1)← w(r2).

• If w(r1) 6⊂ w(r2) and |w(r1)| 6= |w(r2)| (the sets
have different cardinality) both replicas have missed
at least one update each, therefore to make progress
it is safe for any of the replicas to assume the other
replica’s state – without violating the “eventual con-
sistency” guarantees offered by the system. Choose
the replica that has the smaller w set – let it be r1 with-
out loss of generality; r1 performs the following steps:

– For every identifier i in the set w(r1) \ w(r2),
if i annotates an object then the object is dis-
carded, otherwise if i annotates a death certifi-
cate the object referred by the death certificate is
“resurrected” (added back to the collection).

– Fetch from r2 all objects and death certificates
annotated with identifiers from the set w(r2) \
w(r1). Remove objects referred by the death
certificates, add the new objects, and update
w(r1) ← w(r2). Here we used the heuristic of
discarding the state of the replica that received
less invocations, however one can imagine other
criteria.

• If w(r1) 6⊂ w(r2) and |w(r1)| = |w(r2)| then the ini-
tiator of the gossip round between r1 and r2 “plays the
role” of the replica with the smaller w and performs
the same operations as in the previous case.

An upcall is provided such that the service developer is
notified when a gossip reconciliation was triggered.

If no new invocations are issued against the system, and
if no permanent network partition that splits the servers
into two or more disjoint communication parties occurs the
TempestCollection replicas will eventually contain identical
elements with probability 1.0 [9].

During a gossip round, there can never be more than
3 messages issued per process (by protocol design). Cur-
rently the sets of web service identifiers are monotonically
increasing as new invocations are issued, therefore gossip
messages size increases with time. We are working on a
method for garbage collecting the stale wsiids by append-
ing an epoch number at wsiid generation time — tempest
servers will discard wsiids that are more than δ epochs old
for some choice of parameter δ. Another option is to use
efficient set reconciliation methods like the ones in [20, 4].

The strength of gossip protocols lies in their simplicity,
the fact that they are robust (there are exponentially many
paths information can travel in between two endpoints), and
the ease with which they can be tuned to trade speed of
delivery against resource consumption. The epidemic pro-
tocols implemented in Tempest evolved out of our previ-
ous work on simple primitive mechanisms that enable scal-
able services architectures in the context of large-scale data-
centers. A more thorough description of the basic protocols
and some of the optimizations can be found in [19].
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3.3 Membership and Failure Detection

Membership in Tempest is handled by the Group Mem-
bership Service (GMS), which maintains the mapping be-
tween servers and service replicas. In addition, it also
acts as a UDDI (Universal Description Discovery and In-
tegration) registry providing appropriate WSDL (Web Ser-
vices Description Language) descriptions for the services
deployed on Tempest servers. The GMS also fills the ad-
ministrator role for Tempest servers, monitoring the overall
stress and spawning new servers to match the load imposed
on the system. Finally, it monitors components to detect
failures and adapt the configuration.

Tempest assumes that processes fail by crashing and can
be reliably detected as faulty by timeout. Accordingly, Tem-
pest processes monitor the peers with which they interact
using a secondary gossip-based heartbeat mechanism. Pro-
cesses that are thought to be deceased are reported to the
GMS, which waits for f distinct suspicions before actu-
ally declaring it deceased. It then updates and dissemi-
nates group membership information to all interested par-
ties. While in our experiments the GMS is hosted on a
single high-end node, in a datacenter it could potentially
be replicated and partitioned across multiple machines for
scalability and fault-tolerance.

3.4 Node Recovery and Checkpointing

TempestCollections are automatically checkpointed. Pe-
riodically, each Tempest server batches the items in each
TempestCollection and writes them atomically to disk.
When a node crashes and reboots, upon starting the Tem-
pest server, the services are brought up to date with the state
that was last written to disk before the crash.

When a server is newly spawned, or when a server that
has been unavailable for a period of time missed many up-
dates, Tempest employs a bulk transfer mechanism to bring
the server up to date. In such cases, a source server is se-
lected and the contents of the relevant TempestCollections
are transmitted over a TCP connection. When multiple
services are collocated in a single server, the transfers are
batched and sent over a single shared TCP stream.

Newly spawned services and services that rebooted after
a crash will consequently “catch up” gracefully with the rest
of the service replicas by means of the epidemic protocols.

4 Experimental Evaluation

Tempest was implemented in Java, enhancing the
Apache Axis Soap [28] web services stack with a new trans-
port protocol that uses a multicast primitive, i.e. SOAP
over TempestTransport instead of SOAP over HTTP. The

Apache Tomcat

MySQL

Oracle TimesTen

Front-ends

Oracle TimesTen

Primary

Backup

Figure 3. Baseline configurations.

Tempest 
Containers

Cluster

Front-ends

Figure 4. Tempest configuration.

deep cloning capability was implemented using the Java Re-
flection API. The system components are built with Java’s
non-blocking I/O primitives using a high performance event
driven model similar to the SEDA [29] architecture.

The evaluation is structured as follows: in subsection 4.1
we show that a single replicated Tempest service can pro-
vide rapid response to large numbers of concurrent front-
end requests. In subsection 4.2 we show that this is true
even when services are heavily loaded. Finally, in subsec-
tion 4.3, we show that the two knobs provided by Tempest
— number of replicas per service and number of redundant
queries — enable rapid predictable response for “service-
clouds” composed of many collaborating services with dif-
fering timing characteristics.

4.1 Scalability in the Number of Concur-
rent Connections – Micro bechmarks

We ran a set of micro benchmarks to compare Tempest
against four multi-tier baseline scenarios. In all configura-
tions we had the same set of front-ends interacting with the
ShoppingCart web service. On one hand we deployed
the service on top of the Apache Tomcat server. The ser-
vice stores the data using a relational database repository
as shown in figure 3. We stored the data using the Or-
acle TimesTen in memory database (configured in “high
performance cache-mode” for in-memory operations only)
first co-located with the Tomcat server, second on a remote
third-tier machine and lastly deployed in a primary-backup
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configuration with the primary co-located with the Tomcat
container and the backup on the third-tier machine. The
primary-backup scheme provided by TimesTen that we used
is called return receipt, and it ensures that upon submitting
a request to the master the application is blocked until the
replication scheme confirms that the update has been re-
ceived by the backup. Since we configured TimesTen to
work without committing durably to disk every transaction,
the stronger return twosafe replication mode was not nec-
essary. We also use an ubiquitous on-disk database en-
gine, and for that purpose we relied on MySQL 5.0 with
the InnoDB storage engine configured for ACID compli-
ance — flushing the log after every transaction commit, and
the underlying operating system (Linux 2.6.15) with the
file system mounted in synchronous mode and with bar-
riers enabled. On the other hand we have deployed the
ShoppingCart service on 3 replicated Tempest servers
gossiping at a rate of once every 100 milliseconds (see fig-
ure 4) – we did not replicate Tomcat for load balancing since
all Tempest replicas were configured to receive every up-
date. The Tempest ShoppingCart service stores the data
inside a TempestMap.

The workload consists of multiple clients issuing 1024
byte requests at a rate of 100 requests per second against
the ShoppingCart service. Requests are issued in a closed
loop [25]. Every experiment had a startup phase in which
we populated the data repository with 1024 distinct objects.
Client requests were drawn from a Zipf distribution (with
s = 1) over the space of object identifiers – reads and
writes equally distributed. We report measurements of the
Web Service Interaction Time, i.e. the request latency as
observed by 1, 2, 4, 16, 32, 64, 128, 256, 512, 800 and 1024
concurrent clients. Results are averaged over 40000 runs
per client.

Figure 5 shows that Tempest latency is significantly less
– often by over an order of magnitude – than any of the
baselines, thus confirming that fault-tolerant services with
time-critical properties can be built on top of the Tempest
platform. The graphs also indicate that Tempest scales well
with the number of concurrent requests.

As can be seen from the breakdown of the latency, most
of the overhead comes from the round trip time and the
Tomcat container, which is to be expected since the work-
load consists of operations on small data records over the
database — we hypothesize that database lock contention
has not kicked in yet, the Tomcat container being the first
one to experience severe overload.

Looking more carefully at the breakdown of the latency
in figure 5 (the 1-to-32 concurrent clients spectrum) one can
notice that the time spent by a Tempest service manipulating
the data (i.e. performing object deep cloning, data structure
lock contention, web service invocation identifier tagging
and index maintenance) is small compared to the database

interaction — as a matter of fact it grows remains around 1
millisecond no matter what the number of concurrent clients
is — showing that fine grained data structures allow for bet-
ter performance under contention.

4.2 Graceful Recovery under Heavy Load

Next, we ran a set of experiments to report on Tem-
pest’s behavior in the face of failures. Node crashes turned
out not to be especially interesting since Tempest’s gossip
failure detection protocols quickly detect that the node has
failed, expel it from the group and shift work to other nodes.
More details on the timeliness of a variant of the gossip
based failure detector we used can be found in our previ-
ous work [19]. We did however identify a class of overload
scenarios that have a more visible impact on the Tempest
replicated services. These scenarios degrade some service
components without crashing them. The services become
lossy and inconsistent, and queries return results based on
stale data. Two questions are of interest here: behavior dur-
ing the overload, and the time required to recover after it
ends.

We replicated the ShoppingCart service on 6 Tempest
servers running on the Cornell cluster – each machine is
a 1.33Ghz Intel single CPU blade-server with 512MB of
RAM. We inject a single source stream of updates at a par-
ticular rate of one update every 20 milliseconds. The same
client perform query requests on 8 concurrent threads at the
same time. The query stream is at a higher rate than the
updates (in this case 4 times higher). Client requests were
drawn from a Zipf distribution (with s = 1) over the space
of object identifiers – reads and writes equally distributed.

The overload unfolds in the following way:

• At time t from the start of the experiment 128
“rogue” clients bombard with requests 3 of the Tem-
pest servers. Call the Tempest services victims.

• At time t + ∆ the rogue clients terminate.

In the experiments that follow, t is 10, and ∆ is 30 seconds.
The rogue clients bombard the victims with multiple

streams of continuous IP multicast requests in the attempt
to saturate their processing capacity. However, we found
that this was not enough to perturb the normal behavior of
the servers, hence at the same time we superimposed addi-
tional background load on the victim servers. These attacks
do not actually cause the servers to crash, but they do cause
them to become overloaded in processing incoming updates
and hence return stale results.

Server overloads will not influence the performance of
Tempest at non-attacked services, hence we report only on
the impact of the disruption at the affected replicas. Fig-
ure 6 shows the number of “stale” query results on the y-
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axis against the time in seconds on the x-axis, binned in 2-
second intervals. The client issues an update every 20 mil-
liseconds and the Tempest gossip rate is set at once every 40
milliseconds. Throughout this period, the victim nodes are
overloaded and drop packets, while the Tempest repair pro-
tocols labor to repair the resulting inconsistencies. Mean-
while, queries that manage to reach the overloaded nodes
could glimpse stale data (not reflecting recent issued up-
dates since the updates were lost). Once the attack ends,
Tempest is able to gracefully recover.

The ratio of the gossip rate to the update rate will de-
termine the robustness of Tempest to this sort of overload
scenario. To quantify this effect, Figure 7 shows the incon-
sistency window as perceived by clients during the disrup-
tion. This is the period of time during which clients of a ser-
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vice see more than one stale query result within a 2-second
interval. The inconsistency window is plotted against the
ratio between the update rate and the Tempest gossip rate,
with the update rate fixed at 1/20 milliseconds. The window
is minimized when the gossip rate is at least as fast as the
update rate.

4.3 Scalability in the Number of Services

To estimate how Tempest scales in different dimensions
— in particular size of the collaborating services, number
of front-ends and number of replicas — we built a synthetic
PetStore on top of Tempest and evaluated it on the Emulab
testbed. The application consists of a battery of front ends
issuing requests to a “cloud” of services.
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Figure 8. Large variance service latency.
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Figure 9. Small variance service latency.

The services have different response time characteristics:
some are IO intensive – for example an indexing service
may access disk much more often than the average service,
others are CPU intensive – for example a recommendation
service may require considerably more CPU cycles than the
average service, while other services are both IO and CPU
bound. We also consider the response time variances for
these types of services, in particular the PetStore services
have both small and large response time variance. We ob-
served that services performing multiple IO operations are
likely to suffer from scheduling delays. Lock contention
within Tempest may be another cause for large response
time variance.

We ran a set of baseline experiments to measure the be-
havior of each type of service individually, under normal
load. The experiment consisted of two front ends issuing
request streams (half updates half reads) of one query every
40 milliseconds in closed loop to a single replicated service.
Services have the gossip rate set for once every 100 mil-
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Figure 10. Pet-store response time his-
tograms, left: no replicas, right: 8 replicas.
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Figure 11. Pet-store latency, 5 replicas each.

liseconds. We repeated the experiment for various number
of replicas and for each of the types of services mentioned
above. Figure 8 shows the query latency for services with
large response time variance, and small response time vari-
ance respectively (figure 9). The error bars represent stan-
dard error. Note that even for services that we instrumented
to have small response time variance, if they are IO bound
they do exhibit large variance — in particular note the CPU
& IO bound service for 42 replicas and the IO bound service
for 56 replicas. We should note that for this client request
load, the service instances become overloaded if we drop
below about 3 replicas, and we don’t report those values
(response times are meaningless when the service isn’t able
to keep up with the request rate).

Next we evaluated the PetStore as a “cloud” of seven ser-
vices — the six with the characteristics presented in the pre-
vious experiments, along with another baseline service that
shows the overhead caused by Tempest. Four front-ends
perform multi-service requests (half queries half updates)
against the PetStore in a closed loop, each at a rate of once
every 50 milliseconds — we chose the rate so as to not com-
pletely overload the platform and observe queueing effects
instead.
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Figure 12. Pet-store latency, 8 replicas each.

Figure 10 show response time distributions for multi-
service requests sent to all services — every request issued
by a front-end is sent in parallel to each service, the front
end returns when replies from every service is received. Re-
quests have the redundant querying parameter k = 2. Each
histogram shows the number of requests per bins 10 mil-
liseconds wide. We show the scenarios: the one in which
neither of the services is replicated, and the one in which
services have 8 replicas each. The graphs show that replica-
tion provides more opportunities for queries to be absorbed
by load balancing and that redundant querying pays off.

Figures 11 and 12 show response times for multi-service
requests (with standard error denoting the error bars). Ev-
ery multi-request issued by a front-end chooses at random
n distinct services, where n is the number of services per
query, presented on the x-axis. We used the adaptive query
algorithm with the k parameter set to 1, 2 and 5. For base-
line we used a simple query discovery algorithm by which
the first query for a service is multicast, and all subsequent
queries are sent to the one replica that replied the fastest
to the multicast. In figure 11 every service is replicated 5
times, while in figure 12 every service is replicated 8 times.
First we conclude that redundant querying does indeed im-
prove performance, with the largest payoff for k = 2. Sec-
ond, the adaptive querying algorithm pays off mostly in sce-
narios where the number of replicas is small.

5 Related Work

Soft state mechanisms have been used extensively in net-
work protocols [32, 12], as well as in large cluster-based
services like Porcupine [24] and others [14, 6, 26]. Propos-
als exist for extending the standard web-service model to
include soft state — a prominent example is the Grid Com-
puting standard [13]. Recovery-oriented computing [7] is
an alternative approach to providing fast failover and avail-

ability in the face of failures — however, it does not replace
replication as a mechanism for balancing heavy load across
multiple machines. Distributed data structures have been
proposed before [16] as building blocks for clustered ser-
vices. The work in [33] is very similar in spirit to Tem-
pest, but examines the orthogonal question of providing
customizable durability levels through a single storage ab-
straction; one of these levels is meant for soft state that
needs to be replicated for high availability. SSM [18] is
a system for managing and storaging a particular category
of soft state — user session information.

Clustered application servers like BEA WebLogic Ap-
plication Server [3] and IBM WebSphere [17] allow storage
of state in special containers that are typically stored within
persistent databases. There has been a large amount of work
in the field of fault-tolerant middleware, especially around
CORBA [2, 21, 11], but most of this work does not consider
interaction with a database third tier. DBFarm [23] is an ar-
chitecture for scaling a core of multiple databases through
the use of less reliable replicas.

6 Conclusion

Modern three-tier architectures achieve scalability and
responsiveness through the extensive use of soft state tech-
niques in the service tier. Availability and rapid fail-over re-
quires data replication, and Tempest provides programmers
with data structure abstractions for storing and managing
replicated soft state. Tempest scales well in key dimensions
— the number of front-ends contacting a service and the
number of services contacted by a front-end — and outper-
forms in-memory databases in realistic settings. As a result,
Tempest simplifies the construction of highly responsive
systems that seamlessly mask load fluctuations and faults
from end-users.

References

[1] M. K. Aguilera, A. Merchant, M. Shah, A. C. Veitch, and
C. T. Karamanolis. Sinfonia: a new paradigm for build-
ing scalable distributed systems. In SOSP, pages 159–174,
2007.

[2] R. Baldoni and C. Marchetti. Three-tier replication for FT-
CORBA infrastructures. Software Practice and Experience,
2003, 6 2003.

[3] BEA Systems, Inc. Clustering the BEA We-
bLogic Application Server, 2003. http://e-
docs.bea.com/wls/docs81/cluster/overview.html.

[4] J. Byers, J. Considine, and M. Mitzenmacher. Fast approx-
imate reconciliation of set differences. Boston University
Computer Science Technical Report 2002-019., 2002.

[5] L. Camargos, F. Pedone, and M. Wieloch. Sprint: a middle-
ware for high-performance transaction processing. In Eu-
roSys ’07: Proceedings of the ACM SIGOPS/EuroSys Eu-

9



ropean Conference on Computer Systems 2007, pages 385–
398, New York, NY, USA, 2007. ACM.

[6] G. Candea, J. Cutler, and A. Fox. Improving availability
with recursive microreboots: a soft-state system case study.
Perform. Eval., 56(1-4):213–248, 2004.

[7] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and
A. Fox. Microreboot - a technique for cheap recovery. In
OSDI, pages 31–44, 2004.

[8] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: amazon’s highly available key-
value store. In SOSP ’07: Proceedings of twenty-first ACM
SIGOPS symposium on Operating systems principles, pages
205–220, New York, NY, USA, 2007. ACM.

[9] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry. Epi-
demic algorithms for replicated database maintenance. In
Proceedings of the sixth annual ACM Symposium on Prin-
ciples of Distributed Computing, pages 1 – 12, Vancouver,
British Columbia, Canada, 1987.

[10] A. Demers, K. Petersen, M. Spreitzer, D. Terry, M. Theimer,
and B. Welch. The Bayou Architecture: Support for Data
Sharing among Mobile Users. In IEEE Workshop on Mobile
Computing Systems & Applications, 1994.
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cluster for multiple databases. In Middleware, pages 180–
200, 2006.

[24] Y. Saito, B. N. Bershad, and H. M. Levy. Manageability,
availability and performance in Porcupine: a highly scal-
able, cluster-based mail service. In SOSP ’99: Proceedings
of the seventeenth ACM symposium on Operating systems
principles, pages 1–15, New York, NY, USA, 1999. ACM
Press.

[25] B. Schroeder, A. Wierman, and M. Harchol-Balter. Open
vs closed: a cautionary tale. In Proceedings of the 3rd
Symposium on Networked System Design and Implementa-
tion (NSDI). Networked System Design and Implementation
(NSDI), 2006.

[26] K. Shen, T. Yang, L. Chu, J. L. Holliday, D. A. Kuschner,
and H. Zhu. Neptune: scalable replication management and
programming support for cluster-based network services. In
USITS’01: Proceedings of the 3rd conference on USENIX
Symposium on Internet Technologies and Systems, pages
17–17, Berkeley, CA, USA, 2001. USENIX Association.

[27] Sun Microsystems. The Collections Framework, 1995.
http://java.sun.com/docs/books/tutorial/collections/index.html.

[28] The Apache Software Foundation. Apache Axis, 2006.
http://ws.apache.org/axis/.

[29] M. Welsh, D. E. Culler, and E. A. Brewer. SEDA: An Ar-
chitecture for Well-Conditioned, Scalable Internet Services.
In Symposium on Operating Systems Principles, pages 230–
243, 2001.

[30] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An in-
tegrated experimental environment for distributed systems
and networks. In Proc. of the Fifth Symposium on Operating
Systems Design and Implementation.

[31] World Wide Web Consortium. Web Services Architecture,
2002. http://www.w3.org.

[32] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala.
RSVP: a new resource reservation protocol. Communica-
tions Magazine, IEEE, 40(5):116–127, 2002.

[33] X. Zhang, M. A. Hiltunen, K. Marzullo, and R. D. Schlicht-
ing. Customizable service state durability for service ori-
ented architectures. Sixth European Dependable Computing
Conference, 0:119–128, 2006.

10


